Supplementary informations

Synthesis and biological activity of sphingosines with integrated azobenzene switches

Jozef Gonda ${ }^{\text {a, }}$, Simona Fazekašová ${ }^{\text {a }}$, Miroslava Martinková ${ }^{\text {, }}$, Tatiana Mitríková ${ }^{a}$, Dávid Roman ${ }^{\text {b }}$, Martina Bago Pilátová ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, Košice, Slovakia.
${ }^{\mathrm{b}}$ Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), 07745 Jena, Germany.
${ }^{\text {c }}$ Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.

Contents	folio
Table 3 extented. Antiproliferative activities of sphinganine analogues 24, 29 and $35 \mathrm{a}-35 \mathrm{~d}$ on seven human cancer cell lines (MDA-MB-231, A-549, MCF-7, HCT-116, Caco-2, HeLa and Jurkat) and non-malignant mouse fibroblasts NiH 3 T3	3
Experimental	4
General procedure for the preparation of (E)-phenyldiazenylbenzoates (14a-14d)	5
Ethyl (E)-4-[(4-ethylphenyl)diazenyl]benzoate (14a)	5
Ethyl (E)-4-[(4-propylphenyl)diazenyl]benzoate (14b)	5
Ethyl (E)-4-[(4-butylphenyl)diazenyl]benzoate (14c)	6
Ethyl (E)-4-[(4-pentylphenyl)diazenyl]benzoate (14d)	6
General procedure for the preparation of (E)-[4-(phenyldiazenyl)phenyl]methanols (15a-15d)	6
(E)-\{4-[(4-Ethylphenyl)diazenyl]phenyl\}methanol (15a)	6
(E)-\{4-[(4-Propylphenyl)diazenyl]phenyl\}methanol (15b)	7
(E)-\{4-[(4-Butylphenyl)diazenyl]phenyl\}methanol (15c)	7
(E)-\{4-[(4-Pentylphenyl)diazenyl]phenyl\}methanol (15d)	7
General procedure for the preparation of (E)-1-[4-(bromomethyl)phenyl]-2-phenyldiazenes (16a-16d)	7
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-ethylphenyl)diazene (16a)	8
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-propylphenyl)diazene (16b)	8
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-butylphenyl)diazene (16c)	8
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-pentylphenyl)diazene (16d)	8
General procedure for the preparation of (E)-[4-(phenyldiazenyl)benzyl]triphenylphosphonium bromides (17a-17d)	9
(E)-\{4-[(4-Ethylphenyl)diazenyl]benzyl\} triphenylphosphonium bromide (17a)	9
(E)-\{4-[(4-Propylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17b)	9
(E)-\{4-[(4-Butylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17c)	9
(E)-\{4-[(4-Pentylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17d)	10
(4S)-4-\{($1^{\prime \prime} S$)-(Benzyloxy)[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl]methyl doxazolidin-2-one (19)	10
(4S)-4-\{(1"S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (25)	10
(4S)-3-(tert-Butyldimethylsilyl-4-\{(1"S)-[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (26)	11
(4S)-4-\{(S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl][(p-methoxybenzyl)oxy]methyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (30)	11
Antiproliferative/cytotoxic activity. Cell culture	12
Cytotoxicity assay	12
Photoisomerisation experiments	13
Compounds	
Ethyl (E)-4-[(4-ethylphenyl)diazenyl]benzoate (14a)	14
Ethyl (E)-4-[(4-propylphenyl)diazenyl]benzoate (14b)	15
Ethyl (E)-4-[(4-butylphenyl)diazenyl]benzoate (14c)	16
Ethyl (E)-4-[(4-pentylphenyl)diazenyl]benzoate (14d)	17

(E)-\{4-[(4-Ethylphenyl)diazenyl]phenyl\}methanol (15a)	18
(E)-\{4-[(4-Propylphenyl)diazenyl]phenyl\}methanol (15b)	19
(E)-\{4-[(4-Butylphenyl)diazenyl]phenyl\}methanol (15c)	20
(E)-\{4-[(4-Pentylphenyl)diazenyl]phenyl\} methanol (15d)	21
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-ethylphenyl)diazene (16a)	22
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-propylphenyl)diazene (16b)	23
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-butylphenyl)diazene (16c)	24
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-pentylphenyl)diazene (16d)	25
(E)-\{4-[(4-Ethylphenyl)diazenyl]benzyl\} triphenylphosphonium bromide (17a)	26
(E)-\{4-[(4-Propylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17b)	27
(E)-\{4-[(4-Butylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17c)	28
(E)-\{4-[(4-Pentylphenyl)diazenyl]benzyl\} triphenylphosphonium bromide (17d)	29
(4S)-4-\{(1'S)-(Benzyloxy)[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl]methyl\}oxazolidin-2-one (19)	30
(4S)-4-[(1'R,E\&Z)-(Benzyloxy)-3'-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}allyl]oxazolidin-2-one (22)	31
(4S)-4-[(1'R)-(Benzyloxy)-3'-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}propyl]oxazolidin-2-one (23)	32
(2S,3R)-2-Amino-3-benzyloxy-5-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}pentan-1-ol (24)	33
(4S)-4-\{($1^{\prime \prime}$ S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (25)	34
(4S)-3-(tert-Butyldimethylsilyl-4-\{(1"S)-[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (26)	35
(4R)-3-(tert-Butyldimethylsilyl)-4-\{(E)-4-[(E)-(4-ethylphenyl)diazenyl]styryl ${ }^{\text {a }}$ oxazolidin-2-one (E)-27)	36
(4R)-3-(tert-butyldimethylsilyl)-4-\{(Z)-4-[(E)-(4-ethylphenyl)diazenyl]styryl \}oxazolidin-2-one (Z)-27)	37
(4R)-4-\{(E)-4-[(E)-(4-Ethylphenyl)diazenyl]styryl \}oxazolidin-2-one ((E)-28)	38
$(4 R)-4-\{(Z)-4-[(E)-(4-E t h y l p h e n y l) d i a z e n y l]$ styryl $\}$ oxazolidin-2-one ((Z)-28)	39
(2R,3E)-2-Amino-4-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}but-3-en-1-ol ((E)-29)	40
(4S)-4-\{(S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl][(p-methoxybenzyl)oxy]methyl $\}$-3-(p-methoxybenzyl)oxazolidin- 2-one (30)	41
(4S)-4-\{($\left.R, 2^{\prime} E \& 2^{\prime} Z\right)-33^{\prime}-(4-[(E)-(4-E t h y l p h e n y l)$ diazenyl $]$ phenyl)-1'-[(p-methoxybenzyl)oxy]allyl $\}-3-(p-$ methoxybenzyl)oxazolidin-2-one (32a)	42
(4S)-3-(p-Methoxybenzyl)-4-\{(R,2'E\&2'Z)-1'-[p-methoxybenzyl)oxy]-3'-(4-[(E)-(4-propylphenyl)diazenyl]phenyl)allyl\}oxazolidin-2-one (32b)	42
(4S)-4-\{($R, 2$ ' $\left.E \& 2^{\prime} Z\right)-3$ '-(4-[(E)-(4-Butylphenyl)diazenyl]phenyl)-1'-[(p-methoxybenzyl)oxy]allyl $\}-3$-(p -methoxybenzyl)oxazolidin-2-one (32c)	43
(4S)-3-(p-Methoxybenzyl)-4-\{(R,2'E\&2'Z)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4pentylphenyl)diazenyl]phenyl)allyl \}oxazolidin-2-one (32d)	43
(4S)-4-\{(R)-3'-(4-[(E)-(4-Ethylphenyl)diazenyl]phenyl)-1'-[(p-methoxybenzyl)oxy]propyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (33a)	44
(4S)-3-(p-Methoxybenzyl)-4-\{(R)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4propylphenyl)diazenyl]phenyl)propyl \}oxazolidin-2-one 33b	45
(4S)-4-\{(R)-3'-(4-[(E)-(4-Butylphenyl)diazenyl]phenyl)-1'-[(p-methoxybenzyl)oxy]propyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (33c)	46
(4S)-3-(p-Methoxybenzyl)-4-\{(R)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4pentylphenyl)diazenyl]phenyl)propyl \}oxazolidin-2-one (33d)	47
(4S)-4-\{(R)-3'-(4-[(E)-(4-Ethylphenyl)diazenyl]phenyl)-1'-hydroxypropyl\}oxazolidin-2-one (34a)	48
(4S)-4-\{(R)-1'-Hydroxy-3'-(4-[(E)-(4-propylphenyl)diazenyl]phenyl)propyl \}oxazolidin-2-one (34b)	49
(4S)-4-\{(R)-3'-(4-[(E)-(4-Butylphenyl)diazenyl]phenyl)-1'-hydroxypropyl \}oxazolidin-2-one (34c)	50
(4S)-4-\{(R)-1'-Hydroxy-3'-(4-[(E)-(4-pentylphenyl)diazenyl]phenyl)propyl oxazolidin-2-one (34d)	51
(2S,3R)-2-Amino-5-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}pentane-1,3-diol (35a)	52
(2S,3R)-2-Amino-5-\{4-[(Z)-(4-ethylphenyl)diazenyl]phenyl\}pentane-1,3-diol ((Z)-35a)	53
(2S,3R)-2-Amino-5-\{4-[(E)-(4-propylphenyl)diazenyl]phenyl\}pentane-1,3-diol (35b)	54
(2S,3R)-2-Amino-5-\{4-[(E)-(4-butylphenyl)diazenyl]phenyl\}pentane-1,3-diol (35c)	55
(2S,3R)-2-Amino-5-\{4-[(E)-(4-pentylphenyl)diazenyl]phenyl\}pentane-1,3-diol (35d)	56
(2S,3R)-2-Amino-5-\{4-[(E)-(4-butylphenyl)diazenyl]phenyl\}pentane-1,3-diol hydrochloride (35c.HCl)	57
Photoisomerisation experiments for 29, 35a-d and 35c.HCl	58-67

