How an Early or Late Transition State Impacts the Stereoselectivity of Tetrahydropyran Formation by Intramolecular oxa-Michael Addition

Dániel Csókás,^a Annabel Ho Xuan Ying,^a Raghunath O. Ramabhadran^{b*} and Roderick W. Bates^{a*}

a. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

b. Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus - Sree Rama Engineering College, Mangalam P/O, Tirupati - 517507, Andhra Pradesh, India

Supporting Information III: Details of computational studies Table of Contents

acid-catalysed oxa-Michael cyclisation (Figure 1)	2
10b-protonated	2
Transition state 1.1-trans	3
Transition state 1.1-cis	4
Enol 1.2-trans	5
Enol 1.2-cis	6
THP 1.3-trans	7
THP 1.3-cis	8
base-catalysed oxa-Michael cyclisation (<i>E</i> -alkene, Figures 2 & 3)	9
10a-alkoxide	9
Transition state 2.1-cis	10
Transition state 2.1-trans	11
Transition state 2.2-cis	12
Transition state 2.2-trans	13
Transition state 3.1-cis	14
Transition state 3.1-trans	15
Transition state with chelation 3.2-cis	16
Transition state with chelation 3.2-trans	17
base-catalysed oxa-Michael cyclisation (Z-alkene, Figure 5)	18
Transition state 5.1-cis	18
Transition state 5.1-trans	19
Validation of the computational method	20
Definition of pyramidalization of β -carbon	23

acid-catalysed oxa-Michael cyclisation

10b-protonated

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.534882 Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.370124 11 С -0.30963600 -1.31419500 -0.12995900 С -0.58010000 -0.57509200 -1.43716100 С -0.20124000 -1.38314200 -2.67835900 С -0.81855100 -0.53127900 1.07198800 Н -1.64489900 -0.32887700 -1.51127800 Н -0.79442700 -2.29708200 -0.15904900 Н 0.76522300 -1.49295000 -0.02245800 Н -1.89695800 -0.33580600 0.98714600 Н -0.36791000 0.47181100 1.10607100 Н -0.80617100 -2.29343500 -2.70377000 0 -0.56232800 -0.67349700 -3.86614200 С -0.60049500 -1.13131400 2.40490300 Н -1.00118900 -0.56961300 3.24516700 С 0.04195500 -2.29680400 2.64782900 Н 0.45572400 -2.88836500 1.84309100 С 0.21426300 -2.78946300 3.97177300 0 -0.15831900 -2.02512400 4.94548000 Н -0.02560200 0.37223000 -1.44840600 С 3.95721800 -2.53860000 -2.61965000 С 2.96150200 -3.49823700 -2.47766500 С 1.62111200 -3.12215500 -2.51254700 С 1.26059100 -1.78737500 -2.68388100 С 2.26745600 -0.82973200 -2.82199900 С 3.60600300 -1.20190900 -2.79439200 Н 5.00225500 -2.82867000 -2.59668000 Н 3.22601400 -4.54195400 -2.34388700 Н 0.84598800 -3.87518600 -2.40406200 Н 2.00637400 0.21662800 -2.95321700 Н 4.37806300 -0.44795000 -2.90687500 Н -0.19995500 0.21682900 -3.82020800 С 0.81018300 -4.09208500 4.24016800 С 1.49895900 -4.32309100 5.43912600 С 0.69603900 -5.12212800 3.29742600 С 2.06649900 -5.55833900 5.69244400 Н 1.63628300 -3.53072100 6.16745000 С 1.24258300 -6.36694200 3.55456600 Н 0.15130500 -4.97121300 2.37392500 С 1.92619500 -6.57028500 4.74829700 Н 2.61415400 -5.72260400 6.61162300 Н 1.13339700 -7.16365700 2.82971400 2.69149500 -8.26873300 Br 5.09732900 -0.11500200 -2.44604400 н 5.81698900

Transition state 1.1-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.526603Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.369429 Imaginary frequency: 233.48i

11			
С	1.09330700	-1.62008800	-3.51345000
С	2.19844300	-0.77847200	-4.06221800
Н	3.15777100	-1.19719200	-3.75086100
Н	2.13752000	-0.88507800	-5.15260200
С	2.11381000	0.70152200	-3.67598900
Н	1.16493300	1.13065300	-4.01309300
С	2.27965700	0.92964100	-2.17357900
Н	2.18910300	1.99576500	-1.94897300
Н	3.27839000	0.61249600	-1.85290800
С	1.24317500	0.19137100	-1.33849700
Н	0.23476800	0.47104600	-1.66192400
0	1.42567900	-1.22142300	-1.62224200
Н	0.76503200	-1.73445900	-1.13805700
Н	2.90468300	1.23770100	-4.20572800
С	1.37388700	0.42984100	0.14474000
С	0.37190600	1.11206500	0.83089700
С	2.50222800	-0.00933600	0.84038600
С	0.49685400	1.36299600	2.19441000
Н	-0.51049500	1.44950200	0.29558500
С	2.62379100	0.23376800	2.20266400
Н	3.28536200	-0.54673300	0.31543300
С	1.62216400	0.92316500	2.88222200
Н	-0.28833000	1.89669100	2.71900800
Н	3.50244100	-0.11302900	2.73600200
Н	1.71934900	1.11400200	3.94562200
Н	1.33012200	-2.66006800	-3.31813700
С	-0.25700700	-1.30128500	-3.77019600
Н	-0.50693300	-0.36321300	-4.24627200
С	-1.27720600	-2.15387600	-3.44290900
0	-0.99207800	-3.30417600	-2.85135600
Н	-1.78576200	-3.78349100	-2.58142300
С	-2.69069900	-1.84447600	-3.73133200
С	-3.56674400	-2.85952700	-4.12542200
С	-3.16315600	-0.53535000	-3.61388800
С	-4.89490800	-2.57402000	-4.40368700
Н	-3.21537100	-3.87885500	-4.24728000
С	-4.49196400	-0.24182200	-3.87972900
Н	-2.50168900	0.25970100	-3.29007500
С	-5.34404500	-1.26608300	-4.27373100
Н	-5.56175800	-3.36618000	-4.72057000
H	-4.85201900	0.77399400	-3.77351700
Br	-7.16646500	-0.86830400	-4.64023000

Transition state 1.1-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.527746Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.369441 Imaginary frequency: 215.10i 1 1

