Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

How an Early or Late Transition State Impacts the Stereoselectivity of Tetrahydropyran Formation by Intramolecular oxa-Michael Addition

Dániel Csókás,^a Annabel Ho Xuan Ying,^a Raghunath O. Ramabhadran^{b*} and Roderick W. Bates^{a*}

a. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

b. Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus - Sree Rama Engineering College, Mangalam P/O, Tirupati - 517507, Andhra Pradesh, India

Supporting information II: NMR Spectra and crystallographic data

Stereochemical assignments of the THPs			2	
NMR Spectra General informat	5 5			
	¹ H NMR	¹³ C NMR	COSY	
10a	6	7		
cis-22	8	9		
trans-22	11	12	13	
12a	14	15		
trans-23	16	17	18	
15a	19	20		
cis-24	21	22	23	
trans-24	24	25	26	
17a	27	28		
trans-25	29	30	31	
cis-25	32	33	34	
trans-21	35	36		
trans-19	37	38		
cis-20	39	40		
<i>cis-</i> 18	41	42		
crystallographi	c data and ORTEI	P diagrams		
cis-20	43			
trans-19	47			
trans-21	53			

Table of Contents

Figure 1 Stereochemical assignment of 2,6-, 2,5-, 2,4-THPs obtained from base-catalysed oxa-Michael cyclisation

* observed coupling constant is weighted average of the two conformers due to conformational equilibrium

Figure 2 Stereochemical assignment of 2,3-THP obtained from base-catalysed oxa-Michael cyclisation

Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation

NMR Spectra

General information

NMR spectra were recorded on JEOL ECA 400SL (400MHz), JEOL ECA 400 (400MHz) and Bruker AV400 (400 MHz) spectrometers in CDCl₃ solutions. Chemical shifts are given in ppm (referenced to the residual chloroform ¹H-spectrum 7.26 ppm, ¹³C-spectrum: 77.16 ppm) and coupling constants in Hz. In the cases of severely overlapping peaks, the integration of individual peaks is assumed to be the expected value.

