Supporting Information

Synergistic Effect of Cobalt Boride Nanoparticles on MoS₂ Nanoflowers for Highly Efficient Hydrogen Evolution in Alkaline Media

Jie Lao^a, Dong Li^a, Chunli Jiang^{a,b}, Chunhua Luo^{a,*}, Ruijuan Qi^a, Hechun Lin^a, Rong Huang^{a,b}, Geoffrey I. N. Waterhouse^c and Hui Peng^{a,b,*}

^a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China.

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

° School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand

* Corresponding authors at: Key Laboratory of Polar Materials and Devices (MOE),

Department of Electronics, East China Normal University, Shanghai, 200241, China.

Address correspondence to: chluo@ee.ecnu.edu.cn, hpeng@ee.ecnu.edu.cn

Figure S1. TEM image of the MoS₂ NFs.

Figure S2. (a) XRD pattern and (b) Raman spectrum for the MoS_2 NFs.

Figure S3. High resolution XPS spectra for the MoS_2 NFs: (a) Mo 3d region and (b) S 2p region.

Figure S4. Morphological characterization of the CoB NPs. (a) SEM&TEM (inset) image, (b) SAED pattern, and (c) HRTEM image.

Figure S5. Raman spectrum of the CoB NPs.

Figure S6. XPS survey spectrum for the CoB@MoS₂-0.5-300 hybrid.

Figure S7. HER performance of various CoB@MoS₂-*x* hybrids (before annealing) in1.0 M KOH. (a) Polarization curves, and (b) Tafel plots.

Figure S8. Polarization curves (a) and corresponding Tafel slopes (b) for the CoB@MoS₂-*x*-*y* hybrids (after annealing at different temperatures) in 1.0 M KOH.

Figure S9. The HRTEM of MoS₂ before and after annealing. After the annealing,

the lattice fringes became more obvious.

Figure S10. Cyclic voltammograms recorded at different scan rates in the non-Faradaic potential region (0.14-0.24 V vs. RHE) for (a) MoS₂, (b) CoB@MoS₂-0.5-300 and (c) CoB. (d) linear regression analyses used to estimate the double-layer area capacitances of MoS₂, CoB@MoS₂-0.5-300 and CoB.

Figure S11. Morphological characterization of NiB@MoS₂-0.5-300 NFs. (a) TEM image, and (b) EDX element mapping images.

Figure S12. Morphological characterization of FeB@MoS₂-0.5-300 NFs. (a) TEM image, and (b) EDX element mapping images.

Table S1 HER performance of CoB@MoS_-0.5 hybrid after annealing at different temperature under $N_{\rm 2}$

Catalysis	Overpotential at 10 mA cm ⁻²	Tafel Slope
CoB@MoS ₂ -0.5-200	232 mV	126.7 mV dec ⁻¹
CoB@MoS ₂ -0.5-300	146 mV	80.9 mV dec ⁻¹
CoB@MoS ₂ -0.5-400	398 mV	137.7 mV dec ⁻¹

Catalyst	Overpotentia l (10 mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Reference
Ni(OH) ₂ /MoS ₂	227 mV	105	Nanoscale 2018, 10, 19074.
NiCo ₂ S ₄ @MoS ₂	194 mV	68	New J. Chem. 2019, 43, 3601
2D- MoS ₂ /Ni(OH) ₂	185 mV	73	<i>Adv. Mater.</i> 2018, 30, 1801171.
Co-BDC/MoS ₂	155 mV	86	<i>Small</i> 2019, 15, 1805511.
СоВ-300	328 mV	136.2	Adv. Energy Mater. 2016, 6, 1502313.
C02B/C0/N-B-C/B4C	220 mV	205	ACS Appl. Mater. Interfaces 2018, 10, 37067-37078
NiCoFeB	345 mV	98	Small 2019, 15, 1804212
NiCoB	363 mV	102	Small 2019, 15, 1804212
CoB@MoS2-0.5-300	146 mV	80.9	This work

 Table S2. HER performance of different MoS₂-based electrocatalysts in 1.0 M KOH