С	0.37561600	-4.07536700	-2.73617600
0	-0.83124800	-3.65882300	-2.38069100
С	1.30955400	-3.15840700	-3.13874600
С	1.03563700	-1.77639900	-3.16807200
С	1.91600100	-0.83935200	-3.91451400
Н	2.96271000	-1.12919600	-3.78065600
Н	1.67331000	-1.01667600	-4.97137500
Н	2.28386200	-3.51105400	-3.45070400
Н	0.00083900	-1.46667700	-3.05010400
С	1.69351200	0.63482500	-3.58052300
Н	0.64508800	0.89463600	-3.76624300
С	2.06259800	0.99043800	-2.14203800
Н	1.90588600	2.05902100	-1.97212200
Н	3.12349200	0.78386700	-1.96075500
С	1.23292500	0.23566000	-1.11537400
Н	0.16834200	0.42120100	-1.28952700
0	1.48209000	-1.17755100	-1.35376800
Н	0.91734300	-1.70842700	-0.77566000
Н	-1.37237700	-4.37212800	-2.01974600
Н	2.29645500	1.23931000	-4.26232500
С	1.57998600	0.58232400	0.31082700
С	0.66624100	1.27576600	1.10111700
С	2.82372700	0.23905500	0.84458600
С	0.99168200	1.63195900	2.40688100
Н	-0.30447200	1.54055900	0.69303600
С	3.14557100	0.58648700	2.15054400
Н	3.54011300	-0.30500200	0.23761000
С	2.23089700	1.28651700	2.93396500
Н	0.27367900	2.17410400	3.01285200
Н	4.11290100	0.31318900	2.55840300
Н	2.48436900	1.55906100	3.95284400
С	0.65284700	-5.52419500	-2.70868300
С	1.91183200	-5.99242700	-2.32595300
С	-0.33877900	-6.43717200	-3.07646400
С	2.17864500	-7.35286600	-2.30589000
Н	2.68524000	-5.29829800	-2.01908300
С	-0.07763100	-7.79921300	-3.07187700
Н	-1.31644000	-6.09402600	-3.39775700
С	1.18028300	-8.24214600	-2.68377700
Н	3.15338200	-7.70754600	-1.99476600
Н	-0.84835500	-8.49774600	-3.37305400
Br	1.54480500	-10.10770600	-2.66893400

Enol 1.2-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.530372Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.371799 1 1

С	1.11829000	-1.41462900	-3.44258700
С	2.14645500	-0.55758100	-4.15249400
Н	3.13804500	-0.97894900	-3.96553300
Н	1.94840500	-0.64361300	-5.22400300
С	2.11159100	0.90376800	-3.70497300
Н	1.16052700	1.36837300	-3.98358100
С	2.31837800	1.02047100	-2.19550300
Н	2.21710800	2.05840000	-1.86856700
Н	3.32322800	0.68418700	-1.92177600
С	1.29231100	0.21413700	-1.42618100
Н	0.27729200	0.52580500	-1.67955600
0	1.42000000	-1.19645600	-1.92993800
Н	0.87111700	-1.79696300	-1.39712000
Н	2.89850300	1.45528200	-4.22362900
С	1.46775200	0.16817800	0.06277400
С	0.42616300	0.59300000	0.88517200
С	2.65835200	-0.28515800	0.63460700
С	0.57637500	0.58172800	2.26806400
Н	-0.50252800	0.93775800	0.44172000
С	2.80219200	-0.30709800	2.01555200
Н	3.47070900	-0.62616700	0.00145500
С	1.76336000	0.13032500	2.83369700
Н	-0.23608900	0.91983800	2.90173800
Н	3.72717400	-0.66349800	2.45535500
Н	1.88016600	0.11655100	3.91195900
Н	1.35180600	-2.47335900	-3.52529500
С	-0.29861100	-1.10739500	-3.73145800
Н	-0.55734700	-0.11420100	-4.08236800
С	-1.28580300	-1.99418800	-3.54258000
0	-2.56143300	-1.61039900	-3.77775400
Н	-3.16474400	-2.35518700	-3.67877000
С	-1.09523800	-3.38630200	-3.05306600
С	-0.58309900	-4.37158200	-3.89473900
С	-1.43228900	-3.70645600	-1.73825300
С	-0.40153700	-5.66802600	-3.42967400
Н	-0.32124300	-4.12735300	-4.91822100
С	-1.25255800	-4.99824700	-1.26122400
Н	-1.82937100	-2.94333100	-1.07750700
С	-0.73700600	-5.96447000	-2.11532000
Н	-0.00260800	-6.42873200	-4.08954400
Н	-1.50889400	-5.23824500	-0.23668300
Br	-0.48312200	-7.73673500	-1.46669400

Enol 1.2-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.533869Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.371435 1 1

С	0.36569600	-4.02441700	-2.64280900
0	-0.91093500	-3.62800800	-2.43830000
С	1.32093400	-3.10852100	-2.87629200
С	1.06177800	-1.65701700	-2.87227600
С	1.87458200	-0.84824300	-3.85553400
Н	2.93092300	-1.11720100	-3.75042200
Н	1.55429300	-1.15759000	-4.85413700
Н	2.32694200	-3.44294800	-3.09690500
Н	0.00019000	-1.41234700	-2.91892900
С	1.67809300	0.65336800	-3.66471100
Н	0.63469900	0.91653100	-3.87066700
С	2.04384300	1.07776000	-2.24445600
Н	1.83716900	2.13974800	-2.08901000
Н	3.11106100	0.91902400	-2.06158900
С	1.24010400	0.32024600	-1.20799200
Н	0.16788500	0.46002500	-1.36181300
0	1.48953200	-1.14116800	-1.47716400
Н	1.07275200	-1.68962700	-0.79043300
Н	-1.45699200	-4.35355700	-2.11666300
Н	2.29747400	1.19853400	-4.38004100
С	1.61233300	0.57741000	0.22222500
С	0.64764700	1.05955100	1.10443400
С	2.91429200	0.35556600	0.67605300
С	0.98264100	1.33400100	2.42650000
Н	-0.36625800	1.22504200	0.75436500
С	3.24353500	0.61754900	1.99919600
Н	3.66856400	-0.02829400	-0.00280900
С	2.27951400	1.11153900	2.87481500
Н	0.22863800	1.71598900	3.10585900
Н	4.25486200	0.43999200	2.34810200
Н	2.54059700	1.32048900	3.90661600
С	0.63907400	-5.48145600	-2.63803100
С	1.80379000	-5.97927600	-2.05166300
С	-0.26240900	-6.37184000	-3.22489400
С	2.07162700	-7.34102600	-2.05491800
Н	2.50302700	-5.30380700	-1.57246900
С	-0.00465200	-7.73585000	-3.23680900
Н	-1.16826900	-6.00595500	-3.69636800
С	1.16253100	-8.20599600	-2.65006100
Н	2.97527600	-7.71514000	-1.58944400
Н	-0.70752000	-8.41486000	-3.70363000
Br	1.52029200	-10.07564000	-2.65562000

