Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

$\label{eq:constraint} \begin{array}{l} \mbox{Electronic Supplementary Information for:}\\ \mbox{Understanding the structural diversity of freestanding Al}_2O_3\\ \mbox{ultrathin films through a DFTB-aided genetic algorithm} \end{array}$

Maxime Van den Bossche, Claudine Noguera, and Jacek Goniakowski

CNRS and Sorbonne Université, Institut des NanoSciences de Paris, UMR 7588, 4 Place Jussieu, F-75005 Paris, France

Contents

1	Genetic operators in the 2D-GA	2	
2	2 Bulk energetics with the matsci DFTB parameters		
3	Structures of known bulk polymorphs	4	
4	Parity diagrams for the thin film training set	5	
5	Structure-stability relations in bulk Al ₂ O35.15.1Cation coordination5.2Bond-length-bond-strength correlation	6 6 6	
6	Vacancy refilling on $\delta_{ m KB1}(100)$ and $\delta_{ m KB2}(100)$	8	
Re	eferences	9	

1 Genetic operators in the 2D-GA

The different genetic operators used in the 2D-GA are listed in Table 1. These can be seen as the 2D equivalents of 3D operators used in crystal structure optimization.^{1,2,3}

Operator	Proba- bility	Description
Cut-and- splice pairing	50%	Cuts two parent structures along a plane perpendicular to a randomly chosen cell vector and combines the different halves into a new structure. The new a and b vectors are chosen as random linear combinations of the parent vectors and are then rescaled so that the initial surface area corresponds to the average of the best 20% structures in the population.
Strain mutation	15%	Scales the surface unit cell vectors and atomic positions according to strain components drawn from a Gaussian distribution with $\sigma = 0.7$.
Shear mutation	10%	Applies a shear strain perpendicular to the \mathbf{a} or \mathbf{b} vectors (chosen at random), which hence only affects the atomic c coordinates.
Rattle mutation	10%	Randomly displaces 80% of the atomic coordinates with amplitudes uniformly selected between 0 and 2.5 Å.
Soft mutation	15%	Moves the atoms along the vibrational mode with the lowest fre- quency, as identified by a simple pairwise interaction model. ⁴ If a structure has already been soft mutated, the next vibrational mode is chosen.

Table 1

2 Bulk energetics with the matsci DFTB parameters

Table 2 shows the relative energies (per formula unit) for various bulk Al_2O_3 polytypes calculated with the present DFT setup and with the matsci[5] DFTB parameter set using ℓ -dependent Hubbard parameters. Bulk Al_2O_3 polymorphism was not taken into account in the matsci parametrization procedure, leading to a poor description of the energetical ordering.

Table 2						
	$\Delta E (eV/f.u.)$					
	Model	optB86b -vdW	DFTB matsci[5]			
α		0	0			
θ		0.15	-0.56			
κ		0.15	-0.31			
γ	$\gamma_{ m MG}{}^6$	0.30	-0.52			
	$\gamma_{\mathrm{PN}}{}^7$	0.30	-0.52			
	$\gamma_{ m PR}{}^{8,9}$	0.42	0.16			
	${\gamma_{\mathrm{KR}}}^{10}$	0.23	-0.02			
δ	$\delta_{ m RH}{}^{11}$	0.43	-0.23			
	$\delta_{\mathrm{KB1}}{}^{12}$	0.14	-0.50			
	$\delta_{\mathrm{KB2}}{}^{12}$	0.14	-0.50			
bixbyite		0.17	-0.58			

3 Structures of known bulk polymorphs

Figure 1: Structures of the known bulk polymorphs listed in Table 1 of the main text and in Table 2 of the ESI. The atomic coordinates and cell vectors are provided in the ZIP archive of the ESI.

4 Parity diagrams for the thin film training set

Figures 2 and 3 show the parity diagrams for the bulk-opt (blue) and film-opt (orange) DFTB total energies for two series of Al_2O_3 thin films, in comparison with DFT. The thin film structures have been obtained by 2D-GA searches in the thickness intervals of 3.5-5 Å (Figure 2) and 6.5-8 Å (Figure 3) using the bulk-opt parametrization. The film-opt parameters have been refined so as to minimize the deviation from parity for these data sets.

Figure 2: 3.5-5 Å thickness interval.

Figure 3: 6.5-8 Å thickness interval.

5 Structure-stability relations in bulk Al₂O₃

To illustrate the difficulties in relating the relative stabilities of the bulk Al_2O_3 polymorphs to differences in local bonding patterns, we analyze the variation in cation coordination as well as a model based on correlations between bond strengths and bond lengths.

