Supporting Information

Metal-Free Synthesis of Activated Ynesulfonamides and Tertiary Enesulfonamides

Lucile ANDNA, Laurence MIESCH*

Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, Université de Strasbourg, CNRS-UdS UMR 7177, 4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France

Corresponding author: Imiesch@unistra.fr

Contents

General remarks	2
Experimental procedure and characterization data for terminal alkynes SI-a	3
Experimental procedure and characterization data for bromoalkynes SI-b	8
Experimental procedure and characterization data for sulfonamides 1 and SI-c	11
Characterization data for Michael double addition product 3	15
Experimental procedure and characterization data for ynesulfonamides 2, 4 - 14	16
Experimental procedure and characterization data for enesulfonamides 15/15' - 29/29'	22
Experimental procedure for isomerization	33
¹ H and ¹³ C spectra for SI-a11	34
¹ H and ¹³ C spectra for SI-b	35
¹ H and ¹³ C spectra for 3	37
¹ H and ¹³ C spectra for ynesulfonamides 4 - 14	38
¹ H and ¹³ C spectra for enesulfonamides 15/15' – 29/29'	47

General remarks

All reactions were carried under argon atmosphere. DMF, acetone, THF, toluene, MeCN and acetic acid were used as received from Sigma Aldrich. CH₂Cl₂ was dried using a dry solvent station GT S100 system.

NMR Spectra (¹H, ¹³C) were performed at 298 K. ¹H (500 MHz or 300 MHz) and ¹³C (125 MHz) NMR chemical shifts are reported relative to internal TMS (δ = 0.00 ppm) or to residual protiated solvent. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration.

HRMS data were recorded on a microTOF spectrometer equipped with an orthogonal electrospray (ESI) interface.

Thin layer chromatography was performed using Merck TLC silica gel 60 F_{254} aluminium sheets using petroleum ether/EtOAc or CH₂Cl₂/acetone as eluant and visualized using permanganate stain, ninhydrin stain, vanillin stain and/or UV light. Merck Geduran® 40-63 µm silica gel was used for column chromatography.

Infrared spectra were reported in frequency of absorption using Alpha Bruker Optics spectrometer.

Melting points were recorded with a SMP3 Stuart Scientific microscope in open capillary tubes and are uncorrected.

Ethyl propiolate, (S)-4-phenyloxazolidin-2-one were purchased from Fluorochem and N,4-dimethylbenzenesulfonamide from Sigma-Aldrich. All these compounds were used without any precautions.

Experimental procedure and characterization data for terminal alkynes SI-a

Synthetic routes of terminal alkynes were summarized in the following schemes.

For amides precursors: 1

¹ Schlepphorst, C.; Wiesenfeldt, M. P.; Glorius, F. Chem. Eur. J. 2018, 24, 356.

² a) Beltran, F.; Fabre, I.; Ciofini, I.; Miesch, L. *Org. Lett.*, **2017**, *19*, 5042. (and references in the supporting information therein), b) Shen, Y.; Cai, S.; He, C.; Lin, X.; Lu, P.; Wang, Y. *Tetrahedron*, **2011**, *67*, 8338.

³ Dai, H.; Li, C.-X.; Yu, C.; Wang, Z.; Yan, H.; Lu, C. Org. Chem. Front., 2017, 4, 2008.

1-phenylprop-2-yn-1-one (SI-a2)

The reaction was performed on 11 mmol scale, following ketones precursors' method. Characterization data match those of the literature.^{2b}

¹H NMR (CDCl₃, 300 MHz): δ = 8.20 - 8.14 (m, 2 H), 7.69 - 7.58 (m, 1 H), 7.55 - 7.47 (m, 2 H), 3.43 (s, 1 H) ppm.

1-(benzo[d][1,3]dioxol-5-yl)prop-2-yn-1-one (SI-a3)

 $C_{10}H_6O_3$ MW : 174.15 g.mol⁻¹ White solid 66% (1.26 g, 7.26 mmol)

O The reaction was performed on 11 mmol scale, following ketones precursors' method. Characterization data match those of the literature.⁴

¹**H NMR (CDCI₃, 300 MHz):** δ = 7.84 (dd, 1 H, *J* = 8.2 Hz, 1.7 Hz), 7.56 (d, 1 H, *J* = 1.7 Hz), 6.89 (d, 1 H, *J* = 8.2 Hz), 6.08 (s, 2 H), 3.37 (s, 1 H) ppm.

1-(thiophen-2-yl)prop-2-yn-1-one (SI-a4)

C₇H₄OS MW : 136.17 g.mol⁻¹ Orange solid 60% (899 mg, 6.6 mmol)

The reaction was performed on 11 mmol scale, following ketones precursors' method. Characterization data match those of the literature.⁴

¹**H NMR (CDCI₃, 400 MHz):** δ = 7.97 (dd, 1 H, *J* = 3.9 Hz, 1.1 Hz), 7.74 (dd, 1 H, *J* = 4.9 Hz, 1.1 Hz), 7.17 (dd, 1 H, *J* = 4.9 Hz, 3.9 Hz), 3.35 (s, 1 H) ppm.

(E)-1-phenylpent-1-en-4-yn-3-one (SI-a5)

C₁₁H₈O MW : 156.18 g.mol⁻¹ Orange solid 81% (1.39 g, .8.91 mmol)

The reaction was performed on 11 mmol scale, following ketones precursors' method. Characterization data match those of the literature.^{2b}

⁴ Oakdale, J. S.; Sit, R. K.; Fokin, V. V. *Chem. Eur. J.* **2014**, *20*, 11101.

¹H NMR (CDCI₃, 300 MHz): δ = 7.89 (d, 1 H, J = 16.1 Hz), 7.62 -7.55 (m, 2 H), 7.47 - 7.39 (m, 3 H), 6.81 (d, 1 H, J = 16.1 Hz), 3.32 (s, 1 H) ppm.

N-methoxy-N-methylpropiolamide (SI-a6)

The reaction was performed on 11 mmol scale, following amides precursors' method. Characterization data match those of the literature.⁴

¹H NMR (CDCl₃, 300 MHz): δ = 3.79 (s, 3 H), 3.24 (br, 3 H), 3.12 (s, 1 H) ppm.

N,N-diethylpropiolamide (SI-a7)

 $C_7H_{11}NO$ MW : 125.17 g.mol⁻¹ Colorless oil 53% (730 mg, 5.83 mmol)

The reaction was performed on 11 mmol scale, following amides precursors' method. Characterization data match those of the literature.¹

¹H NMR (CDCI₃, 300 MHz): δ = 3.60 (q, 2 H, *J* = 7.2 Hz), 3.42 (q, 2 H, *J* = 7.2 Hz), 3.03 (s, 1 H), 1.22 (t, 3 H, *J* = 7.2 Hz), 1.14 (t, 3 H, *J* = 7.2 Hz) ppm.

1-morpholinoprop-2-yn-1-one (SI-a8)

C₇H₉NO₂ MW : 139.15 g.mol⁻¹ Colorless oil 48% (734 mg, 5.28 mmol)

The reaction was performed on 11 mmol scale, following amides precursors' method. Characterization data match those of the literature.⁴

¹H NMR (CDCl₃, 300 MHz): δ = 3.78 – 3.73 (m, 2H), 3.72 – 3.68 (m, 2H), 3.67-3.61 (m, 4H), 3.13 (s, 1 H) ppm.

1-(naphthalen-2-yl)prop-2-yn-1-one (SI-a9)

C₁₃H₈O₂ MW : 180.21 g.mol⁻¹ White solid 60% (1.19 g, 6.60 mmol)

The reaction was performed on 11 mmol scale, following ketones

precursors' method. Characterization data match those of the literature.⁵

¹H NMR (CDCI₃, 300 MHz): δ = 8.76 (s, 1 H), 8.14 (dd, 1 H, *J* = 8.6 Hz, 1.7 Hz), 8.10 (dd, 1 H, *J* = 8.0 Hz, 1.7 Hz), 7.91 (dd, 2 H, *J* = 8.7 Hz, 3.3 Hz), 7.69 – 7.56 (m, 2 H), 3.50 (s, 1 H) ppm.

1-(furan-2-yl)prop-2-yn-1-one (SI-a10)

C7H₄O2 MW : 120.11 g.mol⁻¹ Yellow solid 67% (885 mg, 7.37 mmol)

The reaction was performed on 11 mmol scale, following ketones precursors' method. Characterization data match those of the literature.^{2b}

¹**H NMR (CDCI₃, 300 MHz):** δ = 7.69 (dd, 1 H, *J* = 1.7 Hz, 0.6 Hz), 7.41 (dd, 1 H, *J* = 3.5 Hz, 0.6 Hz), 6.60 (dd, 1 H, *J* = 3.5 Hz, 1.7 Hz), 3.31 (s, 1 H) ppm.

(E)-oct-4-en-1-yn-3-one (SI-a11)

C₈H₁₀O MW : 122.16 g.mol⁻¹ Colorless oil 69% (927.2 mg, 7.59 mmol)

The reaction was performed on 11 mmol scale.

¹H NMR (CDCl₃, 300 MHz): δ = 7.24 (dt, 1 H, J = 15.8 Hz, 6.9 Hz), 6.17 (dt, 1 H, J = 15.8 Hz, 1.5 Hz), 3.21 (s, 1 H), 7.29 (qd, 2 H, J = 7.2 Hz, 1.5Hz), 1.61 – 1.48 (m, 2 H), 0.96 (t, 3 H, J = 7.2 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 177.8 (C), 155.6 (CH), 131.9 (CH), 79.7 (C), 78.8 (CH), 34.6 (CH₂), 21.0 (CH₂), 13.6 (CH₃) ppm.

IR (neat): v = 2963, 2097, 1647, 1230 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 123.0804; found: 123.0807

R_{*f*}: 0.45 (Petroleum ether/EtOAc 90:10 *v*/*v*, UV, vanillin stain)

1-(ethynylsulfonyl)-4-methylbenzene (SI-a12)

C₉H₈O₂S Ⅲ−Ts MW : 180.22 g.mol⁻¹ White solid 63% (1.25 g, 6.93 mmol)

⁵ Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S. *J. Org. Chem.* **2002**, *67*, 6718.