Table 3 (extented). Antiproliferative activities of sphinganine analogues 24, 29 and 35a-35d on seven human cancer cell lines (MDA-MB-231, A-549, MCF-7, HCT-116, Caco-2, HeLa and Jurkat) and non-malignant mouse fibroblasts NiH 3 T3

Compd no.	t (h)	Cell line, $\mathrm{IC}_{50}{ }^{\text {a }} \pm$ SD $\left(\mu \mathrm{mol} \times \mathrm{L}^{-1}\right)$							
		$\begin{gathered} \text { MDA } \\ \text { MB-231 } \end{gathered}$	Caco-2	HeLa	$\begin{aligned} & \hline \mathrm{NiH} \\ & 3 \mathrm{~T} 3 \end{aligned}$	MCF-7	Jurkat	HCT	A-549
(E)-24	24	$\begin{gathered} 5.0 \\ (\pm 1.6) \end{gathered}$	- ${ }^{\text {b }}$	$\begin{gathered} 6.6 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 6.6 \\ (\pm 3.1) \end{gathered}$	$\begin{gathered} 5.3 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 2.9 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 6.2 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 6.2 \\ (\pm 1.4) \end{gathered}$
	48	$\begin{gathered} 3.8 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 2.95 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 5.0 \\ (\pm 2.5) \end{gathered}$	$\begin{gathered} 3.9 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 5.9 \\ (\pm 1.7) \end{gathered}$	$\begin{gathered} 4.8 \\ (\pm 1.9) \end{gathered}$	$\begin{gathered} 4.2 \\ (\pm 1.8) \end{gathered}$	$\begin{gathered} 4.9 \\ (\pm 1.4) \end{gathered}$
	72	$\begin{gathered} 4.2 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 2.4 \\ (\pm 1.5) \end{gathered}$	$\begin{gathered} 6.8 \\ (\pm 1.2) \end{gathered}$	$\begin{gathered} 6.2 \\ (\pm 1.8) \end{gathered}$	$\begin{gathered} 5.4 \\ (\pm 1.7) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 5.0 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 5.0 \\ (\pm 1) \end{gathered}$
(Z)-24	24	$\begin{gathered} 3.7 \\ (\pm 0.1) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 6.9 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 6.7 \\ (\pm 3.5) \end{gathered}$	$\begin{gathered} 5.3 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 2.1) \end{gathered}$	$\begin{gathered} 7.5 \\ (\pm 0.2) \end{gathered}$
	48	$\begin{gathered} 3.6 \\ (\pm 0.04) \end{gathered}$	$\begin{gathered} 2.6 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 5.2 \\ (\pm 2.6) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 6.1 \\ (\pm 0.9) \end{gathered}$	$\begin{gathered} 5.2 \\ (\pm 2.4) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 1.7) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 1.1) \end{gathered}$
	72	$\begin{gathered} 6.6 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 7.5 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 8.8 \\ (\pm 1.6) \end{gathered}$	$\begin{gathered} 6.6 \\ (\pm 1.3) \end{gathered}$	$\begin{gathered} 16.2 \\ (\pm 13) \end{gathered}$	$\begin{gathered} 4.7 \\ (\pm 3.3) \end{gathered}$	$\begin{gathered} 4.6 \\ (\pm 1) \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 0.4) \end{gathered}$
$(E)-29$	24	$\begin{gathered} 0.6 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 2.2 \\ (\pm 1.8) \end{gathered}$	$\begin{gathered} 4.0 \\ (\pm 4.9) \end{gathered}$	$\begin{gathered} 8.6 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 0.7 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 1.8 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 2.6 \\ (\pm 2.4) \end{gathered}$	≤ 0.5
	48	$\begin{gathered} 0.8 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 4.8 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 2.1 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 14.1 \\ (\pm 6.7) \end{gathered}$	≤ 0.5	$\begin{gathered} 8.4 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 2.7 \\ (\pm 2) \end{gathered}$	≤ 0.5
	72	$\begin{gathered} 4.0 \\ (\pm 2.4) \end{gathered}$	$\begin{gathered} 3.0 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 21.5 \\ (\pm 45) \end{gathered}$	$\begin{gathered} 8.7 \\ (\pm 0.9) \end{gathered}$	$\begin{gathered} 1.9 \\ (\pm 2.0) \\ \hline \end{gathered}$	$\begin{gathered} 4.1 \\ (\pm 12.0) \end{gathered}$	$\begin{gathered} 2.5 \\ (\pm 28) \end{gathered}$	$\begin{gathered} 6.0 \\ (\pm 33) \end{gathered}$
(Z)-29	24	≤ 0.5	$\square^{\text {b }}$	$\begin{gathered} 6.5 \\ (\pm 8.3) \end{gathered}$	$\begin{gathered} 42.8 \\ (\pm 16.2) \end{gathered}$	$\begin{gathered} 1.1 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 4.01 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 10.8 \\ (\pm 4.9) \end{gathered}$	≤ 0.5
	48	≤ 0.5	$\begin{gathered} 4.1 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 4.6) \end{gathered}$	$\begin{gathered} 15.8 \\ (\pm 1.5) \end{gathered}$	≤ 0.5	$\begin{aligned} & 11.7 \\ & (\pm 4) \end{aligned}$	$\begin{gathered} 2.3 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 0.7 \\ (\pm 0.4) \end{gathered}$
	72	$\begin{gathered} 12,2 \\ (\pm 4.3) \end{gathered}$	$\begin{gathered} 16,6 \\ (\pm 4.9) \end{gathered}$	$\square^{\text {b }}$	$\begin{gathered} 18,2 \\ (\pm 7.1) \end{gathered}$	$\begin{gathered} 0.9 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 4.6 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 0.6 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 0.6 \\ (\pm 0.2) \end{gathered}$
(E)-35a	24	$\begin{gathered} 3.0 \\ (\pm 0.01) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 5.1 \\ (\pm 3.9) \end{gathered}$	$\begin{gathered} 7.1 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 2.5 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 2.9 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 6.3 \\ (\pm 1.3) \end{gathered}$	$\begin{gathered} 1.0 \\ (\pm 0.06) \end{gathered}$
	48	$\begin{gathered} 6.0 \\ (\pm 1.6) \end{gathered}$	$\begin{gathered} 2.2 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 7.1 \\ (\pm 5.1) \end{gathered}$	$\begin{gathered} 7.4 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 4.7 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 11.8 \\ (\pm 5.4) \end{gathered}$	$\begin{gathered} 5.9 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 0.01) \end{gathered}$
	$72^{\text {b }}$	-	-	-	-	-	-	-	
(Z)-35a	24	$\begin{gathered} 4.0 \\ (\pm 0.3) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 6.8 \\ (\pm 2.5) \end{gathered}$	$\begin{gathered} 9.4 \\ (\pm 0.8) \end{gathered}$	$\begin{gathered} 4.1 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 3.83 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 8.0 \\ (\pm 1.6) \end{gathered}$	$\begin{gathered} 3.1 \\ (\pm 0.4) \end{gathered}$
	48	$\begin{gathered} 7.9 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 1.9 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 6.1 \\ (\pm 3.3) \end{gathered}$	$\begin{gathered} 6.8 \\ (\pm 2.1) \end{gathered}$	$\begin{gathered} 5.6 \\ (\pm 1.3) \end{gathered}$	$\begin{gathered} 9.5 \\ (\pm 1.3) \end{gathered}$	$\begin{gathered} 5.2 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 3.6 \\ (\pm 1.2) \end{gathered}$
	72	$\begin{gathered} 9.8 \\ (\pm 2.9) \\ \hline \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 3.4) \end{gathered}$	$\begin{gathered} 14.4 \\ (\pm 11.8) \\ \hline \end{gathered}$	$\begin{gathered} 8.3 \\ (\pm 1.8) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 4.9 \\ (\pm 2.7) \\ \hline \end{gathered}$	$\begin{gathered} 4.9 \\ (\pm 1.8) \\ \hline \end{gathered}$	$\begin{gathered} 2.8 \\ (\pm 1.9) \\ \hline \end{gathered}$
(E)-35b	24	$\begin{gathered} 4.4 \\ (\pm 0.5) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 7.0 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 3.2) \end{gathered}$	$\begin{gathered} 4.3 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 2.9 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 7.9 \\ (\pm 1.2) \end{gathered}$	$\begin{gathered} 6.8 \\ (\pm 1.3) \end{gathered}$
	48	$\begin{gathered} 4.6 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 2 \\ (\pm 1.5) \end{gathered}$	$\begin{gathered} 5.5 \\ (\pm 3.3) \end{gathered}$	$\begin{gathered} 5.2 \\ (\pm 2.4) \end{gathered}$	$\begin{gathered} 6.1 \\ (\pm 2.4) \end{gathered}$	$\begin{gathered} 6.8 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 5.3 \\ (\pm 1) \end{gathered}$	$\begin{gathered} 6.6 \\ (\pm 0.6) \end{gathered}$
	72	$\begin{gathered} 4.5 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 1.0 \\ (\pm 0.01) \end{gathered}$	$\begin{gathered} 24 \\ (\pm 1.8) \\ \hline \end{gathered}$	$\begin{gathered} 3.31 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 3.82 \\ (\pm 1.0) \end{gathered}$	$\begin{gathered} 3.82 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 3.4 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (\pm 0.3) \end{gathered}$
(Z)-35b	24	$\begin{gathered} 3.8 \\ (\pm 0.1) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 7.4 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 8.2 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 7.0 \\ (\pm 1) \end{gathered}$	$\begin{gathered} 7.57 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 8.4 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 5.4 \\ (\pm 1.7) \end{gathered}$
	48	$\begin{gathered} 5.6 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 2.6 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 5.0 \\ (\pm 2.1) \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 2.9) \end{gathered}$	$\begin{gathered} 7.4 \\ (\pm 4.5) \end{gathered}$	$\begin{gathered} 6.0 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 1) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 0.3) \end{gathered}$
	72	$\begin{gathered} 4.17 \\ (\pm 0.5) \\ \hline \end{gathered}$	$\begin{gathered} 4.2 \\ (\pm 3.6) \end{gathered}$	$\begin{gathered} 7.4 \\ (\pm 2.2) \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 6.9 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 2.7 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 3.8 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 3 \\ (\pm 2.9) \end{gathered}$

