Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Transition-Metal-Free Direct Nucleophilic Substitution of Carboranyllithium and 2-Halopyridines

Ju-You Lu, *ab Bo Zhao, b Yongmei Du, b Jianxin Yang a and Jian Lu *b

^a Laboratory of Green Catalysis and Reaction Engineering of Haikou, Hainan Provincial Fine Chemical

Engineering Research Center, School of Sciences, Hainan University, Haikou 570228, China. E-mail:

lujy@hainanu.edu.cn

^b State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute,

Xi'an, Shaanxi 710065, China. E-mail: lujian204@263.net.

Table of Contents

1. General Procedures	1
2. Experimental Section	1
3. References	7
4. NMR Spectra	8

1. General Procedures

All reactions were carried out under a nitrogen atmosphere using oven dried glassware and standard Schlenk techniques. All organic solvents were freshly dried and distilled over sodium. ¹H NMR spectra at 500 MHz, ¹³C NMR spectra at 125 MHz and ¹¹B NMR spectra at 160 MHz were obtained on a Bruker-AV500 spectrometer. ¹H NMR and ¹³C NMR were recorded using tetramethylsilane (TMS) in the solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm, CDCl₃ at 7.26 ppm. ¹³C NMR: CDCl₃ at 77.0 ppm). All ¹¹B NMR chemical shifts are referenced to external BF₃·OEt₂ (0.00 ppm) with a negative sign indicating an upfield shift. Mass spectra were recorded on a ThermoFisher Q Exactive GC spectrometer.

2. Experimental Section

2.1 Optimization of reaction conditions

Table S1. Optimization of reaction conditions for nucleophilic substitution of carboranyllithium^a

Entry	<i>n-</i> BuLi (x equiv.)	Solvent	Temperature (°C)	Yield (%) ^b
1	1	THF	70	32
2	2	THF	70	59
3	3	THF	70	86
4	4	THF	70	77
5	3	THF	60	82
6	3	THF	50	68
7	3	THF	40	41
8	3	THF	25	23
9	3	THF	80	85 ^c
10	3	THF	90	83 ^c
11	3	Et ₂ O	40	25
12	3	1,4-Dioxane	70	62
13	3	DME	70	71
14	3	DME	80	66
15	3	DME	90	63

^{*a*} Reaction condition: (1) **1** (0.25 mmol), *n*-BuLi (x equiv.), THF (1 mL), 0.5 h in a Schlenk tube under nitrogen atmosphere. (2) **2a** (0.3 mmol), Solvent (1 mL), 3 h in a Schlenk tube under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} Using THF in a sealed tube. THF = Tetrahydrofuran, Et₂O = Diethyl ether, DME = 1,2-Dimethoxyethane.

2.2 Study on the reactivity of electrophiles

$\begin{array}{c} \begin{array}{c} \begin{array}{c} (1) n - \text{BuLi} (3.0 \text{ equiv}), \text{ THF, } 0.5 \text{ h} \\ \end{array} \\ \begin{array}{c} (2) \text{ R-X} (1.2 \text{ equiv}) \\ \end{array} \\ \begin{array}{c} 1 (1.0 \text{ equiv}) \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{R} \\ \text{H} \end{array}$					
Entry	Substrates	Products	Yield (%) ^b		
1	n-BuCl	n-Bu H	76		
2	S I	S H	0		
3	Br	о н	0°		
4		N H	0		
5		N H	0		
6	N Br	N N N	0^d		