The reaction was performed on 11 mmol scale, following Ts precursors' method. Characterization data match those of the literature.⁶

¹H NMR (CDCI₃, 300 MHz): δ = 7.90 (d, 2 H, *J* = 8.2 Hz), 7.40 (d, 2 H, *J* = 8.2 Hz), 3.44 (s, 1 H), 2.48 (s, 3 H) ppm.

⁶ Waykole, L.; Paquette, L. A. Org. Synth. **1989**, 67, 149.

Experimental procedure and characterization data for bromoalkynes SI-b

Bromoalknes were synthesized following literature procedure using AgNO₃ catalysis.⁷

General procedure: To a solution of the acetylenic (5 mmol, 1 equiv) in acetone (conc = 0.30 M) were added *N*-bromosuccinimide (6 mmol, 1.2 equiv) and AgNO₃ (0.5 mmol, 10 mol %). After 1 h at room temperature, the same quantity of AgNO₃ (0.5 mmol, 10 mol %) was added and the mixture was stirred at room temperature for 1 h. The resulting mixture was then filtrated and the filtrate was extracted with hexane (3 x 30 mL). The combined organic layers were washed with a 10% aqueous solution of HCl (2 x 40 mL), brine (30 mL), dried (Na₂SO₄) and concentrated under vacuum (25°C, 200 mbar) to afford the title compounds.

Note: this reaction is carried out away from light.

Detailed procedure for SI-b1: To a solution of ethyl propiolate (500 mg, 5 mmol, 1 equiv) in anhydrous acetone (17 mL, conc = 0.30 M) were added *N*-bromosuccinimide (1.09 g, 6 mmol, 1.2 equiv) and AgNO₃ (87 mg, 0.5 mmol, 10 mol %). After 1 h at room temperature, the same quantity of AgNO₃ (87 mg, 0.5 mmol, 10 mol %) was added and the mixture was stirred at room temperature for 1 h. The resulting mixture was then filtrated and the filtrate was extracted with hexane (3 x 30 mL). The combined organic layers were washed with a 10% aqueous solution of HCl (2 x 40 mL), brine (30 mL), dried (Na₂SO₄) and concentrated under vacuum (25°C, 200 mbar) to afford **SI-b1** (91%, 4.55 mmol, 805 mg).

ethyl 3-bromopropiolate (SI-b1)

 $\begin{array}{ccc} C_5H_5BrO_2\\ Br & \longrightarrow & CO_2Et \\ Golorless crystalline solid\\ 91\% (805 \text{ mg}, 4.55 \text{ mmol}) \end{array}$

Characterization data match those of the literature.⁴

¹H NMR (CDCl₃, 300 MHz): δ = 4.24 (q, 2 H, *J* = 7.2 Hz), 1.31 (t, 3 H, *J* = 7.2 Hz) ppm.

⁷ Hofmeister, H.; Annen, K.; Laurent, H.; Wiechert, R. *Angew. Chemie Int. Ed. English* **1984**, 23, 727–729.

3-bromo-1-phenylprop-2-yn-1-one (SI-b2)

Characterization data match those of the literature.8

¹**H NMR (CDCI₃, 400 MHz):** δ = 8.12 (d, 2 H, *J* = 7.9 Hz), 7.63 (t, 1 H, *J* = 7.4 Hz), 7.49 (t, 2 H, *J* = 8.0 Hz) ppm.

1-(benzo[d][1,3]dioxol-5-yl)-3-bromoprop-2-yn-1-one (SI-b3)

 $C_{10}H_5BrO_2$ MW : 253.05 g.mol⁻¹ Light pink solid 71% (898 mg, 3.55 mmol)

Characterization data match those of the literature.⁴

¹**H NMR (CDCI₃, 500 MHz):** δ = 7.79 (dd, 1 H, *J* = 8.2 Hz, 1.7 Hz), 7.53 (d, 1 H, *J* = 1.7 Hz), 6.89 (d, 1 H, *J* = 8.2 Hz), 6.08 (s, 2 H) ppm.

3-bromo-1-(thiophen-2-yl)prop-2-yn-1-one (SI-b4)

C₇H₃BrOS MW : 215.06 g.mol⁻¹ Orange solid 88% (946 mg, 4.40 mmol)

Characterization data match those of the literature.⁴

¹**H NMR (CDCI₃, 500 MHz):** δ = 7.94 (dd, 1 H, *J* = 3.8 Hz, 0.8 Hz), 7.74 (dd, 1 H, *J* = 4.9 Hz, 0.8 Hz), 7.17 (dd, 1 H, *J* = 4.9 Hz, 3.8 Hz) ppm.

(E)-5-bromo-1-phenylpent-1-en-4-yn-3-one (SI-b5)

Br
$$\longrightarrow$$
 O $C_{11}H_7BrO$
MW : 235.08 g.mol⁻¹
Yellow solid
mp = 88 °C - 90 °C
Ph 97% (1.14 g, 4.85 mmol)

¹H NMR (CDCI₃, 500 MHz): δ = 7.83 (d, 1 H, J = 16.1 Hz), 7.63 -7.57 (m, 2 H), 7.49 - 7.39 (m, 3 H), 6.79 (d, 1 H, J = 16.1 Hz) ppm.

⁸ Poulsen, T. B.; Bernardi, L.; Alemán, J.; Overgaard, J.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2007**, *129*, 441–449.

¹³**C NMR (CDCI₃, 125 MHz):** δ = 176.6 (C), 149.4 (CH), 133.4 (C), 131.4 (CH), 129.1 (2 CH), 128.7 (2 CH), 127.8 (CH), 78.5 (C), 57.2 (C) ppm.

ESI-HRMS: [M+H]⁺ calc: 234.9753; found: 234.9768

IR (neat): v = 2186, 1624, 1448, 1252, 1200 cm⁻¹

Rr. 0.73 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

3-bromo-N-methoxy-N-methylpropiolamide (SI-b6)

$$\begin{array}{cccc} & & & C_5H_6BrNO_2 \\ Br & & & MW : 190.01 \ g.mol^{-1} \\ & & & Colorless \ oil \\ & & & 98\% \ (838 \ mg, \ 4.41 \ mmol) \end{array}$$

Characterization data match those of the literature.⁴

¹H NMR (CDCI₃, 400 MHz): δ = 3.78 (s, 3 H), 3.23 (br, 3 H) ppm

3-bromo-N,N-diethylpropiolamide (SI-b7)

C₇H₁₀BrNO MW : 204.07 g.mol⁻¹ Colorless oil 85% (867 mg, 4.25 mmol)

¹H NMR (CDCI₃, 400 MHz): δ = 3.57 (q, 2 H, *J* = 7.2 Hz), 3.41 (q, 2 H, *J* = 7.2 Hz), 1.22 (t, 3 H, *J* = 7.2 Hz), 1.13 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 152.4 (C), 73.9 (C), 53.9 (C), 43.3 (CH₂), 39.2 (CH₂), 14.3 (CH₃), 12.6 (CH₃) ppm.

ESI-HRMS: [M+H]+ calc: 205.0019; found: 204.0007

IR (neat): v = 2976, 2196, 1618, 1426, 1278 cm⁻¹

Rr: 0.66 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

3-bromo-1-morpholinoprop-2-yn-1-one (SI-b8)

Br
$$\longrightarrow$$
 O $C_7H_8BrNO_2$
N \longrightarrow MW : 218.05 g.mol⁻¹
Yellow solid
100% (1.10 g, 5.00 mmol)

Characterization data match those of the literature.⁴

¹H NMR (CDCI₃, 400 MHz): δ 3.67-3.61 (m, 4H), 3.59-3.53 (m, 4H) ppm.

Experimental procedure and characterization data for sulfonamides 1 and SI-c

• Method A

$$\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{H}_2}{\overset{\text{NH}_2}{\overset{\text{H}_2}{\overset{\text{CI}_2(0.3 \text{ M})}{\overset{\text{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}}}}}}}}}}}}}}}}}}$$

General procedure: SI-c1 (= 1), SI-c2, SI-c3, SI-c5, SI-c6, SI-c7, SI-c8 were prepared according to the literature with minors modifications.⁹

The primary amine (4.5 mmol, 1 equiv) was dissolved in CH_2Cl_2 (0.3 M), TsCl (4.95 mmol, 1.1 equiv) and Et_3N (11.25 mmol, 2.5 equiv) were added successively. After stiring at room temperature for 30 minutes, the mixture was diluted with aqueous HCl (10 wt%, 10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 15 mL) and then once with Et_2O (5 mL). The combined organic extracts were washed with brine (40 mL), dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product **SI-c**.

Detailed procedure for 1: The primary amine (4.5 mmol, 482 mg, 1 equiv) was dissolved in CH_2Cl_2 (0.3 M), TsCl (4.95 mmol, 940 mg, 1.1 equiv) and Et_3N (11.25 mmol, 1.56 mL, 2.5 equiv) were added successively. After stiring at room temperature for 30 minutes, the mixture was diluted with aqueous HCl (10 wt%, 10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 15 mL) and then once with Et_2O (5 mL). The combined organic extracts were washed with brine (40 mL), dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product **1** as a white powder (85%, 3.83 mmol, 999.94 mg).

• Method B

⁹ Huang, W.; Shen, Q.; Wang, J.; Zhou, X. J. Org. Chem. 2008, 73, 1586.

General procedure: SI-c4 and SI-c9 were prepared according to the literature without modifications.¹⁰

A mixture of the mono tosylated diamine (5 mmol, 1 equiv), sodium acetate (15 mmol, 3 equiv) and appropriate anhydride (5 mmol, 1 equiv) were taken in glacial acetic acid (0.33 M) and refluxed for 24 h. The mixture was cooled to rt and evaporated to dryness under vacuum. The corresponding residue was diluted with sat. NaHCO₃ (20 mL) and extracted with EtOAc (3 x 25 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc, $CH_2CI_2/MeOH$ or $CH_2CI_2/acetone$ as eluent to afford the desired product **SI-c4 or SI-c9**.