$(E)-35 \mathrm{c}$	24	$\begin{gathered} 3.5 \\ (\pm 0.1) \end{gathered}$	- ${ }^{\text {b }}$	$\begin{gathered} 18.3 \\ (\pm 4.1) \end{gathered}$	$\begin{gathered} 5.9 \\ (\pm 0.2) \end{gathered}$	$\begin{gathered} 16.5 \\ (\pm 11.9) \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 15 \\ (\pm 8.8) \end{gathered}$	$\begin{gathered} 7.5 \\ (\pm 1) \end{gathered}$
	48	$\begin{gathered} 7.9 \\ (\pm 1.9) \end{gathered}$	$\begin{gathered} 5.7 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 10.8 \\ (\pm 4.2) \end{gathered}$	$\begin{gathered} 6.4 \\ (\pm 1) \end{gathered}$	$\square^{\text {b }}$	$\begin{gathered} 7.2 \\ (\pm 2.9) \end{gathered}$	$\begin{gathered} 8.5 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 7.6 \\ (\pm 0.4) \end{gathered}$
	62	$\begin{gathered} 7.9 \\ (\pm 2) \\ \hline \end{gathered}$	$\begin{gathered} 6.6 \\ (\pm 1.7) \\ \hline \end{gathered}$	$\begin{aligned} & 28.3 \\ & \pm 6) \end{aligned}$	$\begin{gathered} 6.7 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 27.0 \\ (\pm 3.3) \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ (\pm 0.9) \\ \hline \end{gathered}$	$\begin{gathered} 6.9 \\ (\pm 0.02) \end{gathered}$	$\begin{gathered} 6.2 \\ (\pm 2.9) \\ \hline \end{gathered}$
(Z)-35c	24	$\begin{gathered} 8.2 \\ (\pm 0.7) \end{gathered}$	$\square^{\text {b }}$	$\begin{gathered} 26.3 \\ (\pm 1.9) \end{gathered}$	$\begin{gathered} 6.3 \\ (\pm 2.1) \end{gathered}$	$\begin{gathered} 34.1 \\ (\pm 7.1) \end{gathered}$	$\begin{gathered} 6.9 \\ (\pm 3) \end{gathered}$	$\begin{gathered} 19.5 \\ (\pm 6.3) \end{gathered}$	$\begin{aligned} & \hline 8.8 \\ & (\pm 1) \end{aligned}$
	48	$\begin{gathered} 8.2 \\ (\pm 1.8) \end{gathered}$	$\begin{gathered} 6.3 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 10.0 \\ (\pm 4.7) \end{gathered}$	$\begin{gathered} 7.0 \\ (\pm 0.9) \end{gathered}$	$\begin{gathered} 20.7 \\ (\pm 13.1) \end{gathered}$	$\begin{gathered} 12.4 \\ (\pm 5.3) \end{gathered}$	$\begin{gathered} 9.0 \\ (\pm 1.3) \end{gathered}$	$\begin{gathered} 9.7 \\ (\pm 2.6) \end{gathered}$
	72	$\begin{gathered} 9.6 \\ (\pm 2.7) \end{gathered}$	$-^{\text {b }}$	$\begin{aligned} & 27.4 \\ & (\pm 9) \\ & \hline \end{aligned}$	$\begin{gathered} 7.1 \\ (\pm 0.7) \end{gathered}$	$\begin{gathered} 27.8 \\ (\pm 1.5) \\ \hline \end{gathered}$	$\begin{gathered} 6.6 \\ (\pm 2.4) \end{gathered}$	$\begin{gathered} 7.7 \\ (\pm 0.6) \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 3.6) \end{gathered}$
(E)-35d	24	$\begin{gathered} 3.8 \\ (\pm 0.8) \end{gathered}$	$\sim^{\text {b }}$	$\begin{gathered} 15.1 \\ (\pm 7.9) \end{gathered}$	$\begin{gathered} 5.6 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 12.3 \\ (\pm 5.3) \end{gathered}$	$\begin{gathered} 3.7 \\ (\pm 4) \end{gathered}$	$\begin{gathered} 9.2 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 6.8 \\ (\pm 1.1) \end{gathered}$
	48 72	$\begin{gathered} 6.1 \\ (\pm 1.7) \\ \hline \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 3.3) \\ \hline \end{gathered}$	$\begin{gathered} 23.1 \\ (\pm 13.6) \\ \hline \end{gathered}$	$\begin{gathered} 5.4 \\ (\pm 0.4) \end{gathered}$	$\begin{gathered} 8.4 \\ (\pm 0.8) \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 5.1 \\ (\pm 1.9) \\ \hline \end{gathered}$	$\begin{gathered} 4.4 \\ (\pm 1.1) \\ \hline \end{gathered}$
(Z)-35d	24	$\begin{gathered} 6.3 \\ (\pm 2.3) \end{gathered}$	$-^{\text {b }}$	$\begin{gathered} 9.2 \\ (\pm 0.1) \end{gathered}$	$\begin{gathered} 6.1 \\ (\pm 1.7) \end{gathered}$	$\begin{gathered} 34 \\ (\pm 10.3) \end{gathered}$	$\begin{gathered} 5.3 \\ (\pm 1.5) \end{gathered}$	$\begin{gathered} 16 \\ (\pm 2.1) \end{gathered}$	$\begin{gathered} 5.5 \\ (\pm 2.4) \end{gathered}$
	48	$\begin{gathered} 6.8 \\ (\pm 3.2) \end{gathered}$	$\begin{gathered} 5.5 \\ (\pm 1.1) \end{gathered}$	$\begin{gathered} 9.6 \\ (\pm 7.7) \end{gathered}$	$\begin{gathered} 5.8 \\ (\pm 1.6) \end{gathered}$	$\begin{gathered} 18.2 \\ (\pm 13.5) \end{gathered}$	$\begin{gathered} 7.6 \\ (\pm 1.4) \end{gathered}$	$\begin{gathered} 7.8 \\ (\pm 2.3) \end{gathered}$	$\begin{gathered} 7.2 \\ (\pm 0.4) \end{gathered}$
	72	$\begin{gathered} 4.6 \\ (\pm 4.4) \end{gathered}$	$\begin{gathered} 3.6 \\ (\pm 0.01) \end{gathered}$	$\begin{gathered} 11.2 \\ (\pm 5.5) \end{gathered}$	$\begin{gathered} 4.2 \\ (\pm 3.6) \\ \hline \end{gathered}$	$\square^{\text {b }}$	$\begin{gathered} 1.9 \\ (\pm 1.4) \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ (\pm 1.9) \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ (\pm 4.1) \end{gathered}$
cisplatin	72	$\begin{gathered} 17.5 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 15.2 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 13.1 \\ (\pm 0.2) \end{gathered}$	$\begin{aligned} & 20.87 \\ & (\pm 0.3) \end{aligned}$	$\begin{gathered} 15.6 \\ (\pm 0.3) \end{gathered}$	$\begin{gathered} 16.2 \\ (\pm 0.6) \end{gathered}$	$\begin{gathered} 15.3 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 9.5 \\ (\pm 0.2) \end{gathered}$