THP 1.3-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) = -3460.546513 Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) = 0.372284 11 С -0.01322300 0.01073600 0.03752600 С 0.91176600 0.93145200 -0.75346600 Н 1.93861400 0.60545900 -0.55759100 Н 0.72375800 0.79633700 -1.82211900 С 0.76207200 2.39488800 -0.34025300 Н -0.20797500 2.78735000 -0.66604300 С 0.88016500 2.52215600 1.17731800 Н 0.69026400 3.54940300 1.50139700 Н 1.89145900 2.25141100 1.50250100 С 1.59960000 -0.12459200 1.86100900 Н -1.13649100 1.91611700 1.57967700 0 0.07412600 0.23896300 1.43944500 Н 1.52862200 2.99719000 -0.83433600 С -0.02537300 1.61139700 3.36475300 С -1.04137300 2.17790200 4.13104400 С 1.09083900 1.07308900 4.00807100 С -0.94475800 2.21406200 5.51971100 Н -1.91575400 2.59316600 3.63869100 С 1.18546200 1.10093700 5.39406800 Н 1.88722800 0.62653300 3.42167000 С 0.16808000 1.67367900 6.15394800 Н -1.74252400 2.65928400 6.10479900 Н 2.05560200 0.67646100 5.88373800 Н 0.24367400 1.69623200 7.23590300 Н 0.30891200 -1.02419500 -0.08725600 С -1.48630100 0.10882100 -0.44513400 Н -1.54792800 -0.33746300 -1.44021700 С -2.36543600 -0.61917400 0.49659700 0 -3.12935700 0.13861700 1.18544400 Н -3.72325700 -0.32213600 1.80046400 С -2.33059000 -2.05117200 0.68864200 С -1.80614600 -2.87284700 -0.32164200 С -2.78726500 -2.63198900 1.88493500 С -1.76193600 -4.24439800 -0.15584400 Н -1.45521900 -2.45259000 -1.25526100 С -2.72869100 -3.99956900 2.06279100 Н -3.14948900 -2.02827900 2.70992100 С -2.22318900 -4.79301900 1.03588700 Н -1.37078600 -4.87113900 -0.94708400 Н -3.06580300 -4.43735300 2.99357000 Br -2.15412200 -6.66886500 1.27450700 1.14119300 -0.50470400 Н -1.82884000

THP 1.3-cis

$$\label{eq:expectation} \begin{split} E(wb97xd/6-311++G(3df,3pd)/SMD(MeOH)) &= -3460.546828 \\ Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(MeOH)) &= 0.371155 \\ 1.1 \end{split}$$

С	-0.43292100	0.02803100	0.05365100
0	-1.44562100	0.59309300	0.58336500
С	0.52684000	0.94324600	-0.61200500
С	0.24460500	2.42725300	-0.46334100
С	1.14653000	3.25639000	-1.36977200
Н	2.19052000	2.98154300	-1.17687700
Н	0.92521900	3.01501000	-2.41350400
Н	1.52999500	0.72285400	-0.23106400
Н	-0.80487700	2.63867400	-0.71095900
С	0.93552700	4.74449400	-1.09821800
Н	-0.07079800	5.03379800	-1.42482900
С	1.08772100	5.03781300	0.39292800
Н	0.83040300	6.07713500	0.61682200
Н	2.12649800	4.87823800	0.70557500
С	0.18633900	4.11644800	1.21533800
Н	-0.86257200	4.31939300	0.95584900
0	0.46542000	2.74773300	0.90730100
Н	-2.06477200	-0.00262700	1.03482000
Н	1.64501800	5.34076400	-1.67789300
С	0.36980900	4.30765500	2.69933800
С	-0.55610700	5.05059400	3.42891800
С	1.48841300	3.78787500	3.35307900
С	-0.36927800	5.27545600	4.78989800
Н	-1.43094000	5.45592700	2.92907000
С	1.67191300	4.00398700	4.71397000
Н	2.21779000	3.20960700	2.79566000
С	0.74459200	4.75070300	5.43622300
Н	-1.09829700	5.85582300	5.34555200
Н	2.54295400	3.59128600	5.21216000
Н	0.88989400	4.92076200	6.49772700
С	-0.25228800	-1.40778000	0.07353600
С	0.94723400	-1.96190500	-0.40280200
С	-1.26191100	-2.26404000	0.54481800
С	1.14179300	-3.32983800	-0.39487300
Н	1.74359900	-1.33218000	-0.77661400
С	-1.07695600	-3.63181700	0.55143200
Н	-2.21844600	-1.89301400	0.89583300
С	0.12727200	-4.15166800	0.08419100
Н	2.07366100	-3.74400800	-0.75772700
Н	-1.86464500	-4.28028500	0.91273600
Br	0.38608300	-6.02554200	0.09602900
Н	0.54004700	0.66341300	-1.67242500

base-catalysed oxa-Michael cyclisation (E-alkene)

10a-alkoxide

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.4970173 Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290949 -11 С -0.34026000 -1.33221700 0.01756000 С -0.60492000 -0.63980900 -1.31800900 С -0.34877900 -1.47428000 -2.61176200 С -0.76951800 -0.48524800 1.21052100 Н -1.65681000 -0.33133800 -1.36825700 Н -0.87476700 -2.29079600 0.04278300 Н 0.72535300 -1.57019300 0.10902400 Н -1.83773500 -0.24056800 1.13343300 Н -0.25879900 0.48726300 1.18238200 Н -0.91159300 -2.43443200 -2.44211600 0 -0.72782700 -0.81674800 -3.72233600 С -0.54099800 -1.07177500 2.56490400 Н -0.86149000 -0.46388600 3.40958600 С 0.01202100 -2.25670300 2.83100500 Н 0.36016000 -2.92282500 2.05000200 С 0.17784100 -2.72003800 4.22145600 0 -0.14953700 -2.12021100 5.22146700 0 0.75498200 -3.93056800 4.25609400 С 0.97179100 -4.49585200 5.55117900 Н 0.02464700 -4.63271300 6.07672500 Н 1.44452200 -5.46067200 5.37588500 н 1.62949500 -3.85911200 6.14606700 Н -0.00322700 0.27706300 -1.39021600 С 3.86350000 -2.59563600 -2.61812200 С 2.92090600 -3.45325300 -2.05966000 С 1.57164900 -3.10408300 -2.06126800 С 1.13377600 -1.90131700 -2.61804700 С 2.09053900 -1.05824700 -3.18644300 С 3.44006500 -1.39368500 -3.18348900 Н 4.91522200 -2.86367800 -2.62170000 Н 3.23571100 -4.39789000 -1.62609700 Н 0.84209200 -3.78243900 -1.62492600 Н 1.74366000 -0.13951000 -3.64877300 Н 4.16687900 -0.72114700 -3.62986100

Transition state 2.1-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.4903492Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0,289828 Imaginary frequency: 63.64i -1 1