Figure 4 ¹H NMR spectrum of 10a

Figure 5¹³C NMR spectrum of 10a

Figure 6 ¹H NMR spectrum of cis-22

Figure 7 ¹³C NMR spectrum of cis-22

Figure 8 COSY spectrum of cis-22

Figure 9 ¹H NMR spectrum of trans-22

Figure 10 ¹³C NMR spectrum of trans-22

Figure 11 COSY spectrum of trans-22

Figure 12 ¹H NMR spectrum of 12a

Figure 13 ¹³C NMR spectrum of 12a

Figure 14 ¹H NMR spectrum of trans-23

Figure 15 ¹³C NMR spectrum of trans-23

Figure 16 COSY spectrum of trans-23

Figure 17 ¹H NMR spectrum of 15a

Figure 18 ¹³C NMR spectrum of 15a

Figure 19 ¹H NMR spectrum of cis-24

Figure 20 ¹³C NMR spectrum of cis-24

Figure 21 COSY spectrum of cis-24

Figure 22 ¹H NMR spectrum of trans-24

Figure 23 ¹³C NMR spectrum of trans-24

Figure 24 COSY spectrum of trans-24

Figure 25 ¹H NMR spectrum of 17a

Figure 26 ¹³C NMR spectrum of 17a

Figure 27 ¹H NMR spectrum of trans-25

Figure 28 ¹³C NMR spectrum of trans-25

Figure 29 COSY spectrum of trans-25

Figure 30 ¹H NMR spectrum of cis-25

Figure 31 ¹³C NMR spectrum of cis-25

Figure 32 COSY spectrum of cis-25

Figure 33 ¹H NMR spectrum of trans-21

Figure 34 ¹³C NMR spectrum of trans-21

Figure 35 ¹H NMR spectrum of trans-19

Figure 36 ¹³C NMR spectrum of trans-19

Figure 37 ¹H NMR spectrum of cis-20

Figure 38 ¹³C NMR spectrum of cis-20

Figure 39 ¹H NMR spectrum of cis-18

Figure 40 ¹³C NMR spectrum of cis-18

X-ray crystallographic data

Figure 41 ORTEP diagram of *cis*-20 with 50% probability

Table 1. Sample and crystal data	ata for <i>cis</i> -20.		
Chemical formula	$C_{19}H_{19}BrO_2$		
Formula weight	359.25 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.040 x 0.120 x 0.320	0.040 x 0.120 x 0.320 mm	
Crystal habit	colorless plate		
Crystal system	orthorhombic		
Space group	P n a 21		
Unit cell dimensions	a = 19.185(2) Å	$\alpha = 90^{\circ}$	
	b = 5.7454(7) Å	$\beta = 90^{\circ}$	
	c = 29.323(3) Å	$\gamma = 90^{\circ}$	
Volume	3232.1(7) Å ³		
Ζ	8		
Density (calculated)	1.477 g/cm^3		
Absorption coefficient	2.548 mm ⁻¹		
F(000)	1472		

Table 2. Data collection and structure refinement for *cis*-20.

2.23 to 27.94°
-25<=h<=24, -7<=k<=6, -38<=l<=38
18414
7547 [R(int) = 0.0670]
99.8%
Multi-Scan
0.9050 and 0.4960
direct methods
SHELXT 2014/5 (Sheldrick, 2014)
Full-matrix least-squares on F ²
SHELXL-2016/6 (Sheldrick, 2016)
$\Sigma w (F_o^2 - F_c^2)^2$

Data / restraints / parameters	7547 / 1 / 398	
Goodness-of-fit on F ²	1.034	
Final R indices	5514 data; I>2σ(I)	R1 = 0.0645, wR2 = 0.1480
	all data	R1 = 0.0960, wR2 = 0.1637
Waighting schama	$w=1/[\sigma^2(F_o^2)+(0.02)]$	817P) ² +2.4536P]
weighting scheme	where $P=(F_o^2+2F_c^2)$	2)/3
Absolute structure parameter	0.39(2)	
Largest diff. peak and hole	2.354 and -0.874 e	Å-3
R.M.S. deviation from mean	0.125 eÅ ⁻³	

Table 3. Bond lengths (Å) for *cis*-20.

Br1-C17	1.889(9)	Br2-C36	1.903(9)
C1-C2	1.368(15)	C1-C6	1.388(14)
C1-H1	0.95	C2-C3	1.384(16)
С2-Н2	0.95	C3-C4	1.390(16)
С3-Н3	0.95	C4-C5	1.367(15)
C4-H4	0.95	C5-C6	1.401(14)
С5-Н5	0.95	C6-C7	1.529(13)
C7-C8	1.509(14)	C7-C11	1.534(13)
С7-Н7	1.0	C8-C9	1.496(16)
C8-H8A	0.99	C8-H8B	0.99
C9-O1	1.422(13)	С9-Н9А	0.99
С9-Н9В	0.99	C10-O1	1.423(11)
C10-C12	1.520(13)	C10-C11	1.541(13)
C10-H10	1.0	C11-H11A	0.99
C11-H11B	0.99	C12-C13	1.538(13)
C12-H12A	0.99	C12-H12B	0.99
C13-O2	1.218(12)	C13-C14	1.482(14)
C14-C15	1.394(13)	C14-C19	1.395(12)
C15-C16	1.402(14)	С15-Н15	0.95
C16-C17	1.370(14)	C16-H16	0.95
C17-C18	1.405(14)	C18-C19	1.370(13)
C18-H18	0.95	С19-Н19	0.95
C20-C21	1.383(15)	C20-C25	1.393(14)
С20-Н20	0.95	C21-C22	1.382(17)
C21-H21	0.95	C22-C23	1.353(16)
С22-Н22	0.95	C23-C24	1.396(15)
С23-Н23	0.95	C24-C25	1.418(14)
С24-Н24	0.95	C25-C26	1.512(14)
C26-C30	1.518(14)	C26-C27	1.528(15)
С26-Н26	1.0	C27-C28	1.501(15)
С27-Н27А	0.99	С27-Н27В	0.99
C28-O3	1.450(13)	C28-H28A	0.99
C28-H28B	0.99	C29-O3	1.425(11)
C29-C30	1.509(13)	C29-C31	1.523(13)
С29-Н29	1.0	C30-H30A	0.99
C30-H30B	0.99	C31-C32	1.495(13)
C31-H31A	0.99	C31-H31B	0.99
C32-O4	1.217(12)	C32-C33	1.510(13)