${ }^{\text {a }}$ The potency of compounds was determined using MTT assay after $24 \mathrm{~h}, 48 \mathrm{~h}$ and 72 h incubation of cells and given as IC_{50} (concentration of a tested compound that decreased the number of viable cells to 50% relative to untreated control cells).
${ }^{\mathrm{b}}$ Not detected.

Experimental

All commercial reagents were used in the highest available purity from Aldrich or Acros Organics without further purification. Solvents were dried and purified before use according to standard procedures. For flash column chromatography on silica gel, Kieselgel 60 ($0.040-0.063 \mathrm{~mm}, 230-400$ mesh, Merck) was used. Solvents for flash chromatography (hexane, ethyl acetate, methanol, dichloromethane) were distilled before use. Thin layer chromatography was run on Merck silica gel $60 \mathrm{~F}_{254}$ analytical plates; detection was carried out with either ultraviolet light (254 nm), or spraying with a solution of phosphomolybdic acid, a basic potassium permanganate solution, or a solution of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, with subsequent heating. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$ on a Varian Mercury Plus 400 FT NMR (400.13 MHz for ${ }^{1} \mathrm{H}$ and 100.61 MHz for ${ }^{13} \mathrm{C}$) spectrometer. For ${ }^{1} \mathrm{H}, \delta$ are given in parts per million (ppm) either relative to TMS ($\delta=0.0$) as the internal standard or to the solvent signals $\mathrm{CD}_{3} \mathrm{OD}\left(\delta=4.84\right.$ or $\delta=3.31$) and for ${ }^{13} \mathrm{C}$ relative to $\mathrm{CDCl}_{3}(\delta=77.16)$ and $\mathrm{CD}_{3} \mathrm{OD}(\delta=49.05)$. The multiplicity of the ${ }^{13} \mathrm{C}$ NMR signals concerning the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling was determined by the HSQC method. Chemical shifts (in ppm) and coupling
constants (in Hz) were obtained by first-order analysis; assignments were derived from COSY and H/C correlation spectra. Infrared (IR) spectra were measured with a Nicolet 6700 FT-IR spectrometer and expressed in v values $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra (HRMS) were recorded on a micrOTOF-Q II quadrupole-time of flight hybrid mass spectrometer (Bruker Daltonics). Elemental analysis was performed on a Perkin-Elmer CHN 2400 elemental analyser. Optical rotations were measured on a P-2000 Jasco polarimeter and reported as follows: [$\alpha]_{\mathrm{D}}$ (c in grams per 100 mL , solvent). Melting points were recorded on a Kofler hot block, and are uncorrected. Small quantities of reagents ($\mu \mathrm{L}$) were measured with appropriate syringes (Hamilton). All reactions were performed under an atmosphere of nitrogen, unless otherwise noted.

General procedure for the preparation of (\boldsymbol{E})-phenyldiazenylbenzoates (14a-14d)

A solution of ethyl 4-nitrosobenzoate $\mathbf{1 2}^{27}(1.20 \mathrm{mmol})$ in acetic acid $(10 \mathrm{~mL})$ was treated with the corresponding anilines 11a-d $(1.00 \mathrm{mmol})$ at room temperature. After being stirred overnight at this temperature, the solid parts were filtered off. To a filtrate was added water (150 mL), the resulting precipitate was removed by filtration, and dissolved in dichloromethane. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated, and the residue was purified by recrystallization from methanol to give the corresponding products 14a-d.

Ethyl (E)-4-[(4-ethylphenyl)diazenyl]benzoate (14a). Using the aforementioned general procedure, the title compound $\mathbf{1 4 a}(0.183 \mathrm{~g}, 65 \%)$ was obtained as an orange solid, mp $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.75(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.42\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ph}), 7.93$ ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}$), $8.19(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.5\left(\mathrm{CH}_{3}\right), 15.5$ $\left(\mathrm{CH}_{3}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right)$, $122.6\left(2 \times \mathrm{CH}_{\text {Ph }}\right)$, $123.4\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 128.8\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 130.7(2 \times$ $\left.\mathrm{CH}_{\mathrm{Ph}}\right), 132.0\left(\mathrm{C}_{i}\right), 148.8\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 155.4\left(\mathrm{C}_{i}\right), 166.3(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.32; H, 6.43; N, 9.92. Found: C, 73.43; H, 6.31; N, 10.10.

Ethyl (E)-4-[(4-propylphenyl)diazenyl]benzoate (14b). Using the aforementioned general procedure, the title compound $\mathbf{1 4 b}(0.186 \mathrm{~g}, 63 \%)$ was obtained as an orange solid, mp $73-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.64-1.75$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.65-2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $4.41\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph})$, $7.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.93(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.19(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right), 122.6(2 \times \mathrm{CHPh}), 123.3$ $\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.4\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.7\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 132.0\left(\mathrm{C}_{i}\right), 147.3\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 155.4\left(\mathrm{C}_{i}\right), 166.3$ (C=O). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.95; H, 6.80; N, 9.45. Found: C, 73.13; H, 6.69; N, 9.60.

Ethyl (E)-4-[(4-butylphenyl)diazenyl]benzoate (14c). Using the aforementioned general procedure, the title compound $14 \mathrm{c}(0.183 \mathrm{~g}, 59 \%)$ was obtained as an orange solid, $\mathrm{mp} 57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.35-1.46\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 1.59-1.70$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.64-2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.41\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph})$, $7.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.93(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.19(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right)$, $14.5\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right), 122.6(2 \times$ $\left.\mathrm{CH}_{\text {Ph }}\right), 123.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.7\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 132.0\left(\mathrm{C}_{i}\right), 147.5\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 155.4$ $\left(\mathrm{C}_{i}\right), 166.2(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.52; H, 7.14; N, 9.03. Found: C, 73.38; H, 7.29; N, 8.89.

Ethyl (E)-4-[(4-pentylphenyl)diazenyl]benzoate (14d). Using the aforementioned general procedure, the title compound $\mathbf{1 4 d}(0.175 \mathrm{~g}, 54 \%)$ was obtained as an orange solid, $\mathrm{mp} 53-54^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.32-1.38\left(\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.43(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.61-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.66-2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.41\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $7.34(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.93(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.19(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right), 122.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 130.7(2 \times$ $\left.\mathrm{CH}_{\text {Ph }}\right), 132.0\left(\mathrm{C}_{i}\right), 147.6\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 155.4\left(\mathrm{C}_{i}\right), 166.3(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.05; H, 7.46; N, 8.63. Found: C, 73.88; H, 7.63; N, 8.78.