N-benzyl-4-methylbenzenesulfonamide (SI-c1 = 1)

C₁₄H₁₅NO₂S MW : 261.08 g.mol⁻¹ White solid 85% (999.94 mg, 3.83 mmol)

For clarity reason in the manuscript, **SI-c1** is referred to compound **1. SI-c1** was prepared according to method A. Characterization data match those of the literature.⁹

¹H NMR (CDCI₃, 300 MHz): δ = 7.76 (d, 2 H, J = 8.2 Hz), 7.33 - 7.24 (m, 5 H), 7.23 - 7.17 (m, 2 H), 4.62 (t, 1 H, J = 5.6 Hz), 4.12 (d, 2 H, J = 6.1 Hz), 2.44 (s, 3 H) ppm.

<u>*N*-benzyl-2-nitrobenzenesulfonamide (SI-c2)</u>

SI-c2 was prepared according to method A. Characterization data match those of the literature.¹¹

¹H NMR (CDCl₃, 300 MHz): δ = 8.00 (dd, 1 H, *J* = 7.6 Hz, 1.6 Hz), 7.82 (dd, 1 H, *J* = 7.6 Hz, 1.6 Hz), 7.66 (dtd, 2 H, *J* = 23.1 Hz, 7.6 Hz, 1.6 Hz), 7.25 – 7.19 (m, 5 H), 5.73 (t, 1 H, *J* = 6.1 Hz), 4.32 (d, 2 H, *J* = 6.1 Hz) ppm.

N,N-dimethyl-N-(phenylmethyl) sulfamide (SI-c3)

C₉H₁₄N₂O₂S MW : 214.08 g.mol⁻¹ White solid 94% (905.6 mg, 4.23 mmol)

¹⁰ Maity, A. K.; Roy, S. Adv. Synth. Catal. **2014**, 356, 2627.

¹¹ Baslé, E.; Jean, M.; Gouault, N.; Renault, J.; Uriac, P. Tetrahedron Lett. 2007, 48, 8138.

SI-c3 was prepared according to method A. Characterization data match those of the literature.¹²

¹**H NMR (CDCl₃, 300 MHz):** δ = 7.39 – 7.28 (m, 5 H), 4.52 (t, 1 H, *J* = 5.6 Hz), 4.22 (d, 2 H, *J* = 6.1 Hz), 2.77 (s, 6 H) ppm.

<u>N-(2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)ethyl)-4-methylbenzene</u> sulfonamide (SI-c4)

C₁₇H₂₀N₂O₄S MW : 348.42 g.mol⁻¹ White solid 80% (1.39 g, 3.99 mmol)

 \sim **SI-c4** was prepared according to method B. The product was obtained by column chromatography on silica gel using a step gradient of acetone in CH₂Cl₂ (0 to 5%). Characterization data match those of the literature.¹³

¹H NMR (CDCl₃, 500 MHz): δ = 7.69 (d, 2 H, J = 8.1 Hz), 7.28 (d, 2 H, J = 8.1 Hz), 5.86 (t, 2 H, J = 3.0 Hz), 5.33 (t, 1 H, J = 6.3 Hz, NH), 3.57 (dt, 2 H, J = 5.8 Hz, 3.0 Hz), 3.13 – 3.05 (m, 4 H), 2.58 – 2.50 (m, 2 H), 2.40 (s, 3 H), 2.25 – 2.17 (m, 2 H) ppm.

N-butyl-4-methylbenzenesulfonamide (SI-c5)

SI-c5 was prepared according to method A. Characterization data match those of the literature.¹⁴

¹H NMR (CDCl₃, 500 MHz): δ = 7.75 (d, 2 H, J = 8.2 Hz), 7.31 (d, 2 H, J = 8.2 Hz), 4.27 (t, 1 H, J = 6.1 Hz), 2.94 (q, 2 H, J = 6.7 Hz), 2.43 (s, 3 H), 1.50 - 1.38 (m, 2 H), 1.36 - 1.22 (m, 2 H), 0.85 (t, 3 H, J = 7.3 Hz) ppm.

N-benzylmethanesulfonamide (SI-c6)

C₈H₁₁NO₂S MW : 185.05 g.mol⁻¹ White solid 100% (832.7 mg, 4.50 mmol)

 $\ensuremath{\text{SI-c6}}$ was prepared according to method A. Characterization data match those of the literature.^15

¹² Unterhalt, B.; Seebach, E. Arch. Pharm. **1980**, 314, 51.

¹³ Andna, L.; Miesch, L. Org. Lett. **2018**, 20, 3430.

¹⁴ Das, B.; Reddy, P. R.; Sudhakar, C.; Lingaiah, M. Tetrahedron Lett. 2011, 52, 3521.

¹H NMR (CDCl₃, 300 MHz): δ = 7.38 – 7.29 (m, 5 H), 5.00 (t, 1 H, *J* = 5.4 Hz), 4.30 (d, 2 H, *J* = 6.2 Hz), 2.83 (s, 3 H) ppm.

N-benzyl-4-nitrobenzenesulfonamide (SI-c7)

SI-c7 was prepared according to method A. Characterization data match those of the literature. 15

¹H NMR (CDCI₃, 300 MHz): δ = 8.29 (d, 2 H, J = 8.8 Hz), 7.97 (d, 2 H, J = 8.8 Hz), 7.26 – 7.22 (m, 3 H), 7.17 – 7.14 (m, 2 H), 5.03 (t, 1 H, J = 5.4 Hz), 4.21 (d, 2 H, J = 5.4 Hz) ppm.

N-cyclohexyl-4-methylbenzenesulfonamide (SI-c8)

NΗ

 $\begin{array}{l} C_{13}H_{19}NO_2S\\ MW: 253.36 \text{ g.mol}^{-1}\\ White \text{ solid} \end{array}$

[†]s 100% (1.14 g, 4.5 mmol)

 $\ensuremath{\text{SI-c8}}$ was prepared according to method A. Characterization data match those of the literature.^{16}

¹H NMR (CDCl₃, 500 MHz): δ = 7.76 (d, 2 H, J = 8.2 Hz), 7.29 (d, 2 H, J = 8.2 Hz), 4.54 (d, 1 H, J = 7.7 Hz), 3.19 – 3.05 (m, 1 H), 2.41 (s, 3 H), 1.78 – 1.70 (m, 2 H), 1.68 – 1.57 (m, 2 H), 1.55 – 1.45 (m, 1 H), 1.29 – 1.06 (m, 5 H) ppm.

N-(2-((4-methylphenyl)sulfonamido)ethyl)acetamide (SI-c9)

SI-c9 was prepared according to method B starting from glutaric anhydride. The product was obtained by column chromatography on silica gel using a step gradient of acetone in CH_2CI_2 (0 to 5%). Characterization data match those of the literature.¹⁷

¹H NMR (CDCl₃, 500 MHz): δ = 7.72 (d, 2 H, J = 8.2 Hz), 7.29 (d, 2 H, J = 8.2 Hz), 6.56 (t, 1 H, J = 5.3 Hz, NH), 5.93 (t, 1 H, J = 5.7 Hz, NH), 3.34 (q, 2 H, J = 5.7 Hz), 3.04 (q, 2 H, J = 5.3 Hz), 2.41 (s, 3 H), 1.93 (s, 3 H) ppm.

¹⁵ Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H C.; Watson, A. J. A.; Williams, J. M. J. *J. Am. Chem. Soc.* **2009**, *131*, 1766.

¹⁶ Shaabani, A.; Soleimani, E.; Rezayan, A. H. Tetrahedron Lett. 2007, 48, 2185.

¹⁷ Liu, Q.; Liu, Z.; Zhou, Y.-L.; Zhang, W.; Yang, L.; Liu, Z.-L.; Yu, W. Synlett **2005**, *16*, 2510.

Characterization data for Michael double addition product 3

3 was obtained with some bases when screening was done.

ethyl 3,3-bis((N-benzyl-4-methylphenyl)sulfonamido)acrylate (3)

¹H NMR (CDCI₃, 500 MHz): δ = 7.51 (d, 2 H, J = 8.2 Hz), 7.543 (d, 2 H, J = 8.2 Hz), 7.29 – 7.24 (m, 4 H), 7.16 – 7.09 (m, 10 H), 6.84 (d, 2 H, J = 8.2 Hz), 5.76 (s, 1 H), 4.63 – 4.54 (m, 2 H), 3.98 (q, 2 H, J = 7.1 Hz), 2.38 (s, 3 H), 2.36 (s, 3 H), 1.18 (t, 3 H, J = 7.1 Hz) ppm.

¹³**C NMR (CDCI₃, 125 MHz):** δ = 163.9 (C), 144.2 (C), 144.1 (C), 144.0 (C), 136.8 (C), 135.9 (C), 135.8 (C), 135.1 (C), 129.4 (2 CH), 129.3 (2 CH), 129.1 (2 CH), 128.8 (2 CH), 128.2 (2 CH), 128.1 (4 CH), 127.9 (CH), 127.6 (2 CH), 127.1 (CH), 108.5 (CH), 60.2 (CH₂), 53.2 (CH₂), 50.7 (CH₂), 21.5 (CH₃), 21.5 (CH₃), 14.1 (CH₃) ppm.

IR (neat): v = 2925, 1715, 1597, 13757, 1161, 1085 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 641.1750; found: 641.1753

Rr: 0.38 (Petroleum ether/EtOAc 80:20 v/v, UV, ninhydrin stain)

Experimental procedure and characterization data for ynesulfonamides 2, 4 - 14

General procedure: The secondary amine **SI-c** (0.8 mmol, 1 equiv) was dissolved in THF (0.04 M). The bromoalkyne **SI-b** (0.88 mmol, 1.1 equiv), followed by Triton B 40%wt in water (1.04 mmol, 1.3 equiv) were added at room temperature. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NH₄Cl (10 mL). The aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product.