C33-C34	1.378(13)	C33-C38	1.393(13)
C34-C35	1.383(13)	С34-Н34	0.95
C35-C36	1.396(13)	С35-Н35	0.95
C36-C37	1.378(13)	C37-C38	1.376(13)
С37-Н37	0.95	С38-Н38	0.95
Table 4. Bond a	angles (°) for <i>cis</i>	s-20.	
C2-C1-C6	122.0(9)	С2-С1-Н1	119.0
С6-С1-Н1	119.0	C1-C2-C3	119.9(10)
С1-С2-Н2	120.1	С3-С2-Н2	120.1
C2-C3-C4	118.4(10)	С2-С3-Н3	120.8
С4-С3-Н3	120.8	C5-C4-C3	122.2(11)
С5-С4-Н4	118.9	С3-С4-Н4	118.9
C4-C5-C6	119.2(10)	С4-С5-Н5	120.4
С6-С5-Н5	120.4	C1-C6-C5	118.3(9)
C1-C6-C7	120.3(9)	C5-C6-C7	121.3(9)
C8-C7-C6	115.9(9)	C8-C7-C11	109.2(8)
C6-C7-C11	109.1(8)	С8-С7-Н7	107.4
С6-С7-Н7	107.4	С11-С7-Н7	107.4
C9-C8-C7	112.1(9)	С9-С8-Н8А	109.2
С7-С8-Н8А	109.2	С9-С8-Н8В	109.2
С7-С8-Н8В	109.2	H8A-C8-H8B	107.9
O1-C9-C8	112.6(9)	01-С9-Н9А	109.1
С8-С9-Н9А	109.1	O1-C9-H9B	109.1
С8-С9-Н9В	109.1	Н9А-С9-Н9В	107.8
O1-C10-C12	107.6(8)	O1-C10-C11	110.5(8)
C12-C10-C11	111.5(8)	O1-C10-H10	109.1
C12-C10-H10	109.1	C11-C10-H10	109.1
C7-C11-C10	110.6(8)	C7-C11-H11A	109.5
C10-C11-H11A	109.5	C7-C11-H11B	109.5
C10-C11-H11B	109.5	H11A-C11-H11B	108.1
C10-C12-C13	110.1(8)	C10-C12-H12A	109.6
C13-C12-H12A	109.6	C10-C12-H12B	109.6
C13-C12-H12B	109.6	H12A-C12-H12B	108.1
O2-C13-C14	120.6(9)	O2-C13-C12	118.8(9)
C14-C13-C12	120.5(9)	C15-C14-C19	118.9(9)
C15-C14-C13	123.4(9)	C19-C14-C13	117.6(8)
C14-C15-C16	120.3(9)	C14-C15-H15	119.8
C16-C15-H15	119.8	C17-C16-C15	119.4(9)
C17-C16-H16	120.3	C15-C16-H16	120.3
C16-C17-C18	120.8(9)	C16-C17-Br1	120.5(7)
C18-C17-Br1	118.8(7)	C19-C18-C17	119.3(9)
C19-C18-H18	120.4	C17-C18-H18	120.4
C18-C19-C14	121.2(9)	С18-С19-Н19	119.4
C14-C19-H19	119.4	C21-C20-C25	121.4(10)
C21-C20-H20	119.3	С25-С20-Н20	119.3
C22-C21-C20	119.9(10)	C22-C21-H21	120.0
C20-C21-H21	120.0	C23-C22-C21	120.5(10)