General procedure for the preparation of (E)-[4-(phenyldiazenyl)phenyl]methanols (15a-15d)

To a suspension of $\mathrm{LiAlH}_{4}(1.20 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ that had been pre-cooled to $-20^{\circ} \mathrm{C}$ were added esters $\mathbf{1 4 a - d}(1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$, respectively. The resulting mixture was stirred for 1 h at this temperature. After cautious addition of $10 \% \mathrm{aq} \mathrm{NaOH}$ solution (0.5 mL), the salts were removed by filtration through a small pad of Celite, washed with ethyl acetate, and the solvents were evaporated. The residue was subjected to flash chromatography on silica gel (toluene/ethyl acetate, $4: 1$) to give the corresponding products $\mathbf{1 5 a}$-d.
(E)-\{4-[(4-Ethylphenyl)diazenyl]phenyl\}methanol (15a). According to the aforementioned procedure, compound $\mathbf{1 5 a}(0.233 \mathrm{~g}, 97 \%)$ was obtained as an orange solid, mp $129-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.51-1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.73(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.85(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.6\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{2}\right)$, $65.1\left(\mathrm{CH}_{2}\right), 123.1\left(4 \times \mathrm{CH}_{\mathrm{Ph}}\right), 127.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 128.7\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 143.6\left(\mathrm{C}_{i}\right), 148.0\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right)$, $152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97$; H, 6.71; N, 11.66. Found: C, 75.11; H, 6.86; N, 11.40 .
(E)-\{4-[(4-Propylphenyl)diazenyl]phenyl\}methanol (15b). According to the aforementioned general procedure, compound $\mathbf{1 5 b}(0.201 \mathrm{~g}, 79 \%)$ was obtained as an orange solid, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.63-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.79(1 \mathrm{H}, \mathrm{t}, J$ $=5.9 \mathrm{~Hz}, \mathrm{OH}), 2.64-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.79\left(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph})$, $7.51(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph}), 7.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 123.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.1\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $127.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 143.6\left(\mathrm{C}_{i}\right), 146.5\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right), 152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 75.56 ; \mathrm{H}, 7.13 ; \mathrm{N}, 11.01$. Found: C, 75.69; H, 7.27; N, 10.87.
(\boldsymbol{E})-\{4-[(4-Butylphenyl)diazenyl]phenyl\}methanol (15c). According to the aforementioned general procedure, compound $\mathbf{1 5 c}(0.185 \mathrm{~g}, 69 \%)$ was obtained as an orange solid, mp $124-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.33-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.59-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.80(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OH}), 2.66-2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.78\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 123.0(2$ $\left.\times \mathrm{CH}_{\mathrm{Ph}}\right), 123.1\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 127.6(2 \times \mathrm{CHPh}), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 143.6\left(\mathrm{C}_{i}\right), 146.7\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right)$, $152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.09 ; \mathrm{H}, 7.51$; N, 10.44. Found: C, 76.24; H, 7.68; N, 10.27.
(\boldsymbol{E})-\{4-[(4-Pentylphenyl)diazenyl]phenyl\}methanol (15d). According to the aforementioned general procedure, compound $\mathbf{1 5 d}(0.229 \mathrm{~g}, 81 \%)$ was obtained as an orange solid, $\mathrm{mp} 121-123^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.31-1.39\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.61-1.72$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.75(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OH}), 2.64-2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.79\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $7.32(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph}), 7.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.90(2 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 36.0$ $\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 123.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.1\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 127.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 143.6$ $\left(\mathrm{C}_{i}\right), 146.8\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right), 152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.56 ; \mathrm{H}, 7.85 ; \mathrm{N}, 9.92$. Found: C, 76.38; H, 7.70; N, 9.74.

General procedure for the preparation of (E)-1-[4-(bromomethyl)phenyl]-2-phenyldiazenes (16a-16d)

To a solution of compounds $\mathbf{1 5 a - d}(1.00 \mathrm{mmol})$ in dry THF $(11 \mathrm{~mL})$ were successively added $\mathrm{Ph}_{3} \mathrm{P}$ $(0.49 \mathrm{~g}, 1.87 \mathrm{mmol})$ and NBS $(0.33 \mathrm{~g}, 1.87 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred overnight at room temperature, the resulting mixture was filtered through a small pad of Celite, and concentrated. The
residue was flash-chromatographed on silica gel (toluene) to provide the corresponding products 16ad.
(\boldsymbol{E})-1-[4-(Bromomethyl)phenyl]-2-(4-ethylphenyl)diazene (16a). Using the aforementioned general procedure, compound $16 \mathrm{a}(0.282 \mathrm{~g}, 93 \%)$ was obtained as an orange solid, $\mathrm{mp} 92-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.74\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.55(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.83-7.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.6\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 123.2\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 128.7$ $\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 140.3\left(\mathrm{C}_{i}\right), 148.3\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right), 152.6\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2}$: C, 59.42; H, 4.99; N, 9.24. Found: C, 59.26; H, 5.14; N, 9.41.
(\boldsymbol{E})-1-[4-(Bromomethyl)phenyl]-2-(4-propylphenyl)diazene (16b). Using the aforementioned general procedure, compound $\mathbf{1 6 b}(0.301 \mathrm{~g}, 95 \%)$ was obtained as an orange solid, $\mathrm{mp} 121-123{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.64-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.63-2.70(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.82-7.89(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 123.1(2 \times$ $\left.\mathrm{CH}_{\text {Ph }}\right), 123.3\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 129.3\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 130.0\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 140.3\left(\mathrm{C}_{i}\right), 146.8\left(\mathrm{C}_{i}\right), 151.1\left(\mathrm{C}_{i}\right), 152.6$ (C_{i}). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{2}$: C, $60.58 ; \mathrm{H}, 5.40 ; \mathrm{N}, 8.83$. Found: C, $60.70 ; \mathrm{H}, 5.59 ; \mathrm{N}, 8.66$.
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-butylphenyl)diazene (16c). Using the aforementioned general procedure, compound $\mathbf{1 6 c}(0.308 \mathrm{~g}, 93 \%)$ was obtained as an orange solid, mp $84-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.32-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.59-1.69(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.65-2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.52(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ph}), 7.81-7.90(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 33.0$ $\left(\mathrm{CH}_{2}\right)$, $33.6\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right)$, $123.1\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $123.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.0(2 \times$ $\left.\mathrm{CH}_{\mathrm{Ph}}\right), 140.3\left(\mathrm{C}_{i}\right), 147.0\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 152.6\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2}$: C, 61.64; H, 5.78; N, 8.46. Found: C, 61.47; H, 5.63; N, 8.59.
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-pentylphenyl)diazene (16d). Using the aforementioned general procedure, compound $\mathbf{1 6 d}(0.325 \mathrm{~g}, 94 \%)$ was obtained as an orange solid, mp $89-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28-1.40\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.61-1.72$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65-2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.52(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}, \mathrm{Ph}), 7.82-7.90(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 31.1$ $\left(\mathrm{CH}_{2}\right)$, $31.6\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 123.1\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $130.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 140.3\left(\mathrm{C}_{i}\right), 147.0\left(\mathrm{C}_{i}\right), 151.0\left(\mathrm{C}_{i}\right), 152.6\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrN}_{2}: \mathrm{C}, 62.61$; H, 6.13; N, 8.11. Found: C, 62.46; H, 6.01; N, 8.28.