С	-3.60875300	-0.43002800	0.21554200
0	-3.54769100	-0.64308400	1.41279400
С	-2.83338800	0.52372200	-0.55184800
С	-1.82932300	1.23024600	0.01297300
С	-1.14964100	2.37523200	-0.67315700
Н	-0.99392500	2.12711900	-1.72842000
Н	-1.86212700	3.21311300	-0.65673500
Н	-3.04780000	0.59915200	-1.61299300
Н	-1.67558100	1.13097600	1.08210600
С	0.15928700	2.85743600	-0.04228900
Н	0.00333000	2.99861900	1.03639800
С	1.36909200	1.95185400	-0.25970300
Н	1.52896500	1.80331300	-1.33718700
Н	2.26250400	2.45469500	0.13479100
С	1.19439000	0.55748600	0.39173700
Н	1.13653800	0.76033800	1.49599800
0	0.10642100	-0.08896200	-0.07941400
Н	0.38336700	3.85055000	-0.44944900
0	-4.48741900	-1.10226200	-0.57430100
С	-5.31035600	-2.06359600	0.07676300
Н	-5.93807200	-1.59556100	0.83925300
Н	-5.93757400	-2.49539700	-0.70288100
Н	-4.70797500	-2.84734900	0.54222700
С	2.50991700	-0.21941000	0.21222300
С	3.67587200	0.13473400	0.89744500
С	2.56563200	-1.29705200	-0.66862700
С	4.86512400	-0.55918200	0.70028600
Н	3.64951700	0.96387500	1.60091100
С	3.75373800	-1.99489500	-0.87505800
Н	1.64679200	-1.57320900	-1.17534000
С	4.90981800	-1.62888600	-0.19217500
Н	5.75834800	-0.27017300	1.24596300
Н	3.77669300	-2.83193900	-1.56675900
Н	5.83535600	-2.17414800	-0.34702400

Transition state 2.1-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.4913589Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290401 Imaginary frequency: 97.14i -1 1

С	3.23329100	-0.62314500	0.18457500
0	3.46518800	-0.97367400	1.32610500
С	2.50313200	0.55590200	-0.24882300
С	1.90183100	1.37572500	0.64038800
С	1.26768500	2.68787200	0.27256900
Н	0.74178900	3.08060300	1.14484900
Н	2.07965100	3.39251700	0.04126900
Н	2.42385000	0.71160400	-1.31875900
Н	2.05011700	1.17640800	1.69394400
С	0.30447400	2.63940800	-0.92015800
Н	0.79888300	2.15530500	-1.77104400
С	-1.02330900	1.93459700	-0.63614600
Н	-1.61208900	2.52913900	0.07620300
Н	-1.59695100	1.88453400	-1.57127800
С	-0.84722900	0.52577500	-0.00405200
Н	-0.22408800	-0.05293200	-0.74113700
0	-0.27596800	0.59126300	1.21411100
Н	0.10097700	3.66899500	-1.23762900
С	-2.20791300	-0.19106000	-0.01670000
С	-2.85278400	-0.47822900	1.18404100
С	-2.83479500	-0.56824900	-1.20847100
С	-4.09301000	-1.11352600	1.20050300
Н	-2.34343600	-0.19606100	2.09953300
С	-4.07139500	-1.20441600	-1.20117500
Н	-2.34148400	-0.36821600	-2.15688800
С	-4.70940000	-1.47851200	0.00777500
Н	-4.57839400	-1.32874700	2.14800700
Н	-4.53818100	-1.49266900	-2.13831500
Н	-5.67336900	-1.97710600	0.01722800
0	3.67831600	-1.34146500	-0.87799300
С	4.41373300	-2.52266600	-0.57666700
Н	4.67914600	-2.96119900	-1.53826700
Н	5.32062400	-2.28988800	-0.01324100
Н	3.80752900	-3.22798700	-0.00347900

enolate 2.2-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.5147312Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.292495 -1 1

С	-3.28795700	-0.75326000	-0.48161800
0	-4.19404100	-1.35148300	-1.09620200
С	-2.49535400	0.30195300	-0.91391500
С	-1.40991400	0.92213500	-0.12709200
С	-1.23962500	2.41872900	-0.40409000
Н	-1.06945400	2.55440400	-1.48010300
Н	-2.17490100	2.92994300	-0.15658300
Н	-2.63390900	0.61947300	-1.94434900
Н	-1.59865200	0.78060700	0.94707500
С	-0.07896600	3.02253500	0.38645700
Н	-0.33025500	3.01480100	1.45533600
С	1.19721100	2.21431600	0.16943600
Н	1.54538500	2.32425200	-0.86502100
Н	2.00005600	2.56235500	0.82748800
С	0.92390300	0.72634500	0.42423700
Н	0.63804100	0.60965500	1.48479300
0	-0.12416100	0.26262800	-0.39225300
Н	0.07905900	4.06909800	0.10592700
0	-3.01541800	-1.16099200	0.83430000
С	-3.83419700	-2.18653700	1.34640300
Н	-3.74900700	-3.11168600	0.76675800
Н	-3.48681100	-2.37131400	2.36603200
Н	-4.89062800	-1.89782900	1.37552400
С	2.16048100	-0.10769900	0.17660600
С	3.19939900	-0.09893300	1.10952500
С	2.31170300	-0.85507500	-0.98964100
С	4.36809600	-0.81556300	0.88031900
Н	3.08893700	0.47202900	2.02729600
С	3.48088200	-1.57519400	-1.22052000
Н	1.50116700	-0.87540800	-1.70814700
С	4.51397000	-1.55630300	-0.28973000
Н	5.16415200	-0.80032500	1.61764600
Н	3.58248000	-2.15544200	-2.13194900
Н	5.42373900	-2.11913700	-0.47009200

enolate 2.2-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.5137112Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.292761 -1 1

С	2.97781500	-0.75259100	0.19503400
0	3.11565900	-1.22409200	1.33939900
С	2.18650400	0.29994300	-0.24453000
С	1.31210500	1.04843500	0.68928200
С	1.15792200	2.53992500	0.35860300
Н	0.65837900	3.03801000	1.19920900
Н	2.14751800	2.99263200	0.24760600
Н	2.21322400	0.55465900	-1.29837900
Н	1.70023000	0.93599900	1.70401100
С	0.32037700	2.74907700	-0.90429000
Н	0.85729100	2.35737600	-1.77615200
С	-1.02295800	2.03170000	-0.77046500
Н	-1.63515400	2.52268200	-0.00298900
Н	-1.58243200	2.06699400	-1.71103900
С	-0.80699500	0.57109400	-0.34673700
Н	-0.25919600	0.05601300	-1.15193000
0	-0.05411400	0.50752200	0.83744100
Н	0.16201800	3.81724700	-1.08584100
С	-2.12341500	-0.14393100	-0.14576700
С	-2.62064100	-0.41609300	1.12718300
С	-2.88455900	-0.51464300	-1.25667000
С	-3.85473800	-1.04152400	1.28664700
Н	-2.02608200	-0.14363700	1.99075700
С	-4.11723600	-1.13720200	-1.10042200
Н	-2.50223100	-0.32015400	-2.25483000
С	-4.60872700	-1.40244800	0.17537800
Н	-4.22564100	-1.25061600	2.28496500
Н	-4.69239100	-1.42269200	-1.97522900
Н	-5.56853000	-1.89253700	0.30035000
0	3.73017800	-1.33107000	-0.84662200
С	4.59160700	-2.38142900	-0.47418200
Н	5.08146700	-2.71347400	-1.39302200
Н	5.35663000	-2.05667000	0.24004000
Н	4.05003600	-3.22510900	-0.03293200