Table S2. Nucleophilic substitution of carboranyllithium^a

^{*a*} Reaction condition: (1) **1** (0.25 mmol), *n*-BuLi (3.0 equiv.), THF (1 mL), 0.5 h in a Schlenk tube under nitrogen atmosphere. (2) R-X (0.3 mmol), THF (1 mL), 3 h in a Schlenk tube under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} 55 °C instead of 70 °C. ^{*d*} 65 °C instead of 70 °C. THF = tetrahydrofuran. 2.3 General procedure for transition-metal-free direct nucleophilic substitution of carboranyllithium with 2-halopyridines. In a dry Schlenk flask, *n*-BuLi (1.6 M in *n*-hexane, 0.75 mmol, 0.47 mL) was added slowly to a THF solution (1 mL) of 1 (0.25 mmol, 36 mg) at 0 °C. The solution was kept at low temperature with stirring for 0.5 h, and allowed to reach room temperature. Subsequently, 2-halopyridines (0.3 mmol) were added under an inert nitrogen atmosphere, the mixture was heated at 70 °C under stirring in a closed flask. After the reaction was completed, a saturated solution of aqueous NH₄Cl was added and the mixture was extracted three times with diethyl ether. The organic phases were collected, and solvent evaporation under reduced pressure afforded the crude product, which was then purified by column chromatography to provide the product, by using silica gel as stationary phase and *n*-hexane as eluent.

3a: Yield 86%. Colorless crystals, mp 110-111 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, *J* = 4.2 Hz, 1H), 7.71 (t, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.31 (dd, *J* = 6.8, 5.0 Hz, 1H), 4.99 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 151.01, 148.73, 137.34, 124.29, 121.51, 75.26, 56.84.

¹¹B NMR (160 MHz, CDCl₃) δ -3.60 (t, *J* = 141.3 Hz, 2B), -8.44 (d, *J* = 150.7 Hz, 2B), -9.67 - -14.59 (m, 6B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.19 (s, 1B), -4.01 (s, 1B), -8.43 (s, 2B), -10.58 (s, 2B), -11.45 (s, 2B), -13.29 (s, 2B).

HRMS: *m*/*z* calcd for C₇H₁₅¹⁰B₂¹¹B₈N [M]⁺: 221.2208. Found: 221.2209.

The NMR data are consistent with the reported ones.[1-4]

3b: Yield 83%. Colorless crystals, mp 145-146 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.36 (dd, *J* = 4.5, 1.5 Hz, 1H), 7.75 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.28 (dd, *J* = 8.1, 4.5 Hz, 1H), 5.47 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 146.66, 145.49, 141.08, 130.54, 125.33, 74.54, 60.34.

¹¹B NMR (160 MHz, CDCl₃) δ -2.50 (t, *J* = 128.4 Hz, 2B), -6.53 - -15.85 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.20 (s, 1B), -2.85 (s, 1B), -8.56 (s, 2B), -9.89 (s, 2B), -11.60 (s, 2B), -13.47 (s, 2B).

HRMS: *m/z* calcd for C₇H₁₄¹⁰B₂¹¹B₈ClN [M]⁺: 255.1818. Found: 255.1817.

3c: Yield 66%. Colorless crystals, mp 94-95 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 5.3 Hz, 1H), 7.53 (d, J = 1.7 Hz, 1H), 7.33 (dd, J = 5.3, 1.8 Hz, 1H), 4.93 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 152.66, 149.64, 145.70, 124.90, 122.24, 74.36, 57.01.

¹¹B NMR (160 MHz, CDCl₃) δ -0.60 - -4.98 (m, 2B), -6.58 - -15.20 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.07 (s, 1B), -3.68 (s, 1B), -8.33 (s, 2B), -10.69 (s, 2B), -11.55 (s, 2B), -13.26 (s, 2B).

HRMS: m/z calcd for $C_7H_{14}{}^{10}B_2{}^{11}B_8CIN [M]^+$: 255.1818. Found: 255.1815.

3d: Yield 70%. Colorless liquids.

¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, *J* = 2.4 Hz, 1H), 7.68 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 4.89 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 149.40, 147.82, 137.24, 133.40, 122.51, 74.51, 57.09.