General procedure for the preparation of (E)-[4-

(phenyldiazenyl)benzyl]triphenylphosphonium bromides (17a-17d)
Triphenylphosphane (1.00 mmol) was added to a solution of bromoazobenzenes 16a-d $(1.00 \mathrm{mmol})$ in toluene (10.5 mL) at room temperature. After being stirred and heated overnight at $100{ }^{\circ} \mathrm{C}$, the solid material was removed by filtration, washed with toluene, and dried under high vacuum for 6 h . This procedure yielded the corresponding salts 17a-d.
(E)-\{4-[(4-Ethylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17a). Using the aforementioned general procedure, compound $\mathbf{1 7 a}(0.543 \mathrm{~g}, 96 \%)$ was obtained as an orange solid, $\mathrm{mp} 147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.71(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 5.64\left(2 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.23-7.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.55-7.65(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.71-7.84(11 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.4\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{~d}, J=47.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 117.7(\mathrm{~d}$, $\left.J=85.7 \mathrm{~Hz}, 3 \times \mathrm{C}_{i}\right), 122.8\left(\mathrm{CHPh}_{\mathrm{Ph}}\right), 122.9\left(\mathrm{CH}_{\mathrm{Ph}}\right), 123.1\left(2 \times \mathrm{CHPh}_{\mathrm{Ph}}\right), 128.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.1(3 \times$ $\left.\mathrm{CH}_{\text {Ph }}\right), 130.2\left(3 \times \mathrm{CH}_{\text {Ph }}\right), 132.5\left(\mathrm{CH}_{\text {Ph }}\right), 132.6\left(\mathrm{CH}_{\text {Ph }}\right), 134.5\left(3 \times \mathrm{CH}_{\text {Ph }}\right), 134.6\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 135.0(3$ $\left.\times \mathrm{CH}_{\text {Ph }}\right), 148.2\left(\mathrm{C}_{i}\right), 150.7\left(\mathrm{C}_{i}\right), 152.2\left(2 \times \mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{P}: \mathrm{C}, 70.09 ; \mathrm{H}, 5.35 ; \mathrm{N}$, 4.95. Found: C, 69.92; H, 5.16; N, 5.13.
(E)-\{4-[(4-Propylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17b). Using the aforementioned general procedure, compound $\mathbf{1 7 b}(0.498 \mathrm{~g}, 86 \%)$ was obtained as an orange solid, mp $238{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62-1.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.61-2.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $5.65\left(2 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 7.23-7.33 (4H, m, Ph), 7.55-7.65 (8H, m, $\mathrm{Ph}), 7.71-7.85(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{~d}, J=$ $\left.46.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 117.9\left(\mathrm{~d}, J=85.8 \mathrm{~Hz}, 3 \times \mathrm{C}_{i}\right), 122.9\left(\mathrm{CH}_{\mathrm{Ph}}\right), 122.97\left(\mathrm{CH}_{\mathrm{Ph}}\right), 123.0(2 \times$ $\left.\mathrm{CH}_{\mathrm{Ph}}\right), 129.3\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.2\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.3\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 132.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 134.6\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $134.7\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right)$, $135.0\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 146.8\left(\mathrm{C}_{i}\right), 150.9\left(\mathrm{C}_{i}\right), 152.3\left(\mathrm{C}_{i}\right), 152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{P}: \mathrm{C}, 70.47$; H, 5.57; N, 4.83. Found: C, 70.30; H, 5.37; N, 4.99.
(E)-\{4-[(4-Butylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17c). Using the aforementioned general procedure, compound $\mathbf{1 7 c}(0.546 \mathrm{~g}, 92 \%)$ was obtained as an orange solid, mp $234{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.32-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.59-1.68 (2H, m, CH2 $), 2.64-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.65\left(2 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.24-7.32(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.56-7.66(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.72-7.84(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0\left(\mathrm{CH}_{3}\right)$, $22.4\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{~d}, J=46.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 117.8\left(\mathrm{~d}, J=85.7 \mathrm{~Hz}, 3 \times \mathrm{C}_{i}\right), 122.9$ $\left(\mathrm{CH}_{\mathrm{Ph}}\right), 123.0\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.2\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.2\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.3\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 132.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right)$,
$134.6\left(3 \times \mathrm{CHPh}_{\mathrm{Ph}}\right), 134.7\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 135.0(3 \times \mathrm{CHPh}), 147.0\left(\mathrm{C}_{i}\right), 150.8\left(\mathrm{C}_{i}\right), 152.3\left(\mathrm{C}_{i}\right), 152.4\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{P}: \mathrm{C}, 70.83$; H, 5.77; N, 4.72. Found: C, 70.97; H, 5.94; N, 4.57.
(E)-\{4-[(4-Pentylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17d). Using the aforementioned procedure, compound $\mathbf{1 7 d}(0.486 \mathrm{~g}, 80 \%)$ was obtained as an orange solid, mp 236 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28-1.39\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.60-$ $1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.62-2.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.66\left(2 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.24-7.33(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.56-7.66 (8H, m, Ph), 7.72-7.85 (11H, m, Ph); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1\left(\mathrm{CH}_{3}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{~d}, J=47.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 117.8\left(\mathrm{~d}, J=85.7 \mathrm{~Hz}, 3 \times \mathrm{C}_{i}\right)$, $122.9\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 123.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 129.2\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.2\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 130.3\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 132.6(2$ $\left.\times \mathrm{CH}_{\mathrm{Ph}}\right), 134.6\left(3 \times \mathrm{CHPh}_{\mathrm{Ph}}\right), 134.7\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 135.0\left(3 \times \mathrm{CH}_{\mathrm{Ph}}\right), 147.0\left(\mathrm{C}_{i}\right), 150.8\left(\mathrm{C}_{i}\right), 152.3\left(2 \times \mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{BrN}_{2} \mathrm{P}$: C, 71.17; H, 5.97; N, 4.61. Found: C, 71.02 ; H, 6.13; N, 4.74.
(4S)-4-\{(1'S)-(Benzyloxy)[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl]methyl\}oxazolidin-2-one (19). A solution of $\mathbf{1 8}^{26 \mathrm{~h}}$ ($81 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dry THF (1.5 mL) that had been pre-cooled to $0^{\circ} \mathrm{C}$ was successively treated with NaH ($19 \mathrm{mg}, 0.80 \mathrm{mmol}$, a $\sim 60 \%$ suspension of NaH in mineral oil). After being stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , and then at room temperature for another 30 min , MeOH was added to decompose the excess hydride. The solvent was evaporated and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The aqueous layer was then washed with further portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was subjected to flash chromatography on silica gel (hexane/EtOAc, 1:1) to afford compound 19 in the quantitative yield (74 mg) as white crystals; mp $80{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-17.7\left(c 0.51, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 3.45-3.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1^{\prime}}$), $3.79\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,1.4 \mathrm{~Hz}, \mathrm{H}_{5}\right)^{\prime}$, 4.06-4.12 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5^{\prime}}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{4}$), 4.38 ($1 \mathrm{H}, \mathrm{dd}, J=8.8,6.0 \mathrm{~Hz}, \mathrm{H}_{5}$), 4.41-4.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}$), 4.62-4.64 (2H, m, OCH ${ }_{2} \mathrm{Ph}$), 6.09-6.13 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{NH}), 7.24-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.9\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 54.0\left(\mathrm{C}_{4}\right), 66.7$ $\left(\mathrm{C}_{5}\right), 67.0\left(\mathrm{C}_{5^{\prime}}\right), 74.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.8\left(\mathrm{C}_{4}\right), 80.2\left(\mathrm{C}_{1^{\prime}}\right), 109.8\left(\mathrm{C}_{2}\right), 128.0\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ph}}\right)$, $128.6\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 137.0\left(\mathrm{C}_{i}\right), 159.7(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C}, 62.53 ; \mathrm{H}, 6.89 ; \mathrm{N}, 4.56$. Found: C, 62.61; H, 6.99; N, 4.37.
(4S)-4-\{(1'S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (25). $10 \% \mathrm{Pd} / \mathrm{C}(0.14 \mathrm{~g})$ was added to a solution of oxazolidinone $19(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ in dry $\mathrm{MeOH}(8 \mathrm{~mL})$. The suspension was degassed three times and was stirred under an atmosphere of hydrogen at room temperature. After 3 h , the mixture was filtered through a small pad of Celite, and the filtrate was concentrated to afford product 25 in 98% yield (69 mg) as a transparent thick oil. $[\alpha]_{\mathrm{D}}{ }^{21}+3.6(c 0.36, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$,
$3.53\left(1 \mathrm{H}, \mathrm{dd}, J=7.7,4.0 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.6 \mathrm{~Hz}, \mathrm{H}_{5}\right)^{\prime}, 3.94-3.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 4.03$ (1 H, ddd, $\left.J=8.9,5.7,4.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,6.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.39-4.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 25.5\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{C}_{4}\right), 67.1\left(\mathrm{C}_{5}\right), 68.2\left(\mathrm{C}_{5}\right), 73.6\left(\mathrm{C}_{1^{\prime}}\right), 77.5$ $\left(\mathrm{C}_{4}\right), 111.0\left(\mathrm{C}_{2}\right), 162.6(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 49.76; H, 6.96; N, 6.45. Found: C, 49.89; H, 7.08; N, 6.61.
(4S)-3-(tert-Butyldimethylsilyl-4-\{(1'S)-[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-
 $(0.3 \mathrm{~mL})$ were successively added $\mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{~mL}, 1.58 \mathrm{mmol})$, DMAP ($11 \mathrm{mg}, 0.09 \mathrm{mmol}$) and TBDMSCl $(0.119 \mathrm{~g}, 0.79 \mathrm{mmol})$. After being stirred for 1 h at room temperature, the mixture was poured into water (5 ml), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was subjected to flash chromatography on silica gel (hexane/EtOAc, 2:1) to give $0.103 \mathrm{~g}(98 \%)$ of compound 26 a white crystalline compound, $\mathrm{mp} 92{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{21}-8.4\left(c 0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.74$ $2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1^{\prime}}\right), 3.88\left(1 \mathrm{H}, \mathrm{ddd}, J=8.9,6.4,5.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.99(1 \mathrm{H}, \mathrm{dd}, J=8.8$, $4.9 \mathrm{~Hz}, \mathrm{H}_{5}$) $4.10-4.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, \mathrm{H}_{5^{\prime}}\right), 4.25-4.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 4.50$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{C}_{\mathrm{q}}\right), 25.1$ $\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 27.0\left(3 \times \mathrm{CH}_{3}\right)$, $58.0\left(\mathrm{C}_{4}\right), 63.9\left(\mathrm{C}_{5}\right), 67.9\left(\mathrm{C}_{5^{\prime}}\right), 74.6\left(\mathrm{C}_{4}\right), 75.0\left(\mathrm{C}_{1^{\prime \prime}}\right), 110.0\left(\mathrm{C}_{2^{\prime}}\right)$, 162.7 (C=O). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}$: C, 54.35 ; H, 8.82; N, 4.23. Found: C, 54.19; H, 8.94; N, 4.10 .
(4S)-4-\{(S)-[(4'R)-2',2'-Dimethyl-1',3'-dioxolan-4'-yl][(p-methoxybenzyl)oxy]methyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (30). To a solution of $\mathbf{2 5}$ ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) in dry DMF that had been pre-cooled to $0^{\circ} \mathrm{C}$ were successively added NaH ($28 \mathrm{mg}, 1.15 \mathrm{mmol}$, a $\sim 60 \%$ suspension of NaH in mineral oil), p-methoxybenzyl bromide $(0.09 \mathrm{~mL}, 0.69 \mathrm{mmol})$ and TBAI $(18.5 \mathrm{mg}, 0.05$ $\mathrm{mmol})$. The resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and then for another 3 h at room temperature. The reaction was quenched by the addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ to remove the excess hydride. Then, water (6 mL) was added and the whole mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated, and the residue was chromatographed on silica gel (hexane/EtOAc, 2:1) to afford compound 30 in the yield of 86% $(91 \mathrm{mg})$ as a colourless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-14.6\left(c 0.22, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=8.3,5.3 \mathrm{~Hz}, \mathrm{H}_{5}\right)^{\prime}$, $3.74-$ $3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}, \mathrm{OCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(1 \mathrm{H}, \mathrm{ddd}, J=9.4,5.4,0.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.91-3.97$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J=8.3,6.5 \mathrm{~Hz}, \mathrm{H}_{5}\right)^{\prime}, 4.20\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,8.7 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.45-4.51(3 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{OCH}_{2}, \mathrm{H}_{5}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, $\mathrm{Ph}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.0$ $\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{NCH}_{2}\right), 54.9\left(\mathrm{C}_{4}\right), 55.4\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right) 62.7\left(\mathrm{C}_{5}\right), 67.2\left(\mathrm{C}_{5}\right), 73.6$ $\left(\mathrm{OCH}_{2}\right), 74.8\left(\mathrm{C}_{4}\right), 75.5\left(\mathrm{C}_{1^{\prime \prime}}\right), 109.9\left(\mathrm{C}_{2}\right), 114.2\left(2 \times \mathrm{CH}_{\text {Ph }}\right), 114.4\left(2 \times \mathrm{CH}_{\mathrm{Ph}}\right), 127.7\left(\mathrm{C}_{i}\right), 129.4\left(\mathrm{C}_{i}\right)$, $129.9\left(4 \times \mathrm{CH}_{\mathrm{Ph}}\right), 158.8(\mathrm{C}=\mathrm{O}), 159.6\left(\mathrm{C}_{i}\right), 159.8\left(\mathrm{C}_{i}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{7}: \mathrm{C}, 65.63 ; \mathrm{H}, 6.83$; N, 3.06. Found: C, 65.51; H, 6.69; N, 3.19.