Transition state 3.1-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.4899223Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290169 Imaginary frequency: 56.65i -1 1

С	-3.64604000	-0.61022500	-0.41902800
0	-4.41071900	-1.24153800	-1.13396000
С	-2.84510200	0.51172400	-0.85123600
С	-1.91716000	1.13530600	-0.08168500
С	-1.27485300	2.42581900	-0.49470600
Н	-1.04370300	2.38996900	-1.56493200
Н	-2.03794500	3.20796900	-0.37108700
Н	-2.97094100	0.78083500	-1.89567100
Н	-1.85076300	0.86913600	0.96647600
С	-0.03569600	2.84337200	0.30037500
Н	-0.26894200	2.79773800	1.37347100
С	1.22091500	2.02193600	0.02526000
Н	1.46005200	2.06237200	-1.04688300
Н	2.06575700	2.47018300	0.56491100
С	1.04720600	0.53537900	0.41886100
Н	0.90895600	0.54352800	1.53356800
0	0.00905400	-0.04033300	-0.23130600
Н	0.17078000	3.89686600	0.07788300
0	-3.50547100	-0.91871700	0.89307800
С	-4.24358200	-2.04067000	1.35943900
Н	-3.96108400	-2.95012400	0.82356800
Н	-3.99129000	-2.14368000	2.41472200
Н	-5.31954500	-1.88210200	1.25081200
С	2.38700600	-0.18390200	0.19825400
С	3.50757500	0.08396400	0.99022900
С	2.51285000	-1.11725200	-0.82790300
С	4.72142700	-0.55360500	0.75662700
Н	3.42582500	0.79812200	1.80637300
С	3.72602600	-1.75814200	-1.07000800
Н	1.62739100	-1.32853400	-1.41848200
С	4.83706000	-1.47758800	-0.28047800
Н	5.57889200	-0.33379400	1.38551900
Н	3.80416900	-2.48222600	-1.87565300
Н	5.78240900	-1.97778600	-0.46473100

Transition state 3.1-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.490731 Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290558 Imaginary frequency: 78.11i -11 С -3.21479500 -0.62182500 0.60357800 0 -3.62596100 -1.11838700 1.64188500 С -2.46945600 0.61535000 0.51894200 С -1.94141200 1.12240600 -0.62594700 С -1.34883900 2.50416300 -0.70692800 Н -0.91855600 2.64653400 -1.70058000 Н -2.17267400 3.22516700 -0.60607500 Н -2.30254000 1.09431000 1.47771500 Н -2.18971500 0.64265600 -1.56238900 С -0.28665000 2.81897600 0.35329300 Н -0.69212400 2.61537600 1.35168100 С 1.02345500 2.05224400 0.17094900 н 1.53247500 2.40049600 -0.73865500 Н 1.68400400 2.27373000 1.01962200 С 0.80821200 0.52296400 0.01187800 Н 0.29218500 0.19407000 0.95292600 0 0.08760800 0.23194700 -1.09362700 Н -0.08091500 3.89550700 0.32571900 С 2.17655600 -0.16863300 0.05541500 С 2.70559200 -0.74313800 -1.09799700С 2.93300200 -0.22798600 1.22970600 С 3.95934400 -1.35130200 -1.08711100 Н 2.09869900 -0.70860300 -1.99649500 С 4.18390500 -0.83521800 1.24957500 Н 2.53055700 0.20094900 2.14444700 С 0.08625800 4.70553100 -1.39897600 Н 4.35379900 -1.79390300 -1.99709200 Н 4.75222200 -0.87534600 2.17391600 Н 5.68022100 -1.87611300 0.09870300 0 -3.45815800 -1.20780700 -0.59238500 С -4.17295400 -2.43659600 -0.56018800 Н -4.26218500 -2.75436200 -1.59884700 Н -3.63113900 -3.19419700 0.01110400 -5.16785700 -2.30578500 -0.12709100 Н

Chelated transition state 3.2-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -1369.394217Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0,293018 Imaginary frequency: 107.89i 0 1

-			
С	-3.36204600	-0.18113900	-0.00779100
0	-3.02540500	-0.85613400	0.96845600
С	-2.66611300	0.94821200	-0.54918300
С	-1.60646400	1.51596600	0.10211700
С	-1.01327400	2.81422000	-0.35845700
Н	-0.92117500	2.79633200	-1.44949400
Н	-1.74927900	3.59509900	-0.12306200
Н	-2.98251600	1.31413700	-1.51975200
Н	-1.44075000	1.24579700	1.14073400
С	0.32095400	3.20417000	0.28041700
Н	0.20737900	3.20385800	1.37301300
С	1.50094100	2.31297400	-0.09925600
Н	1.64994600	2.32937800	-1.18690900
Н	2.41444800	2.70588000	0.36334800
С	1.27049400	0.85316200	0.32724100
Н	1.16483300	0.87895900	1.43931900
0	0.15224500	0.33084200	-0.27505600
Н	0.54503200	4.23794300	-0.00372100
0	-4.47887000	-0.48836200	-0.70081900
С	-5.22311200	-1.61783300	-0.25048400
Н	-5.58810700	-1.46798600	0.76780600
Н	-6.06527200	-1.70736600	-0.93536300
Н	-4.61956200	-2.52793700	-0.28621400
С	2.52316500	0.01746800	0.05906900
С	3.64534400	0.11208400	0.88623800
С	2.57063100	-0.85563900	-1.02646800
С	4.78681000	-0.63972000	0.63185700
Н	3.62164600	0.78125700	1.74264700
С	3.71238400	-1.61060400	-1.28711500
Н	1.69578700	-0.92781900	-1.66435200
С	4.82459200	-1.50620600	-0.45867300
Н	5.64762600	-0.55505300	1.28747300
Н	3.73301600	-2.28205700	-2.13988000
Н	5.71361800	-2.09521300	-0.65795600
К	-0.60584300	-1.84633500	0.65423000

Chelated transition state 3.2-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -1369.395348Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.293633 Imaginary frequency: 147.45i