С23-С22-Н22	119.7	С21-С22-Н22	119.7
C22-C23-C24	120.5(11)	С22-С23-Н23	119.7
С24-С23-Н23	119.7	C23-C24-C25	120.2(10)
С23-С24-Н24	119.9	С25-С24-Н24	119.9
C20-C25-C24	117.3(10)	C20-C25-C26	121.0(9)
C24-C25-C26	121.7(9)	C25-C26-C30	111.0(9)
C25-C26-C27	114.8(9)	C30-C26-C27	108.6(8)
С25-С26-Н26	107.4	С30-С26-Н26	107.4
С27-С26-Н26	107.4	C28-C27-C26	111.7(9)
С28-С27-Н27А	109.3	С26-С27-Н27А	109.3
С28-С27-Н27В	109.3	С26-С27-Н27В	109.3
H27A-C27-H27B	107.9	O3-C28-C27	110.7(10)
O3-C28-H28A	109.5	C27-C28-H28A	109.5
O3-C28-H28B	109.5	C27-C28-H28B	109.5
H28A-C28-H28B	108.1	O3-C29-C30	110.9(8)
O3-C29-C31	106.7(8)	C30-C29-C31	114.0(8)
ОЗ-С29-Н29	108.4	С30-С29-Н29	108.4
С31-С29-Н29	108.4	C29-C30-C26	111.7(8)
С29-С30-Н30А	109.3	C26-C30-H30A	109.3
С29-С30-Н30В	109.3	С26-С30-Н30В	109.3
H30A-C30-H30B	107.9	C32-C31-C29	112.2(8)
С32-С31-Н31А	109.2	C29-C31-H31A	109.2
С32-С31-Н31В	109.2	C29-C31-H31B	109.2
H31A-C31-H31B	107.9	O4-C32-C31	119.9(9)
O4-C32-C33	119.5(8)	C31-C32-C33	120.6(8)
C34-C33-C38	118.1(9)	C34-C33-C32	124.2(9)
C38-C33-C32	117.7(8)	C33-C34-C35	121.5(9)
С33-С34-Н34	119.2	С35-С34-Н34	119.2
C34-C35-C36	117.8(9)	С34-С35-Н35	121.1
С36-С35-Н35	121.1	C37-C36-C35	122.8(9)
C37-C36-Br2	118.1(7)	C35-C36-Br2	119.1(7)
C38-C37-C36	116.9(9)	С38-С37-Н37	121.5
С36-С37-Н37	121.5	C37-C38-C33	122.8(9)
С37-С38-Н38	118.6	С33-С38-Н38	118.6
C9-O1-C10	111.2(8)	C29-O3-C28	110.0(8)

Figure 42 ORTEP diagram of *trans*-19 with 50% probability

Table 5. Sample and crystal data for *trans*-19.

1 0				
Chemical formula	$C_{19}H_{19}BrO_2$			
Formula weight	359.25 g/mol			
Temperature	100(2) K	100(2) K		
Wavelength	0.71073 Å			
Crystal size	0.040 x 0.220 x 0.24	0 mm		
Crystal habit	colorless plate	colorless plate		
Crystal system	monoclinic			
Space group	P 1 21 1			
Unit cell dimensions	a = 9.6819(10) Å	$\alpha = 90^{\circ}$		
	b = 9.8937(10) Å	$\beta = 97.704(3)^{\circ}$		
	c = 25.250(3) Å	$\gamma = 90^{\circ}$		
Volume	2396.9(4) Å ³			
Z	6			
Density (calculated)	1.493 g/cm ³			
Absorption coefficient	2.577 mm ⁻¹			
F(000)	1104			

Table 6. Data collection and structure refinement for *trans*-19.

Theta range for data collection	2.37 to 27.14°		
Index ranges	-12<=h<=12, -12	<=k<=12, -32<=l<=31	
Reflections collected	32466		
Independent reflections	10573 [R(int) = 0]	.1292]	
Coverage of independent reflections	99.7%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9040 and 0.577	0	
Structure solution technique	direct methods		
Structure solution program	XT, VERSION 2014/5		
Refinement method	Full-matrix least-	squares on F ²	
Refinement program	SHELXL-2014/7	(Sheldrick, 2014)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	10573 / 1 / 595		
Goodness-of-fit on F ²	1.021		
Δ/σ_{max}	0.001		
Final R indices	7111 data; I>2σ(I)	R1 = 0.0635, wR2 = 0.1258	
	all data	R1 = 0.1161, wR2 = 0.1496	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0450P) ²] where P=(F_o^2 +2 F_c^2)/3		
Absolute structure parameter	0.093(11)		
Largest diff. peak and hole	0.546 and -1.380 eÅ ⁻³		
R.M.S. deviation from mean	0.116 eÅ ⁻³		

Table 7. Bond lengths (Å) for *trans*-19.