Antiproliferative/cytotoxic activity

Cell culture

The following human cancer cell lines were used for this study: A-549 (non-small cell lung cancer), HeLa (cervical adenocarcinoma), MCF-7 (mammary gland adenocarcinoma), MDA-MB-231 (mammary gland adenocarcinoma), HCT-116 (human colon carcinoma), Caco-2 (human colon carcinoma), Jurkat (acute T-lymphoblastic leukaemia) and the non-cancerous cell line NiH 3T3 (mouse fibroblasts). The A-549, HCT-116, MCF-7, MDA-MB-231, Caco-2, Jurkat and HeLa cells were maintained in RPMI 1640 medium. The NiH 3 T 3 cell line was maintained in growth medium consisting of high glucose Dulbecco's Modified Eagle Medium. Both of these media were supplemented with Glutamax and with $10 \%(V / V)$ foetal calf serum, penicillin ($100 \mathrm{IU} \times \mathrm{mL}^{-1}$) and streptomycin ($100 \mathrm{mg} \times \mathrm{mL}^{-1}$) (all from Invitrogen, Carlsbad, CA USA) in an atmosphere of $5 \% \mathrm{CO}_{2}$ in humidified air at $37^{\circ} \mathrm{C}$. Cell viability, estimated by the trypan blue exclusion, was greater than 95% before each experiment.

Cytotoxicity assay

The cytotoxic effect of the tested compounds was studied using colourimetric microculture assay with the MTT endpoint. ${ }^{28}$ The amount of MTT reduced to formazan was proportional to the number of viable cells. Briefly, 5×10^{3} cells were plated per well in 96 -well polystyrene microplates (Sarstedt, Germany) in the culture medium containing tested chemicals at final concentrations of $10^{-4}-10^{-6} \mathrm{~mol}$ $\times \mathrm{L}^{-1}$. To follow up the effect of UV radiation on compounds and their cytotoxic activity, each compound was exposed in the dark to UV radiation at wavelength 365 nm for 1 h in DMSO to reach the photostationary state just prior to addition to the cell suspension. During the testing individual samples were kept in the dark at $37^{\circ} \mathrm{C}$, and IC_{50} values were recorded after 24,48 and 72 h . After 24, 48 and 72 h of incubation, $10 \mu \mathrm{~L}$ of MTT ($5 \mathrm{mg} \times \mathrm{mL}^{-1}$) were added into each well. After an additional 4 h , during which insoluble formazan was formed, $100 \mu \mathrm{~L}$ of $10 \%(\mathrm{~m} / \mathrm{m})$ sodium dodecylsulfate were added into each well, and another 12 h were allowed for the formazan to be
dissolved. The absorbance was measured at 540 nm using the automated uQuant ${ }^{\mathrm{TM}}$ Universal Microplate Spectrophotometer (Biotek Instruments Inc., Winooski, VT USA). The blank corrected absorbance of the control wells was taken as 100%, and the results were expressed as a percentage of the control.

Photoisomerisation experiments

For the photoisomerisation experiments the sample solution was transferred into 10 mm Precision cells made of Quartz SUPRASIL® (110-QS). The sample-irradiation experiments with UV-light were performed using the Spectroline lamp (model ENB-280C/FE) with 365 nm wavelength. The sample-irradiation experiments with visible light were performed using a halide lamp (model GXH001, 20W halogen bulb) with an assembled filter for extraction of 420 nm wavelength light.