¹¹B NMR (160 MHz, CDCl₃) δ -3.52 (t, *J* = 141.7 Hz, 2B), -7.37 - -15.33 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.06 (s, 1B), -3.80 (s, 1B), -8.33 (s, 2B), -10.65 (s, 2B), -11.50 (s, 2B), -13.21 (s, 2B).

HRMS: m/z calcd for $C_7H_{14}{}^{10}B_2{}^{11}B_8CIN [M]^+$: 255.1818. Found: 255.1819.

The NMR data are consistent with the reported ones.^[1]

3e: Yield 80%. Colorless crystals, mp 129-130 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.47 (dd, *J* = 2.3, 0.6 Hz, 1H), 7.82 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.43 (dd, *J* = 8.5, 0.6 Hz, 1H), 4.89 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 150.02, 149.82, 140.11, 122.93, 122.01, 74.53, 57.01.

¹¹B NMR (160 MHz, CDCl₃) δ -3.42 (t, *J* = 136.0 Hz, 2B), -6.87 - -15.53 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.99 (s, 1B), -3.75 (s, 1B), -8.28 (s, 2B), -10.61 (s, 2B), -11.49 (s, 2B), -13.18 (s, 2B).

HRMS: *m/z* calcd for C₇H₁₄¹⁰B₂¹¹B₈BrN [M]⁺: 299.1313. Found: 299.1310.

3f: Yield 85%. Colorless crystals, mp 122-124 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 7.1 Hz, 1H), 7.50 (d, *J* = 6.1 Hz, 2H), 4.87 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 152.15, 141.21, 139.62, 129.14, 120.64, 73.99, 57.07. ¹¹B NMR (160 MHz, CDCl₃) δ -0.97 - -5.33 (m, 2B), -6.78 - -15.57 (m, 8B). ¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.04 (s, 1B), -3.64 (s, 1B), -8.26 (s, 2B), -10.67 (s, 2B), -11.47 (s, 2B), -13.21 (s, 2B).

HRMS: *m*/*z* calcd for C₇H₁₄¹⁰B₂¹¹B₈BrN [M]⁺: 299.1313. Found: 299.1314.

3g: Yield 67%. Colorless crystals, mp 125-126 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.41 (dd, J = 4.5, 1.6 Hz, 1H), 8.34 (dd, J = 8.0, 1.6 Hz, 1H), 6.95 (dd, J = 8.0, 4.5 Hz, 1H), 5.59 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 152.82, 148.17, 147.44, 124.87, 88.89, 76.75, 60.95.

¹¹B NMR (160 MHz, CDCl₃) δ -2.73 (t, J = 135.5 Hz, 2B), -7.09 - -15.91 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.36 (s, 1B), -3.12 (s, 1B), -8.48 (s, 2B), -9.85 (s, 2B), -11.52 (s, 2B), -13.46 (s, 2B).

HRMS: *m/z* calcd for C₇H₁₄¹⁰B₂¹¹B₈IN [M]⁺: 347.1174. Found: 347.1176.

3h: Yield 84%. Colorless crystals, mp 116-117 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 2.1 Hz, 1H), 8.01 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 4.88 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 154.97, 150.32, 145.78, 123.32, 94.38, 74.61, 56.86.

¹¹B NMR (160 MHz, CDCl₃) δ -3.43 (t, J = 134.1 Hz), -6.40 - -16.96 (m).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.07 (s, 1B), -3.84 (s, 1B), -8.35 (s, 2B), -10.69 (s, 2B), -11.58 (s, 2B), -13.26 (s, 2B).

HRMS: m/z calcd for $C_7H_{14}^{10}B_2^{11}B_8IN [M]^+$: 347.1174. Found: 347.1173.

3i: Yield 69%. Colorless crystals, mp 82-83 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 4.5 Hz, 1H), 7.51 – 7.43 (m, 1H), 7.37 (ddd, J = 8.3, 4.4, 3.6 Hz, 1H), 5.16 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 157.06 (d, J = 267.2 Hz), 144.57 (d, J = 5.4 Hz), 138.05 (d, J = 10.0

Hz), 126.26 (d, *J* = 4.2 Hz), 125.68 (d, *J* = 20.1 Hz), 71.53 (s), 58.17 (s).