01	-		
С	-2.98862400	-0.32212700	0.33579600
0	-2.94103500	-1.17562600	-0.55348400
С	-2.35050500	0.96134900	0.32455700
С	-1.69776200	1.40797200	-0.79273900
С	-1.12393400	2.79483200	-0.89747800
Н	-0.63335100	2.90274300	-1.86766700
Н	-1.96135800	3.50457800	-0.87967600
Н	-2.34503600	1.52348900	1.25060900
Н	-1.90629200	0.90748100	-1.73095900
С	-0.13448600	3.16014700	0.21548900
Н	-0.61544900	3.03131400	1.19225800
С	1.16194800	2.35026100	0.17759900
Н	1.73349000	2.60057800	-0.72595100
Н	1.78044100	2.62068100	1.04196000
С	0.90070200	0.82990300	0.15417500
Н	0.30983500	0.60302500	1.07205600
0	0.21445500	0.46432900	-0.97442700
Н	0.10221300	4.22613300	0.13028200
С	2.21440700	0.06872400	0.31219600
С	2.85090700	-0.48892600	-0.79595600
С	2.81670200	-0.07450700	1.56461800
С	4.05878700	-1.16979600	-0.66036800
Н	2.38576800	-0.37451600	-1.76973700
С	4.02216100	-0.75263900	1.70660000
Н	2.33004000	0.34740200	2.44029900
С	4.64893800	-1.30529000	0.59184500
Н	4.54103300	-1.59462800	-1.53528100
Н	4.47162900	-0.85690100	2.68900500
Н	5.58800300	-1.83754500	0.70064600
0	-3.67758800	-0.55521500	1.47228200
С	-4.31896700	-1.82342600	1.58466900
Н	-4.79823000	-1.82552800	2.56279800
Н	-5.07098200	-1.95452100	0.80362300
Н	-3.59315800	-2.63796900	1.52664100
К	-0.58956000	-1.80497500	-1.53970800

base-catalysed oxa-Michael cyclisation (Z-alkene)

Transition state 5.1-cis

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.488223Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290369 Imaginary frequency: 76.15i

-11			
С	-2.68657200	0.09008900	1.04585900
С	-1.64678400	0.94494200	0.83430300
С	-1.44073700	1.80720400	-0.37499100
Н	-1.54730000	1.20157700	-1.27651900
Н	-2.26876000	2.52980100	-0.40347300
Н	-1.08332500	1.23495700	1.71541400
С	-0.11589500	2.57307400	-0.39074000
Н	0.00133400	3.11101500	0.56075800
С	1.12225300	1.71205500	-0.63454100
Н	1.04367700	1.22231200	-1.61511900
Н	2.00706700	2.36165700	-0.66444900
С	1.28830100	0.60287300	0.43277200
Н	1.41869500	1.15190100	1.40482000
0	0.22854200	-0.24009300	0.45262400
Н	-0.17348600	3.34202600	-1.17015700
С	2.63300700	-0.10413800	0.20672600
С	3.85242300	0.55084100	0.40436300
С	2.65904700	-1.43027500	-0.21837700
С	5.06159600	-0.09588100	0.17254100
Н	3.85477000	1.58177200	0.75050300
С	3.86637500	-2.08445100	-0.45509100
Н	1.70522600	-1.93083300	-0.34776900
С	5.07355600	-1.42028500	-0.26209300
Н	5.99735600	0.43045500	0.33484200
Н	3.86493400	-3.11852100	-0.78699100
Н	6.01533200	-1.92861100	-0.44232100
Н	-2.78827600	-0.38243700	2.01620400
С	-3.62717500	-0.33666800	0.03727000
0	-3.71536700	0.02949000	-1.12324100
0	-4.49923000	-1.25600400	0.54284200
С	-5.48843000	-1.74228700	-0.35493100
н	-5.03335900	-2.24612800	-1.21130400
н	-6.08442300	-2.45441000	0.21585200
Н	-6.12802300	-0.93332200	-0.71736600

Transition state 5.1-trans

E(wb97xd/6-311++G(3df,3pd)/SMD(THF)) = -769.486191Thermal correction to Enthalpy (wb97xd/6-311+G(d,p)/SMD(THF)) = 0.290789 Imaginary frequency: 94.97i

-11			
С	-2.37706100	-1.81886900	0.95791500
С	-0.84458200	-1.93353200	1.14556800
С	-0.75531600	0.95248600	0.81427700
С	-2.25013100	0.76245900	0.76514700
С	-2.76750300	-0.56282400	0.18437900
Н	-0.41203400	-1.89882300	0.11008700
Н	-2.41969600	-0.65020400	-0.84753700
Н	-2.82593400	-1.81300700	1.96108100
Н	-2.67182300	1.57657600	0.16205700
Н	-2.63722300	0.87621100	1.78203600
Н	-3.86143500	-0.49320200	0.13773000
Н	-2.77765000	-2.69151700	0.42502800
0	-0.37114500	-0.93407200	1.92578300
С	-0.50456800	-3.33525200	1.66600500
С	-0.03564600	-3.50825300	2.96631600
С	-0.66581800	-4.47025600	0.86535800
С	0.25328800	-4.77834900	3.46202900
Н	0.10442500	-2.61835500	3.57090000
С	-0.37739400	-5.74044300	1.35181500
Н	-1.01651300	-4.35469600	-0.15747200
С	0.08258600	-5.90069700	2.65796600
Н	0.61757400	-4.89188900	4.47881300
Н	-0.50597500	-6.60784400	0.71141700
Н	0.31051800	-6.89047700	3.04029300
Н	-0.36538400	1.27704600	1.76842200
С	0.09353000	1.08920300	-0.24845800
С	-0.23461100	0.96739200	-1.64854400
Н	1.13695900	1.30037800	-0.04115300
0	0.89178600	1.05033200	-2.41548200
0	-1.33057900	0.85200800	-2.17370200
С	0.69765100	0.99810200	-3.82237600
Н	0.07375700	1.82621000	-4.16858100
Н	1.69134400	1.07758500	-4.26332400
Н	0.23564400	0.05485200	-4.12448500

Validation of the computational method and the use of enthalpy in computed selectivities

Considering that both modes of activation result in kinetically-controlled cyclisation, transition states leading to the THP products were required in order to decipher the origin of stereoinduction. We started the transition state location using ω B97X-D density functional in conjunction with the 6-311+G(d,p) basis-set. After experimenting different approaches towards locating the transition states, the required transition states were obtained. It is important to point out that transition state could not be located in vacuum but with the use of solvation model. In addition, the obtained imaginary frequencies were rather low (freq(2.1-trans): 84.2i cm⁻¹, freq(**2.1-cis** TS): 69.6i cm⁻¹). This implies that the PES is rather flat around the transition states.¹ In addition to several factors, the flat curvature of the PES also results in severe uncertainty in the calculation of entropy. Moreover, we find that for the acid catalysed reactions, the computed selectivities using the Gibbs free energies are in qualitative agreement with those obtained experimentally. However, the computed selectivities for the base catalysed reactions using the Gibbs free energies results in selectivities opposite to that obtained experimentally. For these reasons, we use the enthalpy rather than Gibbs free energy to compute the selectvitities. It should also be noted that we are comparing intramolecular cyclizations featuring very little structural differences. Therefore, the net effect of entropy is posited in all the cases to be very similar.

To validate the applied theoretical method, we tested various density functionals to examine the functional-dependence of the predicted selectivity (Table 1). In line with the experimental results, all the tested functionals favour TS **2.1-trans** when using the electronic energy (E_0 '), which was computed with the larger 6-311++G(3df,3pd) basis-set. This trend did not change when the electronic energies (E_0 ') were corrected with ZPEs adapted from ω B97X-D/6-311+G(d,p) calculations. Besides, the Gibbs free energies and the enthalpies were calculated by using the electronic energies obtained with different functionals (and using 6-311++G(3df,3pd) basis-set) and the corresponding thermal corrections adapted from ω B97X-D/6-311+G(d,p) calculations. With all the functionals, the trend in selectivity when using enthalpy of activation or energies of activation, remains qualitatively the same. But, the use of free-energies of activation results in qualitatively different selectivities. This once again confirms the perils of using free-energies with a large uncertainty involved in the computation of entropy.