Detailed procedure for 11 on 8 mmol scale: The secondary amine **SI-c1** (8 mmol, 2.1 g, 1 equiv) was dissolved in THF (0.04 M). The bromoalkyne **SI-b5** (8.8 mmol, 2.07 g, 1.1 equiv), followed by Triton B 40%wt in water (10.4 mmol, 4.70 mL, 1.3 equiv) were added at room temperature. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NH₄Cl (100 mL). The aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford **2** as a yellow oil (100%, 8.0 mmol, .3.33 g).

ethyl 3-((N-benzyl-4-methylphenyl)sulfonamido)propiolate (2)

C₁₉H₁₉NO₄S MW : 357.42 g.mol⁻¹ Yellow oil 90% (3.45 g, 9.64 mmol)

2 was prepared starting from **SI-c1** and **SI-b1**, starting from 10.71 mmol of **SI-c1**. Characterization data match those of the literature.¹⁸

¹H NMR (CDCl₃, 500 MHz): δ = 7.65 (d, 2 H, J = 8.2 Hz), 7.28 – 7.20 (m, 7 H), 4.57 (s, 2 H), 4.14 (q, 2 H, J = 7.2 Hz), 2.9 (s, 3 H), 1.23 (t, 3 H, J = 7.2 Hz), ppm.

¹⁸ Villeneuve, K.; Riddell, N.; Tam, W. *Tetrahedron* **2006**, *62*, 3823.

ethyl 3-((N-benzyl-2-nitrophenyl)sulfonamido)propiolate (4)

C₁₈H₁₆N₂O₆S MW : 388.39 g.mol⁻¹ Orange solid mp = 71 °C - 73 °C 69% (213.6 mg, 0.55 mmol)

4 was prepared starting from SI-c2 and SI-b1.

¹H NMR (CDCl₃, 500 MHz): δ = 8.21 (dd, 1 H, J = 7.8 Hz, 1.3 Hz), 7.86 – 7.65 (m, 3 H), 7.43 – 7.34 (m, 5 H), 4.85 (s, 2 H), 4.15 (q, 2 H, J = 7.1 Hz), 1.25 (t, 3 H, J = 7.1 Hz), ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 153.6 (C), 147.7 (C), 135.3 (CH), 133.6 (C), 132.8 (CH), 132.2 (CH), 130.1 (C), 128.8 (3 CH), 128.7 (2 CH), 124.1 (CH), 80.7 (C), 69.1 (C), 61.6 (CH₂), 56.2 (CH₂), 14.0 (CH₃) ppm.

IR (neat): v = 2221, 1703, 1544, 1377, 1176, 1150 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 411.0621; found: 411.0633

R_f: 0.57 (Petroleum ether/EtOAc 70:30 v/v, UV, ninhydrin stain)

ethyl 3-(benzyl(N,N-dimethylsulfamoyl)amino)propiolate (5)

C₁₄H₁₈N₂O₄S MW : 310.37 g.mol⁻¹ Yellow oil 51% (127.3 mg, 0.41 mmol)

5 was prepared starting from **SI-c3** and **SI-b1**. 27% of the starting sulfonamide **SI-c3** was recovered.

¹**H NMR (CDCI₃, 500 MHz):** δ = 7.45 – 7.34 (m, 5 H), 4.64 (s, 2 H), 4.19 (q, 2 H, *J* = 7.2 Hz), 2.92 (s, 6 H), 1.27 (t, 3 H, *J* = 7.2 Hz), ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 154.2 (C), 134.6 (C), 128.7 (2 CH), 128.7 (3 CH), 83.9 (C), 68.4 (C), 61.4 (CH₂), 556.6 (CH₂), 38.7 (2 CH₃), 14.1 (CH₃) ppm.

IR (neat): v = 2210, 1699, 1376, 1163, 1147 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 333.0879; found: 333.0888

Rr: 0.45 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

ethyl 3-((*N*-(2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2*H*-isoindol-2-yl)ethyl)-4methylphenyl)sulfonamido)propiolate (6)

C₂₂H₂₄N₂O₆S MW : 444.50 g.mol⁻¹ Orange oil 93% (328.9 mg, 0.74 mmol)

6 was prepared starting from **SI-c4** and **SI-b1**. Characterization data match those of the literature. 13

¹H NMR (CDCI₃, 500 MHz): δ = 7.78 (d, 2 H, *J* = 8.3 Hz), 7.37 (d, 2 H, *J* = 8.3 Hz), 5.88 (dd, 2 H, *J* = 4.2 Hz, 2.3 Hz), 4.20 (q, 2 H, *J* = 7.2 Hz), 3.74 (dd, 2 H, *J* = 6.5 Hz, 4.7 Hz), 3.61 (dd, 2 H, *J* = 6.5 Hz, 4.7 Hz), 3.15 (dd, 2 H, *J* = 5.3 Hz, 2.3 Hz), 2.62 – 2.52 (m, 2 H), 2.45 (s, 3 H), 2.28 – 2.20 (m, 2 H), 1.29 (t, 3 H, *J* = 7.2 Hz), ppm.

ethyl 3-((N-butyl-4-methylphenyl)sulfonamido)propiolate (7)

C₁₆H₂₁NO₄S MW : 323.41 g.mol⁻¹ Colorless oil 50% (129.4 mg, 0.40 mmol)

7 was prepared starting from SI-c5 and SI-b1.

¹H NMR (CDCl₃, 500 MHz): δ = 7.81 (d , 2 H, J = 8.2 Hz), 7.37 (d, 2 H, J = 8.2 Hz), 4.22 (q, 2 H, J = 7.2 Hz), 3.41 (t, 2 H, J = 7.4 Hz), 2.46 (s, 3 H), 1.68 – 1.59 (m, 2 H), 1.35 – 1.26 (m, 5 H), 0.90 (t, 3 H, J = 7.4 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 154.1 (C), 145.3 (C), 134.2 (C), 130.0 (2 CH), 127.7 (2 CH), 82.5 (C), 67.6 (C), 61.5 (CH₂), 51.1 (CH₂), 29.9 (CH₂), 21.6 (CH₃), 19.3 (CH₂), 14.1 (CH₃), 13.4 (CH₃) ppm.

IR (neat): v = 2873, 2216, 1704, 1365, 1168 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 346.1083; found: 346.1088

Rr: 0.52 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

N-benzyl-4-methyl-N-(3-oxo-3-phenylprop-1-yn-1-yl)benzenesulfonamide (8)

C₂₃H₁₉NO₃S MW : 389.47 g.mol⁻¹ Yellow solid 100% (311.6 mg, 0.80 mmol)

8 was prepared starting from SI-c1 and SI-b2. Characterization

data match those of the literature. ¹⁹

¹H NMR (CDCI₃, 500 MHz): δ = 7.91 (d, 2 H, J = 8.2 Hz), 7.45 – 7.41 (m, 3 H), 7.35 – 7.32 (m, 3 H); 7.29 (d, 2 H, J = 8.2 Hz), 7.25 – 7.21 (m, 2 H), 7.20 – 7.16 (m, 2 H), 5.05 (s, 2 H), 2.41 (s, 3 H) ppm.

<u>N-(3-(benzo[d][1,3]dioxol-5-yl)-3-oxoprop-1-yn-1-yl)-N-benzyl-4-methylbenzenesulfona-</u> mide (9)

C₂₄H₁₉NO₅S MW : 433.48 g.mol⁻¹ Yellow solid mp = 125 °C – 127 °C 90% (312.1 mg, 0.72 mmol)

9 was prepared starting from SI-c1 and SI-b3.

¹H NMR (CDCl₃, 500 MHz): δ = 7.76 (d, 2 H, J = 8.2 Hz), 7.48 (dd, 1 H, J = 8.2 Hz, 1.3 Hz), 7.38 (d, 1 H, J = 1.3 Hz), 7.36 – 7.29 (m, 7 H), 6.79 (d, 1 H, J = 8.2 Hz), 6.04 (s, 2 H), 4.66 (s, 2 H), 2.43 (s, 3 H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 175.2 (C), 152.5 (C), 148.2 (C), 145.8 (C), 134.4 (C), 133.5 (C), 132.0 (C), 130.3 (2 CH), 129.1 (2 CH), 129.0 (3 CH), 127.9 (2 CH), 126.5 (CH), 108.1 (2 CH), 102.1 (CH₂), 89.6 (C), 76.5 (C), 55.6 (CH₂), 21.9 (CH₃) ppm.

IR (neat): v = 2215, 1628, 1598, 1144, 1256, 1143 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 434.1057; found: 434.1082

R_{*i*}: 0.44 (Petroleum ether/EtOAc 70:30 *v*/*v*, UV, vanillin stain)

N-benzyl-4-methyl-N-(3-oxo-3-(thiophen-2-yl)prop-1-yn-1-yl)benzenesulfonamide (10)

10 was prepared starting from SI-c1 and SI-b4.

¹**H NMR (CDCl₃, 500 MHz):** δ = 7.76 (d, 2 H, *J* = 8.3 Hz), 7.64 (ddd, 2 H, *J* = 13.6 Hz, 4.5 Hz, 1.3 Hz), 7.34 – 7.28 (m, 7 H), 7.09 (dd, 1 H, *J* = 4.8 Hz, 4.0 Hz), 4.66 (s, 2 H), 2.43 (s, 3 H) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 168.7 (C), 145.6 (C), 144.6 (C), 134.4 (CH), 134.2 (C), 134.0 (CH), 133.2 (C), 130.0 (2 CH), 128.8 (2 CH), 128.7 (3 CH), 128.2 (CH), 127.7 (2 CH), 88.9 (C), 75.4 (C), 55.5 (CH₂), 21.6 (CH₃) ppm.

¹⁹ Al-Rashid, Z. F.; Johnson, W. L.; Hsung, R. P.; Wei, Y.; Yao, P.-Y.; Liu, R.; Zhao, K. *J. Org. Chem.* **2008**, *73*, 8780.

IR (neat): v = 2180, 1616, 1413, 1180 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 396.0723; found: 396.0749

Rr: 0.51 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

(E)-N-benzyl-4-methyl-N-(3-oxo-5-phenylpent-4-en-1-yn-1-yl)benzenesulfonamide (11)

C₂₅H₂₁NO₃S MW : 415.51 g.mol⁻¹ Yellow oil 100% (3.33 g, 8.0 mmol)

11 was prepared starting from SI-c1 and SI-b5, starting from 8 mmol of SI-c1.