Br1-C17	1.898(10)	Br2-C36	1.903(9)
Br3-C55	1.889(11)	C1-C6	1.381(15)
C1-C2	1.388(15)	C1-H1	0.95
C2-C3	1.399(15)	С2-Н2	0.95

C3-C4	1.374(15)	С3-Н3	0.95
C4-C5	1.397(15)	C4-H4	0.95
C5-C6	1.372(14)	С5-Н5	0.95
C6-C7	1.521(13)	C7-C11	1.513(13)
C7-C8	1.551(14)	С7-Н7	1.0
C8-C9	1.523(13)	C8-H8A	0.99
C8-H8B	0.99	C9-C10	1.506(13)
С9-Н9А	0.99	С9-Н9В	0.99
C10-O1	1.442(11)	C10-C12	1.534(12)
C10-H10	1.0	C11-O1	1.434(10)
C11-H11A	0.99	C11-H11B	0.99
C12-C13	1.501(14)	C12-H12A	0.99
C12-H12B	0.99	C13-O2	1.223(11)
C13-C14	1.507(13)	C14-C15	1.374(13)
C14-C19	1.400(14)	C15-C16	1.390(14)
C15-H15	0.95	C16-C17	1.382(14)
C16-H16	0.95	C17-C18	1.383(14)
C18-C19	1.395(14)	C18-H18	0.95
С19-Н19	0.95	C20-C21	1.390(15)
C20-C25	1.408(14)	C20-H20	0.95
C21-C22	1.374(14)	C21-H21	0.95
C22-C23	1.378(15)	С22-Н22	0.95
C23-C24	1.390(15)	С23-Н23	0.95
C24-C25	1.382(13)	C24-H24	0.95
C25-C26	1.516(13)	C26-C30	1.515(13)
C26-C27	1.535(14)	C26-H26	1.0
C27-C28	1.523(13)	С27-Н27А	0.99
С27-Н27В	0.99	C28-C29	1.508(13)
C28-H28A	0.99	C28-H28B	0.99
C29-O3	1.431(11)	C29-C31	1.515(12)
С29-Н29	1.0	C30-O3	1.430(10)
C30-H30A	0.99	C30-H30B	0.99
C31-C32	1.504(13)	C31-H31A	0.99
C31-H31B	0.99	C32-O4	1.218(11)
C32-C33	1.496(14)	C33-C38	1.392(13)
C33-C34	1.408(14)	C34-C35	1.369(14)
C34-H34	0.95	C35-C36	1.379(13)
С35-Н35	0.95	C36-C37	1.400(13)
C37-C38	1.403(14)	С37-Н37	0.95
C38-H38	0.95	C39-C40	1.406(15)
C39-C44	1.416(14)	С39-Н39	0.95
C40-C41	1.364(15)	C40-H40	0.95
C41-C42	1.408(16)	C41-H41	0.95
C42-C43	1.387(15)	С42-Н42	0.95
C43-C44	1.408(14)	С43-Н43	0.95
C44-C45	1.503(14)	C45-C49	1.509(12)
C45-C46	1.528(13)	C45-H45	1.0
C46-C47	1.517(14)	C46-H46A	0.99
C46-H46B	0.99	C47-C48	1.522(13)

C47-H47A	0.99	C47-H47B	0.99
C48-O5	1.449(11)	C48-C50	1.497(14)
C48-H48	1.0	C49-O5	1.435(11)
C49-H49A	0.99	C49-H49B	0.99
C50-C51	1.511(14)	C50-H50A	0.99
C50-H50B	0.99	C51-O6	1.234(11)
C51-C52	1.511(15)	C52-C57	1.380(14)
C52-C53	1.392(14)	C53-C54	1.385(14)
С53-Н53	0.95	C54-C55	1.380(15)
С54-Н54	0.95	C55-C56	1.385(15)
C56-C57	1.378(15)	С56-Н56	0.95
С57-Н57	0.95		

Table 8. Bond angles (°) for trans-19.