Ethyl (E)-4-[(4-ethylphenyl)diazenyl]benzoate (14a)

∞
$\stackrel{\infty}{7}$
i

1	16	1		1			1	1	1	10	1	1	1	1	1	
170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

に
$\stackrel{\leftrightarrow}{i}$
i
$\stackrel{\text { or }}{\substack{\infty \\ \uparrow}}$

(E)-\{4-[(4-Propylphenyl)diazenyl]phenyl\}methanol (15b)

$\stackrel{\text { gin }}{\substack{\infty \\ 寸}}$

$\stackrel{\circ}{i}$

[^0]

		商

Γ	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1
50	150	140	130	120	110	100	90	f1 $\begin{gathered}80 \\ \text { (pmm) }\end{gathered}$	70	60	50	40	30	20	10

$\stackrel{\circ}{\dot{\circ}}$

N®
(1)

9
0
1
1

[^1](E)-1-[4-(Bromomethyl)phenyl]-2-(4-ethylphenyl)diazene (16a)
$\underbrace{\infty}_{\substack{\infty \\ \infty}}$
$\stackrel{n}{i}$

$\begin{array}{lll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$
(E)-1-[4-(Bromomethyl)phenyl]-2-(4-propylphenyl)diazene (16b)

\&దณm へin闰
$\stackrel{\text { n }}{\substack{\text { T }}}$
$\underbrace{\text { ה }}$

| 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 |
| :--- |

$\left.\begin{array}{llllllllllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 5 & 1 & 1 & 1\end{array}\right)$

$\dot{\infty}_{\infty}^{\infty} \underset{\infty}{\infty}$

 $\stackrel{\stackrel{1}{6}}{\stackrel{i}{i}}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \text { f1 (ppm) } \end{gathered}$	70	60	50	40	30	20	10

(E)-\{4-[(4-Propylphenyl)diazenyl]benzyl\}triphenylphosphonium bromide (17b)

ஸi m
No
мネ0

$\begin{array}{llllllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

(Gity

$\begin{array}{lll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

-160.17
$\stackrel{n}{n} \stackrel{\sim}{n} \stackrel{\sim}{n}$

\circ
-

Nom in in
?
$\stackrel{セ}{4}$

(4S)-4-[(1'R,E\&Z)-(Benzyloxy)-3'-\{4-[(E)-(4-ethylphenyl)diazenyl]phenyl\}allyl]oxazolidin-2-one (22)

'T			T ${ }^{\prime}$		1	'T			T	T				T'	
$\underset{\infty}{\stackrel{\circ}{\infty}}$			$\stackrel{\infty}{\circ}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{i}}}{ }$	$\stackrel{\circ}{-1}$		$\underset{\delta}{\circ} \underset{\sim}{n} \underset{\sim}{o n} \underset{寸}{\infty} \underset{\sim}{\sim}$	ঃ.	$\underset{\sim}{\underset{\sim}{r}}$					
8.0	7.5	7.0		6.5	6.0	5.5	5.0	$\mathrm{f} 1(\mathrm{ppm})$	4.0	3.5	3.0	2.5	2.0	1.5	1.0

	\％	
	$\stackrel{0}{0}$	$\underset{\sim}{\text {－}}$

$$			$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{7}{N}$	¢	$\begin{aligned} & \text { R} \\ & \stackrel{\text { j}}{1} \end{aligned}$	

M
$\stackrel{\text { N }}{0}$
$\stackrel{1}{1}$
$\stackrel{ \pm}{\infty}$
$\overrightarrow{-}$
$\stackrel{\rightharpoonup}{7}$
1

$\stackrel{\circ}{0}$
느운

(4S)-3-(tert-Butyldimethylsilyl-4-\{(1'S)-[(4'R)-2',2'-dimethyl-1',3'-dioxolan-4'-yl](hydroxy)methyl\}oxazolidin-2-one (26)

Mrio
๗o ì

+

(2)

$(4 R)-4-\{(E)-4-[(E)-(4-E t h y \mid p h e n y l)$ diazenyl]styryl\}oxazolidin-2-one $((E)-28)$
内

0.

Mron

$\stackrel{\sim}{\sim}$

(4R)-4-\{(Z)-4-[(E)-(4-Ethylphenyl)diazenyl]styryl\}oxazolidin-2-one ((Z)-28)

$\begin{array}{ll}\hat{m} \\ \stackrel{\rightharpoonup}{1} & \stackrel{0}{0} \\ i\end{array}$
$\stackrel{\circ}{\circ}$
资

が

\cdots

 꾹

(4S)-4-\{(R,2'E\&2'Z)-3'-(4-[(E)-(4-Ethylphenyl)diazenyl]phenyl)-1'-[(p-methoxybenzyl)oxy]allyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (32a)

(4S)-3-(p-Methoxybenzyl)-4-\{(R,2'E\&2'Z)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4-propylphenyl)diazenyl]phenyl)allyl\}oxazolidin-2one (32b)

(4S)-4-\{(R,2'E\&2'Z)-3'-(4-[(E)-(4-Butylphenyl)diazenyl]phenyl)-1'-[(p-methoxybenzyl)oxy]allyl\}-3-(p-methoxybenzyl)oxazolidin-2-one (32c)

(4S)-3-(p-Methoxybenzyl)-4-\{(R,2'E\&2'Z)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4-pentylphenyl)diazenyl]phenyl)allyl\}oxazolidin-2one (32d)

	1		1	1	1	1		1 ,	1	1	1	1	1	1	1	T
170	160	150	140	130	120	110	100	${ }_{\mathrm{f} 1}^{90}(\mathrm{ppm})$	80	70	60	50	40	30	20	10

160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

(4S)-3-(p-Methoxybenzyl)-4-\{(R)-1'-[(p-methoxybenzyl)oxy]-3'-(4-[(E)-(4-pentylphenyl)diazenyl]phenyl)propyl\}oxazolidin-2-one (33d)

(4S)-4-\{(R)-3'-(4-[(E)-(4-Ethylphenyl)diazenyl]phenyl)-1'-hydroxypropyl\}oxazolidin-2-one (34a)

[^2]

$\begin{array}{lllllllllllllllllllllllllllllllllllll}55 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15\end{array}$

-162.50
$\mathcal{L}_{152.47}^{152.28}$
-147.83
146.76

160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

[^3]

-			$\underset{\sim}{\sim}$

Photoisomerisation experiments

24

Experiment 1: Determination of the UV-irradiation time needed for a maximum isomerisation of an E-form to Z-form 24.

- $\lambda=366 \mathrm{~nm}$
- measurements performed in 20 s intervals
- the maximum isomerisation is achieved after 180 s of irradiation

Experiment 2: Determination of the VIS-irradiation time needed for a reverse isomerisation of a Z-form to E-form 24.

- $\lambda=420 \mathrm{~nm}$
- measurements preformed in 30 s intervals
- the maximum reverse isomerisation is achieved within 150 s of irradiation

Experiment 3: Determination of a thermal stability of a Z-form 24 after irradiation if protected from light. measurement time 30 ', 1 scan per 15 s

Experiment 4: Material fatigue. Repetitive E - to Z- isomerisation of 24 and observation of changes in absorbance.

- number of cycles: 10
- a material fatigue was not observed

Experiment 5: Determination of the UV-irradiation time needed for a maximum isomerisation of an E-form to Z-form 29.

- $\lambda=366 \mathrm{~nm}$
- measurements performed in 20 s intervals
- the maximum isomerisation is achieved within 120 s of irradiation

Experiment 6: Determination of the VIS-irradiation time needed for a reverse isomerisation of a Z-form to E-form 29.

- $\lambda=420 \mathrm{~nm}$
- measurements performed in 30 s intervals
- the maximum reverse isomerisation is achieved within 90 s of irradiation

Experiment 7: Determination of a thermal stability of a Z-form 29 after irradiation if protected from light.

- measurement time $30^{\prime}, 1$ scan per 15 s

Experiment 8: Material fatigue. Repetitive E - to Z - isomerisation of 29 and observation of changes in absorbance.

- number of cycles: 10
- a significant material fatigue was not observed

Experiment 9: Determination of a UV-irradiation time needed for a maximum isomerisation of an E-form to Z-form 35a.

- $\lambda=366 \mathrm{~nm}$
- measurements performed in 20 s intervals
- the maximum isomerisation achieved after 160 s of irradiation

Experiment 10: Determination of a VIS-irradiation time needed for a reverse isomerisation of a Z-form to E-form 35a.

- $\lambda=420 \mathrm{~nm}$
- measurements preformed in 30 s intervals
- the maximum reverse isomerisation is achieved within 120 s of irradiation

Experiment 11: Determination of stability of a Z-form 35a after irradiation if protected from light.

- measurement time 30 ', 1 scan per 15 s

Experiment 12: Material fatigue. Repetitive E - to Z - isomerisation 35a and observation of changes in absorbance

- number of cycles: 10
- a material fatigue was not observed

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 800 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

[^1]:

[^2]: $\begin{array}{ll}65 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