¹H NMR (CDCl₃, 500 MHz): δ = 7.76 (d, 2 H, J = 8.2 Hz), 7.73 (d, 1 H, J = 16.3 Hz), 7.58 – 7.52 (m, 2 H), 7.44 – 7.39 (m, 3 H), 7.36 – 7.27 (m, 7 H), 6.67 (d, 1 H, J = 16.3 Hz), 4.65 (s, 2 H), 2.43 (s, 3 H) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 177.2 (C), 147.6 (CH), 145.5 (C), 134.3 (C), 134.2 (C), 133.4 (C), 130.8 (CH), 130.1 (2 CH), 128.9 (2 CH), 128.8 (2 CH), 128.7 (CH), 128.7 (2 CH), 128.5 (2 CH), 128.2 (CH), 127.6 (2 CH), 89.0 (C), 75.5 (C), 55.3 (CH₂), 21.6 (CH₃) ppm.

IR (neat): v = 2923, 2192, 1596, 1328, 1156 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 438.1134; found: 438.1128

Rf: 0.60 (Petroleum ether/EtOAc 70:30 v/v, UV, ninhydrin stain)

3-((N-benzyl-4-methylphenyl)sulfonamido)-N,N-diethylpropiolamide (12)

C₂₁H₂₄N₂O₃S MW : 384.50 g.mol⁻¹ Yellow oil 57% (176.9 mg, 0.46 mmol)

12 was prepared starting from SI-c1 and SI-b7. 31% of the sulfonamide SI-c1 was recovered.

¹**H NMR (CDCI₃, 500 MHz):** δ = 7.68 (d, 2 H, *J* = 8.3 Hz), 7.29 - 7.24 (m, 7 H), 4.55 (s, 2 H), 3.32 (qd, 4 H, *J* = 7.4 Hz, 6.7 Hz), 2.40 (s, 3 H), 1.05 (td, 6 H, *J* = 7.4 Hz, 4.0 Hz), ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 153.7 (C), 145.2 (C), 134.5 (C), 133.7 (C), 129.9 (2 CH), 128.6 (4 CH), 128.5 (CH), 127.5 (2 CH), 84.0 (C), 68.1 (C), 55.2 (CH₂), 42.9 (CH₂), 38.8 (CH₂), 21.6 (CH₃), 14.2 (CH₃), 12.8 (CH₃) ppm.

IR (neat): v = 2216, 1618, 1365, 1168 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 385.1580; found: 385.1584

Rr. 0.53 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

N-benzyl-4-methyl-N-(3-morpholino-3-oxoprop-1-yn-1-yl)benzenesulfonamide (13)

C₂₁H₂₂N₂O₄S MW : 398.48 g.mol⁻¹ Colorless oil 54% (171.3 mg, 0.43 mmol)

13 was prepared starting from SI-c1 and SI-b8.

¹H NMR (CDCl₃, 500 MHz): δ = 7.73 (d, 2 H, J = 8.3 Hz), 7.36 – 7.23 (m, 7 H), 4.57 (s, 2 H), 3.66 – 3.48 (m, 6 H), 3.35 (dd, 2 H, J = 5.4 Hz, 4.5 Hz), 2.45 (s, 3 H) ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 153.1 (C), 145.6 (C), 134.3 (C), 133.6 (C), 130.1 (2 CH), 129.9 (2 CH), 128.8 (2 CH), 128.7 (CH), 127.7 (2 CH), 86.1 (C), 67.8 (C), 66.8 (CH₂), 68.4 (CH₂), 55.1 (CH₂), 46.6 (CH₂), 41.6 (CH₂), 21.7 (CH₃) ppm.

IR (neat): v = 2215, 1620, 1368, 1168, 1112 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 421.1192; found: 421.1190

R_f: 0.46 (Petroleum ether/EtOAc 50:50 v/v, UV, vanillin stain)

3-((N-benzyl-4-methylphenyl)sulfonamido)-N-methoxy-N-methylpropiolamide (14)

C₁₉H₂₀N₂O₄S MW : 372.44 g.mol⁻¹ White solid mp = 102 °C - 104 °C 76% (227.2 mg, 0.61 mmol)

14 was prepared starting from SI-c1 and SI-b6.

¹H NMR (CDCl₃, 500 MHz): δ = 7.73 (d, 2 H, J = 8.2 Hz), 7.32 – 7.27 (m, 7 H), 4.61 (s, 2 H), 3.67 (s, 3 H), 3.18 (s, 3 H), 2.44 (s, 3 H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 154.9 (C), 145.2 (C), 134.4 (C), 133.7 (C), 129.8 (2 CH), 128.6 (4 CH), 128.5 (CH), 127.6 (2 CH), 86.1 (C), 77.1 (C), 62.0 (CH₃), 55.4 (CH₂), 32.3 (CH₃), 21.5 (CH₃) ppm.

IR (neat): v = 2218, 1638, 1370, 1171 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 373.1217; found: 373.1236

Rr: 0.55 (Petroleum ether/EtOAc 50:50 v/v, UV, vanillin stain)

Experimental procedure and characterization data for enesulfonamides 15/15' - 29/29'

General procedure: The secondary amine **SI-c** (0.8 mmol, 1 equiv) was dissolved in THF (0.04 M). The alkyne **SI-a** (0.88 mmol, 1.1 equiv), followed by Triton B 40%wt in water (1.04 mmol, 1.3 equiv) were added at room temperature. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NH₄Cl (10 mL). The aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified, if needed, by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product.

Detailed procedure for 25 on larger scale: The secondary amine **SI-c1** (8.42 mmol, 2.2 g, 1 equiv) was dissolved in THF (0.04 M). The alkyne **SI-a10** (9.26 mmol, 1.11 g, 1.1 equiv), followed by Triton B 40% wt in water (10.94 mmol, 4.95 mL, 1.3 equiv) were added at room temperature. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NH₄Cl (100 mL). The aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified, if needed, by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product **25** as a yellow solid (100%, 8.42 mmol, 3.21 g)

ethyl 3-((N-benzyl-4-methylphenyl)sulfonamido)acrylate (15/15')

C₁₉H₂₁NO₄S MW : 359.44 g.mol⁻¹ Yellow oil 100% (3.58 g, 9.95 mmol) **15/15'** 73/27

15/15' were prepared starting from **SI-c1** and commercially available ethyl propiolate, starting from 9.95 mmol of **SI-c1**.

ESI-HRMS: [M+K]⁺ calc: 398.0823; found: 398.0838

Full characterization of E isomer 15

N CO2Et Yellow oil

¹**H NMR (CDCI₃, 500 MHz):** δ = 8.16 (d, 1 H, J = 14.0 Hz), 7.71 (d, 2 H, J = 8.4 Hz), 7.35 – 7.27 (m, 5 H), 7.21 (dd, 2 H, J = 6.9 Hz, 2.0 Hz), 4.96 (d, 1 H, J = 14.0 Hz), 4.59 (s, 2 H), 4.12 (q, 2 H, J = 7.2 Hz), 2.44 (s, 3 H), 1.23 (t, 3 H, J = 7.2 Hz), ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 166.8 (C), 144.8 (C), 141.5 (CH), 135.2 (C), 133.8 (C), 130.1 (2 CH), 128.7 (2 CH), 127.7 (CH), 127.1 (2 CH), 126.6 (2 CH), 99.7 (CH), 60.1 (CH₂), 49.7 (CH₂), 21.6 (CH₃), 14.2 (CH₃) ppm.

IR (neat): v = 2980, 1707, 1624, 1355, 1154 cm⁻¹

Rr: 0.42 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

Full characterization of Z isomer 15'

Colorless oil ^N ^{Ts} CO₂Et
Colorless oil ¹H NMR (CDCI₃, 300 MHz): $\delta = 7.70$ (d, 2 H, J = 8.2 Hz), 7.31 (d, 2 H, J = 7.2 Hz) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 164.8 (C), 144.4 (C), 136.0 (C), 135.4 (CH), 135.2 (C), 129.9 (2 CH), 128.2 (2 CH), 127.5 (2 CH), 127.3 (CH), 127.0 (2 CH), 101.8 (CH), 60.1 (CH₂), 50.6 (CH₂), 21.6 (CH₃), 14.0 (CH₃) ppm.

IR (neat): v = 2979, 1705, 1629, 1161, 1045 cm⁻¹

Rr. 0.46 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

ethyl 3-(benzyl(N,N-dimethylsulfamoyl)amino)acrylate (16/16')

C₁₄H₂₀N₂O₄S MW : 312.38 g.mol⁻¹ 88% (218.7 mg, 0.70 mmol) **16/16'** 70/30

16/16' were prepared starting from SI-c3 and commercially available ethyl propiolate.

Full characterization of E isomer 16

^{*I*} **H NMR (CDCI₃, 500 MHz):** δ = 8.00 (d, 1 H, *J* = 14.1 Hz), 7.33 – 7.29 (m, 2 H), 7.27 – 7.21 (m, 3 H), 4.97 (d, 1 H, *J* = 14.1 Hz), 4.71 (s, 2 H), 4.09 (q, 2 H, *J* = 7.2 Hz), 2.78 (s, 6 H), 1.20 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³**C NMR (CDCl₃, 125 MHz):** δ = 167.3 (C), 143.2 (CH), 134.7 (C), 129.0 (2 CH), 128.0 (CH), 126.8 (2 CH), 97.7 (CH), 60.3 (CH₂), 50.6 (CH₂), 38.2 (2 CH₃), 14.5 (CH₃) ppm.

IR (neat): v = 1704, 1622, 1372, 1148 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 335.1036; found: 335.1024

R_f: 0.45 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

Full characterization of Z isomer 16'

 $\bigcup_{\substack{O = S}}^{N} \bigcup_{\substack{CO_2 \in I}}^{N} CO_2 Et$

Colorless oil

¹³**C** NMR (CDCI₃, 125 MHz): δ = 165.3 (C), 137.9 (CH), 135.8 (C), 128.5 (2 CH), 128.0 (2 CH), 127.7 (CH), 101.4 (CH), 60.3 (CH₂), 52.0 (CH₂), 38.4 (2 CH₃), 14.4 (CH₃) ppm.