C6-C1-C2	121.1(10)	С6-С1-Н1	119.5
С2-С1-Н1	119.5	C1-C2-C3	120.3(9)
С1-С2-Н2	119.9	С3-С2-Н2	119.9
C4-C3-C2	118.6(10)	С4-С3-Н3	120.7
С2-С3-Н3	120.7	C3-C4-C5	120.3(10)
С3-С4-Н4	119.9	С5-С4-Н4	119.9
C6-C5-C4	121.6(10)	С6-С5-Н5	119.2
С4-С5-Н5	119.2	C5-C6-C1	118.2(10)
C5-C6-C7	120.0(9)	C1-C6-C7	121.8(9)
C11-C7-C6	114.6(8)	C11-C7-C8	109.4(8)
C6-C7-C8	111.0(8)	С11-С7-Н7	107.1
С6-С7-Н7	107.1	С8-С7-Н7	107.1
C9-C8-C7	110.5(8)	С9-С8-Н8А	109.5
С7-С8-Н8А	109.5	С9-С8-Н8В	109.5
С7-С8-Н8В	109.5	H8A-C8-H8B	108.1
C10-C9-C8	110.6(8)	С10-С9-Н9А	109.5
С8-С9-Н9А	109.5	С10-С9-Н9В	109.5
С8-С9-Н9В	109.5	Н9А-С9-Н9В	108.1
O1-C10-C9	110.2(8)	O1-C10-C12	106.3(7)
C9-C10-C12	114.6(8)	O1-C10-H10	108.5
С9-С10-Н10	108.5	С12-С10-Н10	108.5
O1-C11-C7	112.1(8)	O1-C11-H11A	109.2
C7-C11-H11A	109.2	O1-C11-H11B	109.2
C7-C11-H11B	109.2	H11A-C11-H11B	107.9
C13-C12-C10	112.7(8)	C13-C12-H12A	109.0
C10-C12-H12A	109.0	C13-C12-H12B	109.0
C10-C12-H12B	109.0	H12A-C12-H12B	107.8
O2-C13-C12	121.3(9)	O2-C13-C14	120.4(9)
C12-C13-C14	118.2(8)	C15-C14-C19	118.5(9)
C15-C14-C13	123.3(9)	C19-C14-C13	118.2(8)
C14-C15-C16	121.5(9)	C14-C15-H15	119.2
С16-С15-Н15	119.2	C17-C16-C15	118.5(9)
С17-С16-Н16	120.7	С15-С16-Н16	120.7
C16-C17-C18	122.2(10)	C16-C17-Br1	119.7(7)
C18-C17-Br1	118.1(8)	C17-C18-C19	117.7(10)