In the case of the acid-catalysed cyclisation, the curvature of the potential energy surface at the TS is certainly more pronounced insomuch as the imaginary frequencies noticeably increased (freq(**1.1-cis**): 215.1i cm⁻¹, freq(**1.1-trans**): 233.5i cm⁻¹). We performed the same density functional test as with the TSs of the base-catalysed reaction (Table 2). All the tested functionals favour the TS **1.1-cis**, which results in the experimentally observed major isomer, with respect to all energy and thermodynamic terms listed in Table 2.

Overall, the similar results (same trend in selectivity when using enthalpies or energies) obtained with different density functions in Table 1 convinced us that the level of theory we used in the main text is adequate.

¹ Jensen, F. *Introduction to Computational Chemistry*, John Wiley & sons, **2017**.

Table 1 Base-catalysed cyclisation: single point energies computed with 6-311++G(3df,3pd) basis-set using various functionals and the respective Gibbs free energies and enthalpies calculated by the corrections adapted from ω B97X-D/6-311+G(d,p) calculations.

TS	Eo'(THF) / Hartrees	dEo' (kcal)	Eo'(THF)+ZPE / Hartrees	d(Eo'+ZPE) (kcal)	G / Hartrees	dG (kcal)	H / Hartrees	dH (kcal)
	wB97XD/6-311++G(3df,3pd)		Eo'(wB97XD/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(wB97XD/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(wB97XD/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.490349	0.6	-769.208783	0.1	-769.234656	-0.3	-769.200521	0.3
2.1-trans	-769.491359	0.0	-769.209014	0.0	-769.234208	0.0	-769.200958	0.0
	m062x/6-311++G(3df,3pd)		Eo'(m062x/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m062x/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m062x/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.419641	1.0	-769.138075	0.5	-769.163948	0.1	-769.129813	0.6
2.1-trans	-769.421216	0.0	-769.138871	0.0	-769.164065	0.0	-769.130815	0.0
	m062x-D3/6-311++G(3df,3pd)		Eo'(m062x-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m062x-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m062x-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.421336	1.1	-769.139770	0.6	-769.165643	0.1	-769.131508	0.7
2.1-trans	-769.423020	0.0	-769.140675	0.0	-769.165869	0.0	-769.132619	0.0
	m06L/6-311++G(3df,3pd)		Eo'(m06L/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m06L/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m06L/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.638117	0.8	-769.356551	0.3	-769.382424	-0.1	-769.348289	0.4
2.1-trans	-769.639368	0.0	-769.357023	0.0	-769.382217	0.0	-769.348967	0.0
	m06L-D3/6-311++G(3df,3pd)		Eo'(m06L-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m06L-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m06L-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.640045	0.9	-769.358479	0.4	-769.384352	-0.1	-769.350217	0.5
2.1-trans	-769.641420	0.0	-769.359075	0.0	-769.384269	0.0	-769.351019	0.0
	m052x/6-311++G(3df,3pd)		Eo'(m052xL/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m052x/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m052x/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.659089	0.9	-769.377523	0.4	-769.403396	-0.1	-769.369261	0.5
2.1-trans	-769.660465	0.0	-769.378120	0.0	-769.403314	0.0	-769.370064	0.0
	m052x-D3/6-311++G(3df,3pd)		Eo'(m052x-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m052x-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m052x-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.662536	1.0	-769.380970	0.5	-769.406843	0.1	-769.372708	0.6
2.1-trans	-769.664130	0.0	-769.381785	0.0	-769.406979	0.0	-769.373729	0.0
	b3lyp-D3BJ/6-311++G(3df,3pd)		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.818186	0.5	-769.536620	0.0	-769.562493	-0.4	-769.528358	0.1
2.1-trans	-769.818970	0.0	-769.536625	0.0	-769.561819	0.0	-769.528569	0.0
	b2lyp-D3/6-311++G(3df,3pd)		Eo'(b2lyp-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(b2lyp-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(b2lyp-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-768.148492	-0.1	-767.866926	-0.6	-767.892799	-1.0	-767.858664	-0.4
2.1-trans	-768.148365	0.0	-767.866020	0.0	-767.891214	0.0	-767.857964	0.0
	B97D/6-311++G(3df,3pd)		Eo'(B97D/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(B97D/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(B97D/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.266603	0.5	-768.985037	0.0	-769.010910	-0.4	-768.976775	0.1
2.1-trans	-769.267396	0.0	-768.985051	0.0	-769.010245	0.0	-768.976995	0.0
	B97D-D3/6-311++G(3df,3pd)		Eo'(B97D-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(B97D-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(B97D-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.219695	0.4	-768.938129	-0.1	-768.964002	-0.5	-768.929867	0.0
2.1-trans	-769.220312	0.0	-768.937967	0.0	-768.963161	0.0	-768.929911	0.0
	TPSSTPSS-D3BJ/6-311++G(3df,3pd)		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p)	1)
2.1-cis	-769.912385	0.8	-769.630819	0.3	-769.656692	-0.1	-769.622557	0.4
2.1-trans	-769.913671	0.0	-769.631326	0.0	-769.656520	0.0	-769.623270	0.0
	TPSSTPSS-D3/6-311++G(3df,3pd)	and the second	Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-769.891442	0.6	-769.609876	0.2	-769.635749	-0.3	-769.601614	0.3
2.1-trans	-769.892472	0.0	-769.610127	0.0	-769.635321	0.0	-769.602071	0.0
	PBE1PBE-D3BJ/6-311++G(3df,3pd)		Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p)))
2.1-cis	-768.875746	0.6	-768.594180	0.1	-768.620053	-0.3	-768.585918	0.2
2.1-trans	-768.876660	0.0	-768.594315	0.0	-768.619509	0.0	-768.586259	0.0
	PBE1PBE-D3/6-311++G(3df,3pd)		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
2.1-cis	-768.862465	0.5	-768.580899	0.0	-768.606772	-0.4	-768.572637	0.1
2.1-trans	-768.863242	0.0	-768.580897	0.0	-768.606091	0.0	-768.572841	0.0

ZPE(2.1-*cis*)= 0.281488; ZPE(2.1-*trans*)= 0.282284 Gcorr(2.1-*cis*)= 0.255693; Gcorr(2.1-*trans*)= 0.257151

Hcorr(2.1-cis)= 0.233693, GCon(2.1-trans)= 0.237131 Hcorr(2.1-cis)= 0.289828; Hcorr(2.1-trans)= 0.290401

Table 2 Acid-catalysed cyclisation: single point energies computed with 6-311++G(3df,3pd) basis-set using various functionals and the respective Gibbs free energies and enthalpies calculated by the corrections adapted from @B97X-D/6-311+G(d,p) calculations.

