Supporting Information

Ni₁₂P₅ Nanoparticles Binding on Graphene Sheets toward Advanced Lithium–Sulfur Batteries

Guangzeng Liu,*,^{†,‡} Zhengchunyu Zhang,[‡] Wenzhi Tian,[‡] Weihua Chen,[&] Baojuan

Xi,[‡] Haibo Li,[¶] Jinkui Feng,[#] and Shenglin Xiong[‡]

[†] School of Chemistry and Chemistry Engineering, Qilu Normal University, Jinan, 250200, P. R. China.

[‡] Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of

Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials,

Shandong University, Jinan, 250100, P. R. China

[&] Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, P. R. China

[¶] School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China

[#] Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,
Ministry of Education, School of Materials Science and Engineering, Shandong
University, Jinan 250061, P. R. China

*E-mail: gzliusd@163.com

Figure S1. FESEM images of the precursor I (A), precursor II (B) and (C) precursor III.

Figure S2. FESEM and TEM images of (A,C) Ni_9S_8 (GO and (B,D) rGO.

Figure S3. (A) HRTEM image of Ni_9S_8 @rGO, (B) TEM image of Ni_9S_8 @rGO nanosheets, and the corresponding mappings of (C) merged image, (D) S, (E) Ni, and (F) C.

Figure S4. The XRD patterns of Ni_9S_8 @rGO nanosheets (A) and rGO (B).

Figure S5. XPS spectra of Ni_9S_8 @rGO nanosheets: (A) survey, (B-D) high-resolution spectra of Ni 2p, S 2p, and C 1s.

Figure S6. The pristine 2400 Celgard film.

Figure S7. FESEM images of top surface and cross-section of (A, B) Ni_9S_8 @rGO, (C, D) rGO.

Figure S8. The TGA curve of the composite of sulfur and acetylene black in nitrogen atmosphere.

Figure S9. (A) The CV curves for the third cycle of cells with $Ni_{12}P_5$ @rGO, Ni_9S_8 @rGO and rGO separators at the scan rate of 0.1 mV s⁻¹, (B) the galvanostatic charge/discharge voltage curves at different current densities of the cell with the pristine separator.

Figure S10. The CV curves at different sweep rates of (A) S//Ni₁₂P₅@rGO, (B)

S//Ni₉S₈@rGO and (C) S//rGO.

Figure S11. (A) The electrochemical impedance spectra (EIS) of S//Ni₁₂P₅@rGO, S//Ni₉S₈@rGO and S//rGO cells after 10 cycles at 0.5 C. (B) The EIS of the S//Ni₁₂P₅@rGO cell after different discharge/charge cycles at 0.5 C.

Figure S12. The discharge/charge curves of S//pristine separator cell at 0.2 C: (A) rest for 0 h, (B) rest for 48 h.

Figure S13. The Li_2S_6 permeability experiments of different functional separators.