C17-C18-H18	121.1	C19-C18-H18	121.1
C18-C19-C14	121.4(9)	С18-С19-Н19	119.3
С14-С19-Н19	119.3	C21-C20-C25	119.6(9)
С21-С20-Н20	120.2	С25-С20-Н20	120.2
C22-C21-C20	121.9(10)	C22-C21-H21	119.0
C20-C21-H21	119.0	C21-C22-C23	118.1(10)
С21-С22-Н22	121.0	С23-С22-Н22	121.0
C22-C23-C24	121.5(10)	С22-С23-Н23	119.2
С24-С23-Н23	119.2	C25-C24-C23	120.5(10)
С25-С24-Н24	119.7	С23-С24-Н24	119.7
C24-C25-C20	118.4(9)	C24-C25-C26	120.8(9)
C20-C25-C26	120.9(9)	C30-C26-C25	113.1(8)
C30-C26-C27	109.9(8)	C25-C26-C27	112.0(8)
С30-С26-Н26	107.2	С25-С26-Н26	107.2
С27-С26-Н26	107.2	C28-C27-C26	109.3(8)
С28-С27-Н27А	109.8	С26-С27-Н27А	109.8
С28-С27-Н27В	109.8	С26-С27-Н27В	109.8
H27A-C27-H27B	108.3	C29-C28-C27	111.6(8)
C29-C28-H28A	109.3	С27-С28-Н28А	109.3
C29-C28-H28B	109.3	С27-С28-Н28В	109.3
H28A-C28-H28B	108.0	O3-C29-C28	109.5(8)
O3-C29-C31	106.0(7)	C28-C29-C31	114.6(8)
O3-C29-H29	108.8	С28-С29-Н29	108.8
С31-С29-Н29	108.8	O3-C30-C26	111.9(8)
O3-C30-H30A	109.2	С26-С30-Н30А	109.2
O3-C30-H30B	109.2	С26-С30-Н30В	109.2
H30A-C30-H30B	107.9	C32-C31-C29	113.1(8)
C32-C31-H31A	109.0	C29-C31-H31A	109.0
C32-C31-H31B	109.0	C29-C31-H31B	109.0
H31A-C31-H31B	107.8	O4-C32-C33	120.7(9)
O4-C32-C31	120.8(9)	C33-C32-C31	118.5(8)
C38-C33-C34	119.1(9)	C38-C33-C32	123.1(9)
C34-C33-C32	117.8(9)	C35-C34-C33	120.9(9)
С35-С34-Н34	119.5	С33-С34-Н34	119.5
C34-C35-C36	119.4(10)	С34-С35-Н35	120.3
С36-С35-Н35	120.3	C35-C36-C37	121.9(9)
C35-C36-Br2	119.1(8)	C37-C36-Br2	118.9(7)
C36-C37-C38	118.0(9)	С36-С37-Н37	121.0
С38-С37-Н37	121.0	C33-C38-C37	120.5(10)
С33-С38-Н38	119.7	С37-С38-Н38	119.7
C40-C39-C44	119.7(10)	С40-С39-Н39	120.2
С44-С39-Н39	120.2	C41-C40-C39	122.4(10)
С41-С40-Н40	118.8	С39-С40-Н40	118.8
C40-C41-C42	118.4(11)	C40-C41-H41	120.8
C42-C41-H41	120.8	C43-C42-C41	120.7(10)
С43-С42-Н42	119.7	С41-С42-Н42	119.7
C42-C43-C44	121.4(10)	С42-С43-Н43	119.3
С44-С43-Н43	119.3	C43-C44-C39	117.5(10)
C43-C44-C45	120.9(9)	C39-C44-C45	121.3(9)

C44-C45-C49	109.7(8)	C44-C45-C46	116.1(8)
C49-C45-C46	107.8(8)	С44-С45-Н45	107.6
С49-С45-Н45	107.6	С46-С45-Н45	107.6
C47-C46-C45	110.1(8)	С47-С46-Н46А	109.6
С45-С46-Н46А	109.6	С47-С46-Н46В	109.6
С45-С46-Н46В	109.6	H46A-C46-H46B	108.2
C46-C47-C48	112.3(8)	С46-С47-Н47А	109.2
С48-С47-Н47А	109.2	С46-С47-Н47В	109.2
С48-С47-Н47В	109.2	H47A-C47-H47B	107.9
O5-C48-C50	104.2(7)	O5-C48-C47	110.0(7)
C50-C48-C47	113.8(9)	O5-C48-H48	109.5
С50-С48-Н48	109.5	С47-С48-Н48	109.5
O5-C49-C45	113.4(8)	O5-C49-H49A	108.9
С45-С49-Н49А	108.9	O5-C49-H49B	108.9
С45-С49-Н49В	108.9	H49A-C49-H49B	107.7
C48-C50-C51	115.5(8)	С48-С50-Н50А	108.4
С51-С50-Н50А	108.4	C48-C50-H50B	108.4
С51-С50-Н50В	108.4	H50A-C50-H50B	107.5
O6-C51-C50	121.4(10)	O6-C51-C52	119.3(9)
C50-C51-C52	119.2(8)	C57-C52-C53	119.5(10)
C57-C52-C51	120.3(10)	C53-C52-C51	120.2(9)
C54-C53-C52	119.9(9)	С54-С53-Н53	120.0
С52-С53-Н53	120.0	C55-C54-C53	119.6(10)
С55-С54-Н54	120.2	С53-С54-Н54	120.2
C54-C55-C56	120.8(11)	C54-C55-Br3	119.9(8)
C56-C55-Br3	119.3(9)	C57-C56-C55	119.1(10)
С57-С56-Н56	120.4	С55-С56-Н56	120.4
C56-C57-C52	120.9(10)	С56-С57-Н57	119.5
С52-С57-Н57	119.5	C11-O1-C10	111.2(7)
C30-O3-C29	111.3(7)	C49-O5-C48	113.0(7)