IR (neat): v = 1707, 1626, 1362, 1150 cm⁻¹

Rr. 0.68 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

ethyl 3-(N-benzylmethylsulfonamido)acrylate (17/17')

C₁₃H₁₇NO₄S MW : 283.34 g.mol⁻¹ 100% (226.7 mg, 0.80 mmol) **17/17'** 72/28

17/17' were prepared starting from SI-c6 and commercially available ethyl propiolate.

Full characterization of E isomer 17

¹**H NMR (CDCI₃, 500 MHz):** δ = 8.00 (d, 1 H, *J* = 14.0 Hz), 7.39 – 7.34 (m, 2 H), 7.33 – 7.28 (m, 3 H), 5.16 (d, 1 H, *J* = 14.0 Hz), 4.79 (s, 2 H), 4.15 (q, 2 H, *J* = 7.2 Hz), 2.97 (s, 3 H), 1.25 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³**C NMR (CDCI₃, 125 MHz):** δ = 166.9 (C), 141.5 (CH), 134.2 (C), 129.2 (2 CH), 128.3 (CH), 127.1 (2 CH), 100.0 (CH), 60.5 (CH₂), 49.9 (CH₂), 41.2 (CH₃), 14.5 (CH₃) ppm.

IR (neat): v = 1702, 1624, 1357, 1148 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 306.0770; found: 306.0782

R_f: 0.51 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

Characteristic signal for Z isomer 17'

 $\begin{tabular}{|c|c|c|c|c|} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

¹**H NMR (CDCI₃, 500 MHz):** δ = 6.77 (d, 1 H, *J* = 10.4 Hz), 5.26 (s, 2 H), 5.14 (d, 1 H, *J* = 10.4 Hz), 4.08 (q, 2 H, *J* = 7.2 Hz), 2.95 (s, 3 H), 1.20 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 165.2 (C), 136.1 (CH), 135.7 (C), 128.7 (CH), 128.0 (CH), 127.9 (CH), 103.2 (CH), 60.5 (CH₂), 51.2 (CH₂), 41.4 (CH₃), 14.3 (CH₃) ppm.

R_f: 0.67 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

ethyl 3-((N-benzyl-4-nitrophenyl)sulfonamido)acrylate (18/18')

C₁₈H₁₈N₂O₂S MW : 390.41 g.mol⁻¹ 91% (284.99 mg, 0.73 mmol) **18/18'**: 75/25

18/18' were prepared starting from SI-c7 and commercially available ethyl propiolate.

Full characterization of E isomer 18

 $\bigcup_{\substack{N \\ Ns(4-)}}^{N} CO_2 Et \quad Yellow solid \\ mp = 109 - 111 \text{ °C}$

¹H NMR (CDCl₃, 500 MHz): δ = 8.33 (d, 2 H, J = 8.8 Hz), 8.12 (d, 1 H, J = 14.0 Hz), 7.96 (d, 2 H, J = 8.8 Hz), 7.31 – 7.26 (m, 3 H), 7.20 – 7.16 (m, 2 H), 5.13 (d, 1 H, J = 14.0 Hz), 4.69 (s, 2 H), 4.14 (q, 2 H, J = 7.2 Hz), 1.25 (t, 3 H, J = 7.2 Hz), ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 166.6 (C), 150.6 (C), 144.0 (C), 140.8 (CH), 133.3 (C), 129.1 (2 CH), 128.6 (2 CH), 128.4 (CH), 127.0 (2 CH), 124.9 (2 CH), 101.8 (CH), 60.7 (CH₂), 50.2 (CH₂), 14.5 (CH₃) ppm.

IR (neat): v = 1704, 1624, 1531, 1348, 1151 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 391.0958; found: 391.0960

R_f: 0.43 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

Characteristic signal for Z isomer 18'

Colorless oil

¹H NMR (CDCl₃, 500 MHz): δ = 7.97 (d, 2 H, J = 8.8 Hz), 6.85 (d, 1 H, J = 10.3 Hz), 5.22 (d, 1 H, J = 10.3 Hz), 5.16 (s, 2 H), 4.03 (q, 2 H, J = 7.2 Hz), 1.17 (t, 3 H, J = 7.2 Hz) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 164.7 (C), 150.4 (C), 145.0 (C), 134.8 (C), 133.3 (CH), 128.1 (CH), 124.7 (CH), 106.2 (CH), 60.7 (CH₂), 51.7 (CH₂), 14.3 (CH₃) ppm.

R_f: 0.59 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

ethyl (S)-3-(2-oxo-4-phenyloxazolidin-3-yl)acrylate (19/19')

C₁₄H₁₅NO₄ MW : 261.28 g.mol⁻¹ 53% (109.7 mg, 0.42 mmol) **19/19'**: 30/70

19/19' were prepared starting from commercially available (*S*)-4-phenyloxazolidin-2-one and commercially available ethyl propiolate.

Full characterization of E isomer 19

¹H NMR (CDCl₃, 500 MHz): δ = 7.93 (d, 1 H, J = 14.4 Hz), 7.45 – 7.36 (m, 3 H), 7.25 – 7.21 (m, 2 H), 5.04 (dd, 1 H, J = 8.8 Hz, 5.1 Hz), 4.95 (d, 1 H, J = 14.4 Hz), 4.79 (t, 1 H, J = 8.9 Hz), 4.21 (dd, 1 H, J = 8.9 Hz, 5.0 Hz), 4.17 – 4.07 (m, 2 H), 1.23 (t, 3 H, J = 7.2 Hz), ppm.

¹³**C** NMR (CDCI₃, **125** MHz): δ = 166.3 (C), 154.9 (C), 137.2 (CH), 136.6 (C), 129.6 (2 CH), 129.3 (CH), 125.7 (2 CH), 102.2 (CH), 70.9 (CH₂), 60.2 (CH₂), 58.2 (CH), 14.2 (CH₃) ppm.

IR (neat): v = 2982, 1774, 1704, 1300, 1205 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 284.0893; found: 284.0893

Rr. 0.69 (Petroleum ether/EtOAc 50:50 v/v, UV, ninhydrin stain)

¹H NMR characterization of Z isomer 19'

Colorless oil Characterization data of **17'** match those of the literature. ²⁰

Ph ^{CO₂Et 1}**H NMR (CDCI₃, 500 MHz):** δ = 7.36 – 7.29 (m, 3 H), 7.16 – 7.10 (m, 2 H), 6.91 (d, 1 H, *J* = 10.4 Hz), 6.09 (dd, 1 H, *J* = 9.1 Hz, 3.6 Hz), 5.09 (d, 1 H, *J* = 10.4 Hz), 4.75 (t, 1 H, *J* = 8.7 Hz), 4.20 (dd, 1 H, *J* = 8.7 Hz, 3.6 Hz), 4.06 – 3.91 (m, 2 H), 1.12 (t, 3 H, *J* = 7.2 Hz), ppm.

ethyl 3-((N,4-dimethylphenyl)sulfonamido)acrylate (20/20')

$$\begin{array}{ccc} & C_{13}H_{17}NO_4S\\ & & \\ & & \\ & & \\ & & \\ & & \\ T_S \end{array} \\ \begin{array}{c} & & \\$$

20/20' were prepared starting from commercially available *N*,4-dimethylbenzenesulfonamide and commercially available ethyl propiolate. Characterization data match of **20** and **20'** those of the literature. ²¹

¹H NMR characterization of E isomer 20

^{LCO₂Et ¹H NMR (CDCl₃, 500 MHz): δ = 8.14 (d, 1 H, J = 13.9 Hz), 7.68 (d, 2 H, J = 8.2 Hz), 7.33 (d, 2 H, J = 8.2 Hz), 5.03 (d, 1 H, J = 13.9 Hz), 4.18 (q, 2 H, J = 7.2 Hz), 2.94 (s, 3 H), 2.43 (s, 3 H), 1.28 (t, 3 H, J = 7.2 Hz) ppm.}

²⁰ Pan, X.; Cai, Q.; Ma, D. Org. Lett. **2004**, *6*, 1809.

²¹ Hu, H.; Tian, J.; Liu, Y.; Liu, Y.; Shi, F.; Wang, X.; Kan, Y.; Wang, C. J. Org. Chem. **2015**, 80, 2842.

¹H NMR characterization of Z isomer 20'

¹H NMR (CDCI₃, 500 MHz): δ = 7.68 (d, 2 H, *J* = 8.2 Hz), 7.33 (d, 2 H, *J* = 8.2 Hz), 7.05 (d, 1 H, *J* = 10.5 Hz), 5.04 (d, 1 H, *J* = 10.5 Hz), 4.08 (q, 2 H, *J* = 7.2 Hz), 3.23 (s, 3 H), 2.43 (s, 3 H), 1.283 (t, 3 H, *J* = 7.2 Hz) ppm.

ethyl 3-((N-cyclohexyl-4-methylphenyl)sulfonamido)acrylate (21/21')

C₁₈H₂₅NO₄S MW : 351.46 g.mol⁻¹ Colorless oil 62% (174.3 mg, 0.49 mmol) **21/21'** 50/50

21/21' were prepared starting from **SI-c8** and commercially available ethyl propiolate. 30% of the sulfonamide **SI-c8** was recovered.

IR (neat): v = 2933, 1708, 1619, 11357, 1157 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 352.1577; found: 352.1572

Full characterization of E isomer 21

¹H NMR (CDCI₃, 500 MHz): δ = 7.87 (d, 1 H, J = 14.5 Hz), 7.72 (d, 2 H, J = 8.2 Hz), 7.31 (d, 2 H, J = 8.2 Hz), 5.50 (d, 1 H, J = 14.5 Hz), 4.18 (q, 2 H, J = 7.2 Hz), 3.90 (tt, 1 H, J = 12.2 Hz, 3.7 Hz), 2.43 (s, 3 H), 1.85 – 1.73 (m, 4 H), 1.65 – 1.58 (m, 1 H), 1.55 – 1.50 (m, 2 H), 1.43 (t, 1 H, J = 7.2 Hz), 1.26 – 1.23 (m, 1 H), 1.14 – 1.05 (m, 1 H), 1.29 (t, 3 H, J = 7.2 Hz) ppm.