TS	Eo'(MeOH) / Hartrees	dEo' (kcal)	Eo'(THF)+ZPE / Hartrees	d(Eo'+ZPE) (kcal)	G / Hartrees	dG (kcal)	H / Hartrees	dH (kcal)
	wB97XD/6-311++G(3df,3pd)		Eo'(wB97XD/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))	and a second second	Eo'(wB97XD/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(wB97XD/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.527746	-0.7	-3460.178588	-0.7	-3460.229480	-0.4	-3460.158305	-0.7
1.1-trans	-3460.526603	0.0	-3460.177524	0.0	-3460.228866	0.0	-3460.157174	0.0
	m062x/6-311++G(3df,3pd)		Eo'(m062x/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m062x/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m062x/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.440766	-0.8	-3460.091608	-0.7	-3460.142500	-0.4	-3460.071325	-0.7
1.1-trans	-3460.439562	0.0	-3460.090483	0.0	-3460.141825	0.0	-3460.070133	0.0
	m062x-D3/6-311++G(3df,3pd)		Eo'(m062x-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m062x-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m062x-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.443338	-0.6	-3460.094180	-0.6	-3460.145072	-0.3	-3460.073897	-0.6
1.1-trans	-3460.442379	0.0	-3460.093300	0.0	-3460.144642	0.0	-3460.072950	0.0
	m06L/6-311++G(3df,3pd)		Eo'(m06L/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m06L/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m06L/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.538354	-0.7	-3460.189196	-0.7	-3460.240088	-0.4	-3460.168913	-0.7
1.1-trans	-3460.537184	0.0	-3460.188105	0.0	-3460.239447	0.0	-3460.167755	0.0
	m06L-D3/6-311++G(3df,3pd)		Eo'(m06L-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))	164.015	Eo'(m06L-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m06L-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.541269	-0.6	-3460.192111	-0.5	-3460.243003	-0.2	-3460.171828	-0.6
1.1-trans	-3460.540374	0.0	-3460.191295	0.0	-3460.242637	0.0	-3460.170945	0.0
	m052x/6-311++G(3df,3pd)		Eo'(m052xL/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m052x/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m052x/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.637512	-0.8	-3460.288354	-0.7	-3460.339246	-0.5	-3460.268071	-0.8
1.1-trans	-3460.636247	0.0	-3460.287168	0.0	-3460.338510	0.0	-3460.266818	0.0
	m052x-D3/6-311++G(3df,3pd)		Eo'(m052x-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(m052x-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(m052x-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.642658	-0.5	-3460.293500	-0.5	-3460.344392	-0.2	-3460.273217	-0.5
1.1-trans	-3460.641839	0.0	-3460.292760	0.0	-3460.344102	0.0	-3460.272410	0.0
	b3lyp-D3BJ/6-311++G(3df,3pd)		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(b3lyp-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3460.892853	-0.7	-3460.543695	-0.7	-3460.594587	-0.4	-3460.523412	-0.7
1.1-trans	-3460.891676	0.0	-3460.542597	0.0	-3460.593939	0.0	-3460.522247	0.0
	B97D/6-311++G(3df,3pd)		Eo'(B97D/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))	1944	Eo'(B97D/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(B97D/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3461.533861	-0.5	-3461.184703	-0.5	-3461.235595	-0.2	-3461.164420	-0.5
1.1-trans	-3461.533007	0.0	-3461.183928	0.0	-3461.235270	0.0	-3461.163578	0.0
	B97D-D3/6-311++G(3df,3pd)		Eo'(B97D-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(B97D-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(B97D-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	
1.1-cis	-3461.463946	-0.8	-3461.114788	-0.7	-3461.165680	-0.4	-3461.094505	-0.8
1.1-trans	-3461.462720	0.0	-3461.113641	0.0	-3461.164983	0.0	-3461.093291	0.0
	TPSSTPSS-D3BJ/6-311++G(3df,3pd)		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p)	1)
1.1-cis	-3460.887087	-0.5	-3460.537929	-0.4	-3460.588821	-0.1	-3460.517646	-0.5
1.1-trans	-3460.886334	0.0	-3460.537255	0.0	-3460.588597	0.0	-3460.516905	0.0
	TPSSTPSS-D3/6-311++G(3df,3pd)		Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(TPSSTPSS-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p)))
1.1-cis	-3460.854911	-0.6	-3460.505753	-0.6	-3460.556645	-0.3	-3460.485470	-0.6
1.1-trans	-3460.853952	0.0	-3460.504873	0.0	-3460.556215	0.0	-3460.484523	0.0
	PBE1PBE-D3BJ/6-311++G(3df,3pd)		Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))	10.45	Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3BJ/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p)	1)
1.1-cis	-3459.467653	-0.8	-3459.118495	-0.7	-3459.169387	-0.4	-3459.098212	-0.8
1.1-trans	-3459.466429	0.0	-3459.117350	0.0	-3459.168692	0.0	-3459.097000	0.0
	PBE1PBE-D3/6-311++G(3df,3pd)		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+ZPE(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+Gcorr(wB97XD/6-311+G(d,p))		Eo'(PBE1PBE-D3/6-311++G(3df,3pd))+Hcorr(wB97XD/6-311+G(d,p))	1
1.1-cis	-3459.446895	-0.8	-3459.097737	-0.8	-3459.148629	-0.5	-3459.077454	-0.8
1.1-trans	-3459.445555	0.0	-3459.096476	0.0	-3459.147818	0.0	-3459.076126	0.0

ZPE(1.1-cis)= 0.349158; ZPE(1.1-trans)= 0.349079

Gcorr(1.1-*cis*)= 0.298266; Gcorr(1.1-*trans*)= 0.297737 Hcorr(1.1-*cis*)=.0.369441; Hcorr(1.1-*trans*)= 0.369429

Definition of pyramidalization of β -carbon

In addition to the bond-forming distance, we quantified the earliness-lateness of the TSs by the degree of pyramidalization of β -carbon in the Michael-acceptor fragment. The pyramidalization was measured by using the dihedral angle of $1(\gamma$ -C)- $2(\alpha$ -C)-3(H)- $4(\beta$ -C). This angle describes how much the β -carbon comes out of the plane determined by $1(\gamma$ -C), $2(\alpha$ -C) and 3(H) atoms. The value of this angle adequately indicates whether β -carbon is reactant-like or closer to the state of the product. For graphical definition of pyramidalization of β -carbon see below (Figure 1).

Figure 1 Measurement of pyramidalization angle: dihedral angle of $1(\gamma-C)-2(\alpha-C)-3(H)-4(\beta-C)$

Entity	Angle (°)
10a-alkoxide	0.0
TS 2.1-trans	7.3
TS 2.1-cis	9.2
enolate 2.2-trans	34.5
enolate 2.2-cis	35.7
10b-protonated	0.1
TS 1.1-trans	16.1
TS 1.1-cis	16.4
Enol 1.2-trans	29.8
Enol 1.2-cis	30.0