Figure 43 ORTEP diagram of trans-21 with 50% probability

Table 9. Sample and crystal data for trans-21.				
Chemical formula	$C_{19}H_{19}BrO_2$			
Formula weight	359.25 g/mol			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal size	0.060 x 0.120 x 0.320	mm		
Crystal habit	colorless needle			
Crystal system	monoclinic			
Space group	P 1 21/c 1			
Unit cell dimensions	a = 15.9582(5) Å	$\alpha = 90^{\circ}$		
	b = 9.1314(3) Å	$\beta = 91.0981(11)^{\circ}$		
	c = 10.7679(3) Å	$\gamma = 90^{\circ}$		
Volume	1568.82(8) Å ³			
Ζ	4			
Density (calculated)	1.521 g/cm ³			
Absorption coefficient	2.625 mm ⁻¹			
F(000)	736			

Table 10. Data collection and structure refinement for trans-21.			
Theta range for data collection 2.55 to 36.35°			
Index ranges	-26<=h<=26, -15<=k<=15, -13<=l<=17		
Reflections collected	27317		
Independent reflections	7552 [R(int) = 0.0455]		
Coverage of independent reflections	99.0%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.8580 and 0.4870		
Structure solution technique	direct methods		
Structure solution program	XS, VERSION 2013/1		
Refinement method	Full-matrix least-squares on F ²		

Refinement program	SHELXL-2014/7 ((Sheldrick, 2014)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7552 / 0 / 199		
Goodness-of-fit on F ²	1.027		
Δ/σ_{max}	0.002		
Final R indices	5423 data; I> 2σ (I) R1 = 0.0380, wR2 = 0.0760		
	all data	R1 = 0.0677, wR2 = 0.0847	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0316P) ² +0.5508P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.564 and -0.715 e	Å-3	
R.M.S. deviation from mean	0.092 eÅ ⁻³		

Table 11. Bond lengths (Å) for *trans*-21.

Br1-C11	1.8976(13)	C1-C7	1.5150(18)
C1-C2	1.5282(18)	C2-O1	1.4342(15)
C2-C3	1.5397(17)	C3-C14	1.5142(18)
C3-C4	1.5367(18)	C4-C5	1.5255(19)
C5-C6	1.517(2)	C6-O1	1.4279(16)
C7-O2	1.2215(16)	C7-C8	1.4947(18)
C8-C13	1.3956(18)	C8-C9	1.3984(18)
C9-C10	1.3841(19)	C10-C11	1.3879(19)
C11-C12	1.3837(19)	C12-C13	1.3899(19)
C14-C19	1.3908(18)	C14-C15	1.4000(18)
C15-C16	1.3881(19)	C16-C17	1.396(2)
C17-C18	1.384(2)	C18-C19	1.396(2)

Table 12. Bond angles (°) for *trans*-21.

C7-C1-C2	109.94(10)	O1-C2-C1	105.92(10)
O1-C2-C3	111.25(10)	C1-C2-C3	112.53(10)
C14-C3-C4	111.75(10)	C14-C3-C2	111.72(10)
C4-C3-C2	110.05(10)	C5-C4-C3	111.07(11)
C6-C5-C4	109.06(11)	O1-C6-C5	110.48(11)
O2-C7-C8	120.02(12)	O2-C7-C1	119.62(12)
C8-C7-C1	120.33(11)	C13-C8-C9	119.23(12)
C13-C8-C7	122.17(11)	C9-C8-C7	118.49(11)
C10-C9-C8	120.86(12)	C9-C10-C11	118.51(12)
C12-C11-C10	122.09(12)	C12-C11-Br1	118.63(10)
C10-C11-Br1	119.26(10)	C11-C12-C13	118.76(12)
C12-C13-C8	120.50(12)	C19-C14-C15	118.28(12)
C19-C14-C3	121.24(11)	C15-C14-C3	120.48(11)
C16-C15-C14	121.05(13)	C15-C16-C17	120.13(13)
C18-C17-C16	119.21(13)	C17-C18-C19	120.56(13)
C14-C19-C18	120.77(13)	C6-O1-C2	111.86(10)