¹¹B NMR (160 MHz, CDCl₃) δ -2.68 (d, J = 149.6 Hz, 2B), -6.84 - -16.64 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.66 (s, 2B), -8.52 (s, 2B), -10.26 (s, 2B), -11.43 (s, 2B), -13.39 (s, 2B).

¹⁹F NMR (377 MHz, CDCl₃) δ -125.99.

HRMS: *m/z* calcd for C₇H₁₄¹⁰B₂¹¹B₈FN [M]⁺: 239.2113. Found: 239.2112.

3j: Yield 78%. Colorless crystals, mp 115-117 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, *J* = 7.9 Hz, 1H), 7.73 (dd, *J* = 15.0, 7.9 Hz, 2H), 4.93 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 151.84 (s), 147.50 (dd, *J* = 71.8, 36.0 Hz), 139.20 (s), 124.37 (s), 121.02 (dd, *J* = 5.2, 2.6 Hz), 120.72 (q, *J* = 274.4 Hz), 73.94 (s), 56.84 (s).

¹¹B NMR (160 MHz, CDCl₃) δ -1.09 – -5.37 (m, 2B), -6.56 – -15.93 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.85 (s, 1B), -3.44 (s, 1B), -8.19 (s, 2B), -10.54 (s, 2B), -11.55 (s, 2B), -13.08 (s, 2B).

¹⁹F NMR (471 MHz, CDCl₃) δ -68.11.

HRMS: *m/z* calcd for C₈H₁₄¹⁰B₂¹¹B₈F₃N [M]⁺: 289.2082. Found: 289.2085.

3k: Yield 88%. Colorless crystals, mp 141-142 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 2.2 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 5.47 (s, 1H), 2.63 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 145.57, 144.99, 140.92, 133.66, 132.54, 75.94, 61.17, 20.92.

¹¹B NMR (160 MHz, CDCl₃) δ -0.23 - -4.72 (m), -6.45 - -15.58 (m).

 $^{11}B\{^{1}H\}$ NMR (160 MHz, CDCl₃) δ -2.53 (s, 1B), -3.00 (s, 1B), -8.48 (s, 2B), -9.84 (s, 2B), -12.14 (s, 2B), -13.32 (s, 2B).

HRMS: *m/z* calcd for C₈H₁₆¹⁰B₂¹¹B₈ClN [M]⁺: 269.1974. Found: 269.1971.

3l: Yield 60%. Colorless crystals, mp 134-135 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, *J* = 4.4, 1.4 Hz, 1H), 7.27 (qd, *J* = 8.4, 2.9 Hz, 2H), 5.30 (s, 1H), 3.86 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 153.86, 140.35, 138.48, 125.57, 120.39, 73.82, 58.95, 55.65.

¹¹B NMR (160 MHz, CDCl₃) δ -3.00 (d, *J* = 146.8 Hz, 2B), -6.92 - -16.99 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.91 (s, 2B), -9.04 (s, 2B), -10.09 (s, 2B), -11.08 (s, 2B), -13.68 (s, 2B).

HRMS: *m/z* calcd for C₈H₁₇¹⁰B₂¹¹B₈NO [M]⁺: 251.2313. Found: 251.2310.

3m: Yield 36%. Colorless crystals, mp 88-89 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 5.0 Hz, 1H), 7.33 (s, 1H), 7.11 (dd, J = 5.0, 0.7 Hz, 1H), 4.98 (s, 1H), 2.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.03, 149.03, 148.52, 125.38, 122.43, 75.50, 57.05, 21.24.