5.1 Cation coordination

The abundances of four- and six-fold coordinated Al atoms for different known bulk polymorphs are listed in Table 3 together with energy differences calculated with DFT. The lack of correlation between both properties can be appreciated by considering e.g. the most stable α polymorph where all Al atoms are six-fold coordinated. Assigning a higher stability to this local environment, however, would be contradicted by the relative instability of the bixbyite phase (consisting also exclusively of 6-fold Al) compared to several other phases with significant concentrations of 4-fold Al atoms (i.e. κ , θ , δ_{KB1} and δ_{KB2}).

5.2 Bond-length-bond-strength correlation

The relative stabilities of different bulk structures may also be assessed in terms of the number and strength of the Al-O bonds. A commonly applied expression for bond strengths using only local geometric information is given by the model of Pauling[13] and Brown and coworkers[14]:

$$E_{\text{bond}}(r) = \exp\left(\frac{r-r_0}{b}\right),$$
(1)

with parameters b and r_0 . Energy differences per formula unit may then be written as:

$$\Delta E_{\rm A-B} = \left(\sum_{\rm Al-O\ bonds} E_{\rm bond}(r_{\rm Al-O})/N_{\rm f.u.}\right)_A - \left(\sum_{\rm Al-O\ bonds} E_{\rm bond}(r_{\rm Al-O})/N_{\rm f.u.}\right)_B.$$
 (2)

The last column in Table 3 shows the performance of such a model where r_0 and b have been adjusted to reproduce the DFT energy differences w.r.t. α -Al₂O₃ via least-squares fitting. The fitted parameter values are $r_0 = 2.29$ Å and b = 0.35 Å. While the model retrieves α -Al₂O₃ as the most stable polymorph, it is clear that also this approach is not sufficiently accurate for the present purposes.

	Al coor	dination	$\Delta E (eV$	$\Delta E (eV/f.u.)$	
Model	4-fold (%)	$\begin{array}{c} \text{6-fold} \\ (\%) \end{array}$	optB86b -vdW	Bond model	
α	0	100	0	0	
$\delta_{\mathrm{KB1}}{}^{12}$	38	62	0.14	0.27	
$\delta_{\mathrm{KB2}}^{12}$	38	62	0.14	0.29	
θ	50	50	0.15	0.51	
κ	25	75	0.15	0.34	
bixbyite	0	100	0.17	0.57	
$\gamma_{\rm KR}^{10}$	25	75	0.23	0.19	
$\gamma_{ m MG}{}^6$	38	62	0.30	0.40	
$\gamma_{\rm PN}{}^7$	38	62	0.30	0.41	
$\gamma_{\mathrm{PR}}{}^{8,9}$	33	67	0.42	0.43	
$\delta_{ m BH}{}^{11}$	38	62	0.43	0.69	

Table 3

6 Vacancy refilling on $\delta_{\text{KB1}}(100)$ and $\delta_{\text{KB2}}(100)$

Figures 4 and 5 show the displacements of low-coordinated Al atoms into surface cation vacancies on $\delta_{\text{KB1}}(100)$ and $\delta_{\text{KB2}}(100)$. The displacements for $\gamma_{\text{MG}}(001)$ are shown in Figure 7 in the main text.

Figure 4: $\delta_{\text{KB1}}(100)$

Figure 5: $\delta_{\text{KB2}}(100)$

References

- C. W. Glass, A. R. Oganov, and N. Hansen. Comput. Phys. Commun. 175, 11-12 (2006), 713–720.
- [2] D. C. Lonie and E. Zurek. Comput. Phys. Commun. 182, 2 (2011), 372–387.
- [3] M. Van den Bossche, H. Grönbeck, and B. Hammer. J. Chem. Theory Comput. 14, 5 (2018), 2797–2807.
- [4] A. O. Lyakhov, A. R. Oganov, and M. Valle. Comput. Phys. Commun. 181, 9 (2010), 1623– 1632.
- [5] J. Frenzel et al. Z. Anorg. Allg. Chem. 631, 6-7 (2005), 1267–1271.
- [6] E. Menéndez-Proupin and G. Gutiérrez. Phys. Rev. B 72, 3 (2005), 035116.
- [7] H. P. Pinto, R. M. Nieminen, and S. D. Elliott. *Phys. Rev. B* **70**, 12 (2004), 125402.
- [8] G. Paglia et al. *Phys. Rev. B* **71**, 22 (2005), 224115.
- [9] G. Paglia et al. *Phys. Rev. B* **68**, 14 (2003), 144110.
- [10] X. Krokidis et al. J. Phys. Chem. B 105, 22 (2001), 5121–5130.
- [11] Y. Repelin and E. Husson. Mat. Res. Bull. 25, 5 (1990), 611–621.
- [12] L. Kovarik et al. J. Phys. Chem. C 118, 31 (2014), 18051–18058.
- [13] L. Pauling. J. Am. Chem. Soc. 69, 3 (1947), 542–553.
- [14] I. D. Brown and R. D. Shannon. Acta Cryst. A 29, 3 (1973), 266–282.