¹³**C NMR (CDCI**₃, **125 MHz):** δ = 167.5 (C), 144.5 (C), 140.0 (CH), 136.3 (C), 129.9 (2 CH), 127.1 (2 CH), 99.3 (CH), 60.0 (CH₂), 59.3 (CH), 29.6 (2 CH₂), 26.0 (2 CH₂), 24.9 (CH₂), 21.5 (CH₃), 14.3 (CH₃) ppm.

Rr. 0.36 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

Characteristic signals of Z isomer 21'

¹H NMR (CDCl₃, 500 MHz): δ = 7.68 (d, 2 H, *J* = 8.2 Hz), 7.27 (d, 2 H, *J* = 8.2 Hz), 6.30 (d, 1 H, *J* = 9.0 Hz), 5.68 (d, 1 H, *J* = 9.0 Hz), 4.18 (q, 2 H, *J* = 7.2 Hz), 3.79 (tt, 1 H, *J* = 12.2 Hz, 3.7 Hz), 2.41 (s, 3 H), 1.29 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 164.9 (C), 144.3 (C), 138.2 (C), 133.5 (CH), 129.5 (2 CH), 126.9 (2 CH), 117.5 (CH), 60.9 (CH), 60.4 (CH₂), 30.9 (2 CH₂), 25.9 (2 CH₂), 25.1 (CH₂), 21.5 (CH₃), 14.0 (CH₃) ppm.

R_f: 0.36 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

ethyl (E)-3-((N-(2-acetamidoethyl)-4-methylphenyl)sulfonamido)acrylate (22)

 $C_{16}H_{22}N_2O_5S$ MW : 354.42 g.mol⁻¹ White solid mp = 107 °C - 108 °C 74% (209.8 mg, 0.59 mmol)

22 was prepared starting from SI-c9 and commercially available ethyl propiolate.

¹H NMR (CDCI₃, 500 MHz): $\delta = 8.07$ (d, 1 H, J = 14.1 Hz), 7.67 (d, 2 H, J = 8.2 Hz), 7.33 (d, 2 H, J = 8.2 Hz), 6.05 (t, 1 H, J = 5.1 Hz), 5.27 (d, 1 H, J = 14.1 Hz), 4.18 (q, 2 H, J = 7.2 Hz), 3.51 – 3.41 (m, 4 H), 2.43 (s, 3 H), 1.99 (s, 3 H), 1.27 (t, 3 H, J = 7.2 Hz) ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 170.9 (C), 166.9 (C), 145.0 (C), 141.3 (CH), 134.5 (C), 130.2 (2 CH), 127.1 (2 CH), 98.7 (CH), 60.2 (CH₂), 44.7 (CH₂), 36.7 (CH₂), 23.0 (CH₃), 21.6 (CH₃), 14.3 (CH₃) ppm.

IR (neat): v = 3373, 1709, 1621, 1523, 1366, 1154 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 377.1142; found: 377.1145

R_f: 0.31 (CH₂Cl₂/acetone 80:20 v/v, UV, ninhydrin stain)

(E)-N,4-dimethyl-N-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (23)

C₁₇H₁₇NO₃S MW : 315.39 g.mol⁻¹ White solid 100% (252.3 mg, 0.80 mmol)

23 was prepared starting from commercially available *N*,4-dimethylbenzenesulfonamide and **SI-a2**. Characterization data match those of the literature. ²²

¹H NMR (CDCl₃, 500 MHz): δ = 8.35 (d, 1 H, J = 13.5 Hz), 7.88 (d, 2 H, J = 8.2 Hz), 7.72 (d, 2 H, J = 8.2 Hz), 7.56 - 7.51 (m, 1 H), 7.45 (t, 2 H, J = 7.6 Hz), 7.34 (d, 2 H, J = 8.4 Hz), 6.13 (d, 1 H, J = 13.5 Hz), 3.10 (s, 3 H), 2.43 (s, 3 H) ppm.

(E)-N-benzyl-4-methyl-N-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzenesulfonamide (24)

C₂₇H₂₃NO₃S MW : 441.55 g.mol⁻¹ Yellow solid mp = 178 – 180 °C 100% (356.24 mg, 0.80 mmol)

24 was prepared starting from SI-c1 and SI-a9.

²² Liang, X.; Huang, X.; Xiong, M.; Shen, K.; Pan, Y. *Chem. Commun.* **2018**, *54*, 8403.

¹H NMR (CDCI₃, 500 MHz): δ = 8.38 (d, 1 H, J = 13.6 Hz), 8.03 (s, b, 1 H), 7.86 – 7.80 (m, 4 H), 7.77 (d, 2 H, J = 8.2 Hz), 7.59 – 7.47 (m, 2 H), 7.42 – 7.28 (m, 7 H), 6.24 (d, 1 H, J = 13.6 Hz), 4.80 (s, 2 H), 2.44 (s, 3 H) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 189.3 (C), 145.2 (C), 142.4 (CH), 135.9 (C), 135.4 (C), 135.4 (C), 134.4 (C), 132.6 (C), 130.4 (2 CH), 129.5 (CH), 129.4 (CH), 129.1 (2 CH), 128.5 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.5 (2 CH), 127.0 (2 CH), 126.8 (CH), 124.3 (CH), 105.0 (CH), 50.5 (CH₂), 21.6 (CH₃) ppm.

IR (neat): v = 1658, 1580, 1365, 1166 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 442.1471; found: 442.1485

Rr. 0.58 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

(E)-N-benzyl-N-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)-4-methylbenzenesulfonamide (25)

C₂₁H₁₉NO₄S MW : 381.45 g.mol⁻¹ Yellow solid mp .= 165 - 166 °C 100% (3.21 g, 8.42 mmol)

25 was prepared starting from SI-c1 and SI-a10, starting from 8.42 mmol of SI-c1.

¹H NMR (CDCl₃, 500 MHz): $\delta = 8.38$ (d, 1 H, J = 13.9 Hz), 7.73 (d, 2 H, J = 8.3 Hz), 7.49 (dt, 1 H, J = 1.4 Hz, 0.4 Hz), 7.34 – 7.29 (m, 4 H), 7.29 – 7.26 (m, 3 H), 7.00 (dd, 1 H, J = 3.5 Hz, 0.4 Hz), 6.46 (dd, 1 H, J = 3.5 Hz, 1.4 Hz), 6.03 (d, 1 H, J = 13.9 Hz), 4.73 (s, 2 H), 2.43 (s, 3 H) ppm.

¹³C NMR (CDCI₃, 125 MHz): δ = 177.3 (C), 153.4 (C), 145.7 (CH), 144.9 (C), 141.9 (CH), 135.1 (C), 134.0 (C), 130.1 (2 CH), 128.8 (2 CH), 127.8 (CH), 127.2 (2 CH), 126.7 (2 CH), 116.2 (CH), 112.2 (CH), 103.7 (CH), 50.1(CH₂), 21.6 (CH₃) ppm.

IR (neat): v = 1649, 1588, 1359, 1161 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 382.1108; found: 382.1097

Rr. 0.36 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

<u>*N*-benzyl-4-methyl-*N*-((1*E*,4*E*)-3-oxo-5-phenylpenta-1,4-dien-1-yl)benzenesulfonamide (26)</u>

C₂₅H₂₃NO₃S MW : 417.52 g.mol⁻¹ Orange solid mp = 167 – 169 °C 100% (334.02 mg, 0.80 mmol)

26 was prepared starting from SI-c1 and SI-a5.

¹H NMR (CDCl₃, 300 MHz): δ = 8.29 (d, 1 H, J = 13.8 Hz), 7.74 (d, 2 H, J = 8.2 Hz), 7.52 – 7.42 (m, 3 H), 7.39 – 7.29 (m, 8 H), 7.25 – 7.22 (m, 2 H), 6.73 (d, 1 H, J = 15.9 Hz), 5.64 (d, 1 H, J = 13.8 Hz), 4.70 (s, 2 H), 2.44 (s, 3 H) ppm.

¹³**C NMR (CDCI₃, 125 MHz):** δ = 187.7 (C), 145.2 (C), 142.4 (CH), 141.6 (CH), 135.4 (C), 134.9 (C), 134.2 (C), 130.4 (3 CH), 129.0 (4 CH), 128.4 (2 CH), 128.1 (CH), 127.5 (2 CH), 126.9 (2 CH), 125.9 (CH), 108.2 (CH), 50.2 (CH₂), 21.8 (CH₃) ppm.

IR (neat): v = 2924, 1612, 1576, 1365, 1166 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 418.1471; found: 418.1480

Rf: 0.27 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

N-benzyl-4-methyl-N-((4E)-3-oxoocta-1,4-dien-1-yl)benzenesulfonamide (27)

 $C_{22}H_{25}NO_3S$ MW : 383.51 g.mol⁻¹ Orange solid mp = 101 – 102 °C 84% (256.95 mg, 0.67 mmol)

27 was prepared starting from SI-c1 and SI-a11.

¹H NMR (CDCl₃, 500 MHz): δ = 8.19 (d, 1 H, *J* = 14.0 Hz), 7.71 (d, 2 H, *J* = 8.2 Hz), 7.32 – 7.25 (m, 5 H), 7.22 (d, 2 H, *J* = 8.2 Hz), 6.69 (dt, 1 H, *J* = 15.6 Hz, 7.3 Hz), 6.12 (dt, 1 H, *J* = 15.6 Hz, 1.4 Hz), 5.52 (d, 1 H, *J* = 14.0 Hz), 4.65 (s, 2 H), 2.43 (s, 3 H), 2.14 (qd, 2 H, *J* = 7.3 Hz, 1.4 Hz), 1.48 – 1.40 (m, 2 H), 0.90 (t, 3 H, *J* = 7.3 Hz) ppm.

¹³C NMR (CDCI₃, **125 MHz):** δ = 118.1 (C), 147.1 (CH), 145.1 (C), 141.3 (CH), 135.4 (C), 134.2 (C), 130.4 (2 CH), 129.6 (CH), 129.0 (2 CH), 128.0 (CH), 127.4 (2 CH), 126.9 (2 CH), 107.7 (CH), 50.1 (CH₂), 34.7 (CH₂), 21.8 (CH₃), 21.6 (CH₂), 13.9 (CH₃) ppm.