¹¹B NMR (160 MHz, CDCl₃) δ -3.71 (t, *J* = 139.8 Hz, 2B), -7.50 - -14.57 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.32 (s, 1B), -4.14 (s, 1B), -8.55 (s, 2B), -10.68 (s, 2B), -11.54 (s, 2B), -13.43 (s, 2B).

HRMS: *m/z* calcd for C₈H₁₇¹⁰B₂¹¹B₈N [M]⁺: 235.2364. Found: 235.2366.

3n: Yield 43%. Colorless crystals, mp 130-131 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, *J* = 1.4, 0.7 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 4.95 (s, 1H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 149.21, 148.50, 137.88, 134.43, 121.09, 75.47, 57.03, 18.19.

¹¹B NMR (160 MHz, CDCl₃) δ -2.13 - -5.24 (m, 2B), -6.55 - -15.36 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.20 (s, 1B), -4.17 (s, 1B), -8.47 (s, 2B), -10.54 (s, 2B), -11.47 (s, 2B), -13.31 (s, 2B).

HRMS: *m*/*z* calcd for C₈H₁₇¹⁰B₂¹¹B₈N [M]⁺: 235.2364. Found: 235.2362.

30: Yield 47%. Colorless crystals, mp 89-90 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (t, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.14 (d, *J* = 7.7 Hz, 1H), 5.04 (s, 1H), 2.49 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.00, 150.15, 137.36, 123.79, 118.40, 75.45, 56.71, 24.24.

¹¹B NMR (160 MHz, CDCl₃) δ -3.74 (t, *J* = 144.2 Hz, 2B), -7.25 - -15.22 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -3.33 (s, 1B), -4.19 (s, 1B), -8.54 (s, 2B), -10.67 (s, 2B), -11.49 (s, 2B), -13.45 (s, 2B).

HRMS: *m/z* calcd for C₈H₁₇¹⁰B₂¹¹B₈N [M]⁺: 235.2364. Found: 235.2365.

3p: Yield 57%. Colorless crystals, mp 122-124 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, *J* = 4.4, 1.0 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.18 (dd, *J* = 7.7, 4.6 Hz, 1H), 5.59 (s, 1H), 2.62 (s, 3H).

 ^{13}C NMR (126 MHz, CDCl₃) δ 147.23, 146.20, 141.76, 132.19, 124.17, 76.75, 61.05, 21.02.

¹¹B NMR (160 MHz, CDCl₃) δ -2.98 (dd, J = 140.1, 68.2 Hz, 2B), -7.49 - -19.39 (m, 8B).

¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -2.78 (s, 1B), -3.18 (s, 1B), -8.64 (s, 2B), -9.87 (s, 2B), -12.10 (s, 2B), -13.47 (s, 2B).

HRMS: m/z calcd for $C_8H_{17}^{10}B_2^{11}B_8N [M]^+$: 235.2364. Found: 235.2363.

The NMR data are consistent with the reported ones.^[1]

3. References

[1] J-Y. Lu, H. Wan, J. Zhang, Z. Wang, Y. Li, Y. Du, C. Li, Z. Liu, Z-T. Liu and J. Lu, *Chem. Eur. J.*, 2016, **22**, 17542–17546.

[2] M. E. El-Zaria, K. Keskar, A. R. Genady, J. A. Ioppolo, J. McNulty and J. F. Valliant, *Angew. Chem. Int. Ed.*, 2014, **53**, 5156–5160; *Angew. Chem.*, 2014, **126**, 5256–5260.

[3] F. Teixidor, A. Laromaine, R. Kivekäs, R. Sillanpää, C. Viñas, R. Vespalec and H. Horáková, *Dalton Trans.*, 2008, **3**, 345–354.

[4] R. Coult, M. A. Fox, W. R. Gill, P. L. Herbertson, J. A. H. MacBride and K. Wade, *J. Organomet. Chem.* 1993, **462(1-2)**, 19–29.

4. NMR Spectra

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