IR (neat): v = 1653, 1564, 1291, 1160 cm⁻¹

ESI-HRMS: [M+H]⁺ calc: 384.1628; found: 384.1642

R_f: 0.41 (Petroleum ether/EtOAc 80:20 v/v, UV, vanillin stain)

N-benzyl-4-methyl-N-(2-tosylvinyl)benzenesulfonamide (28/28')

C₂₃H₂₃NO₄S₂ MW : 411.56 g.mol-1 86% (284.0 mg, 0.69 mmol) **28/28**': 50/50

28/28' were prepared starting from SI-c1 and SI-a12.

ESI-HRMS: [M+Na]⁺ calc: 464.0961; found: 464.0934

IR (neat): v = 2924, 1608, 1360, 1290, 1166, 1141, 1083 cm⁻¹

Full characterization of E isomer 28

N Ts White solid T_s mp = 174 - 175 °C

¹H NMR (CDCl₃, 500 MHz): δ = 8.15 (d, 1 H, J = 13.6 Hz), 7.71 (d, 2 H, J = 8.3 Hz), 7.55 (d, 2 H, J = 8.2 Hz), 7.34 (d, 2 H, J = 8.3 Hz), 7.24 – 7.19 (m, 5 H), 7.11 – 7.07 (m, 2 H), 5.41 (d, 1 H, J = 13.6 Hz), 4.57 (s, 2 H), 2.46 (s, 3 H), 2.39 (s, 3 H) ppm.

¹³C NMR (CDCI₃, **125** MHz): δ = 145.3 (C), 143.5 (C), 140.4 (CH), 139.0 (C), 134.7 (C), 133.1 (C), 130.3 (2 CH), 129.6 (2 CH), 128.8 (2 CH), 127.9 (CH), 127.2 (2 CH), 126.6 (2 CH), 126.5 (2 CH), 109.0 (CH), 50.2 (CH₂), 21.6 (CH₃), 21.5 (CH₃) ppm.

Rf: 0.45 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

Full characterization of Z isomer 28'

Colorless oil

¹H NMR (CDCl₃, 500 MHz): δ = 7.62 (d, 2 H, J = 8.2 Hz), 7.40 (d, 2 H, J = 8.2 Hz), 7.29 (d, 2 H, J = 8.2 Hz), 7.22 - 7.17 (m, 3 H), 7.16 - 7.10 (m, 4 H), 7.07 (d, 1 H, J = 10.9 Hz), 5.48 (d, 1 H, J = 10.9 Hz), 5.29 (s, 2 H), 2.44 (s, 3 H), 2.36 (s, 3 H) ppm.

¹³**C NMR (CDCI₃, 125 MHz):** δ = 144.8 (C), 143.9 (C), 138.6 (C), 135.6 (C), 135.3 (C), 134.2 (CH), 129.9 (2 CH), 129.5 (2 CH), 128.2 (2 CH), 127.3 (2 CH), 127.2 (CH), 127.1 (2 CH), 126.8 (2 CH), 110.4 (CH), 52.6 (CH₂), 21.6 (CH₃), 21.5 (CH₃) ppm.

Rr: 0.45 (Petroleum ether/EtOAc 70:30 v/v, UV, vanillin stain)

3-((N-benzyl-4-methylphenyl)sulfonamido)-N,N-diethylacrylamide (29/29')

C₂₁H₂₆N₂O₃S MW : 386.51 g.mol⁻¹ 93% (286.0 mg, 0.74 mmol) **27/27'**: 63/37

29/29' were prepared starting from SI-c1 and SI-a7.

Full characterization of E isomer 29

$$\bigvee_{T_s}^{N} \bigvee_{T_s}^{N} \bigvee_{$$

¹H NMR (CDCl₃, 500 MHz): $\delta = 8.05$ (d, 1 H, J = 13.5 Hz), 7.72 (d, 2 H, J = 8.3 Hz), 7.31 – 7.25 (m, 4 H), 7.24 – 7.20 (m, 3 H), 5.22 (d, 1 H, J = 13.5 Hz), 4.60 (s, 2 H), 3.29 (q, 2 H, J = 7.2 Hz), 3.14 (q, 2 H, J = 7.2 Hz), 2.40 (s, 3 H), 1.02 (t, 3 H, J = 7.2 Hz), 0.76 (t, 3 H, J = 7.2 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 165.2 (C), 144.4 (C), 139.2 (CH), 135.5 (C), 134.7 (C), 130.0 (2 CH), 128.7 (2 CH), 127.7 (CH), 127.1 (2 CH), 126.5 (2 CH), 100.5 (CH), 50.3 (CH₂), 42.0 (CH₂), 40.7 (CH₂), 21.5 (CH₃), 14.3 (CH₃), 13.2 (CH₃) ppm.

IR (neat): v = 2976, 1651, 1594, 1360, 1167 cm⁻¹

ESI-HRMS: [M+Na]⁺ calc: 409.1556; found: 409.1538

R_f: 0.21 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

Full characterization of Z isomer 29'

¹H NMR (CDCl₃, 500 MHz): δ = 7.75 (d, 2 H, *J* = 8.3 Hz), 7.32 (d, 2 H, *J* = 8.3 Hz), 7.25 – 7.13 (m, 5 H), 6.90 (d, 1 H, *J* = 10.7 Hz), 5.06 (d, 1 H, *J* = 10.7 Hz), 5.00 (s, 2 H), 3.14 (q, 2 H, *J* = 7.2 Hz), 2.66 (q, 2 H, *J* = 7.2 Hz), 2.41 (s, 3 H), 0.97 (t, 3 H, *J* = 7.2 Hz), 0.76 (t, 3 H, *J* = 7.2 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ = 165.3 (C), 144.1 (C), 136.3 (C), 135.8 (C), 130.2 (CH), 129.9 (2 CH), 128.0 (2 CH), 127.0 (CH), 127.0 (2 CH), 126.8 (2 CH), 103.6 (CH), 49.3 (CH₂), 42.7 (CH₂), 39.7 (CH₂), 21.5 (CH₃), 13.2 (CH₃), 12.9 (CH₃) ppm.

IR (neat): v = 2975, 1641, 1346, 1164 cm⁻¹

Rr: 0.43 (Petroleum ether/EtOAc 60:40 v/v, UV, vanillin stain)

Experimental procedure for isomerization

General procedure: The mixture of E/Z enesulfonamide or the Z enamide (0.5 mmol, 1 equiv) was dissolved in CH₂Cl₂ (0.05 M). Para-toluenesulfonic acid (0.1 mmol, 20 mol %) was then added and the reaction was heated to 40 °C. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NaHCO₃ (10 mL). The aqueous layer was extracted with AcOEt (3 x 15 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired product.

Detailed procedure for 29 on 1 mmol: The The *Z* enamide **29'** (1 mmol, 386.5 mg, 1 equiv) was dissolved in CH_2Cl_2 (0.05 M). Para-toluenesulfonic acid (0.2 mmol, 35 mg, 20 mol %) was then added and the reaction was heated to 40 °C. Reaction was monitored by TLC and once judge completed by the full consumption of the starting material, the mixture was diluted with sat. NaHCO₃ (10 mL). The aqueous layer was extracted with AcOEt (3 x 15 mL). The combined organic extracts were dried (Na₂SO₄), concentrated under reduce pressure (15 mbar, 25 °C) and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford **29** as a white solid (85%, 0.85 mmol, 328.5 mg)

¹³C NMR (CDCI₃, 125 MHz) of **SI-a11**

¹H and ¹³C spectra for SI-b

¹³C NMR (CDCl₃, 125 MHz) of **SI-b5**

¹³C NMR (CDCI₃, 125 MHz) of **SI-b7**

 ^{13}C NMR (CDCl_3, 125 MHz) of 4

 ^{13}C NMR (CDCl_3, 125 MHz) of $\boldsymbol{5}$

 ^{13}C NMR (CDCl_3, 125 MHz) of 7

¹³C NMR (CDCI₃, 125 MHz) of **9**

-100 7 TT 0 `N´ ∣ Ts 備自自 6 (and) 8,3 a 75 7 8,0 44 -0,0 0 ¹H NMR (CDCl₃, 500 MHz) of **10** £ 97 2222222005 Ŵ 100 1121 Ö N Ts 200¹¹ 150 188 170 160 156 142 130 120 116 148 166 18 70 60 16 46 30 20 16 16 5 111

 $^{\rm 13}{\rm C}$ NMR (CDCl_3, 125 MHz) of ${\bf 10}$

 ^{13}C NMR (CDCl_3, 125 MHz) of 11

¹³C NMR (CDCl₃, 125 MHz) of **12**

 $^{\rm 13}C$ NMR (CDCl_3, 125 MHz) of ${\bf 13}$

¹³C NMR (CDCl₃, 125 MHz) of **14**

 ^{13}C NMR (CDCl_3, 125 MHz) of 15'

¹³C NMR (CDCI₃, 125 MHz) of **16**

¹³C NMR (CDCI₃, 125 MHz) of **16'**

 ^{13}C NMR (CDCl_3, 125 MHz) of 17

¹³C NMR (CDCI₃, 125 MHz) of **17/17'**

¹³C NMR (CDCI₃, 125 MHz) of **18**

¹³C NMR (CDCI₃, 125 MHz) of **18/18'**

 ^{13}C NMR (CDCl_3, 125 MHz) of 19

¹³C NMR (CDCl₃, 125 MHz) of **21/21'**

¹³C NMR (CDCI₃, 125 MHz) of **22**

¹³C NMR (CDCI₃, 125 MHz) of **24**

 ^{13}C NMR (CDCl_3, 125 MHz) of 25

¹³C NMR (CDCl₃, 125 MHz) of **26**

 ^{13}C NMR (CDCl_3, 125 MHz) of 27

¹³C NMR (CDCI₃, 125 MHz) of **28**

 $^{\rm 13}C$ NMR (CDCl_3, 125 MHz) of $\bf 28'$

¹³C NMR (CDCI₃, 125 MHz) of **29**

£.

 ^{13}C NMR (CDCl_3, 125 MHz) of 29'