Supporting Information

Palladium(II)-Catalyzed Regioselective Ortho-C-H Bromination/Iodination of Arylacetamides via in situ Generated Imidic Acid as Directing group: Mechanistic Exploration
Yogesh Jaiswal, Yogesh Kumar and Amit Kumar*
Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
*E-mail: amitkt@iitp.ac.in or amitktiitk@gmail.com

Contents

1. Procedure for intermolecular competition experiment between 1 b and 1 j S2
2. Procedure for intermolecular competition experiment between 1a and 5 S2
3. Procedure for Intermolecular competition experiment between 1a and $1 \mathrm{a}-\mathrm{d}_{5}$. S2-S3
4. Procedure for parallel experiment between 1 a and $1 \mathrm{a}-\mathrm{d}_{5}$ S3..S4
5. Procedure for intermolecular deuterium exchange without NBS in $\mathrm{D}_{2} \mathrm{O}$. S4
6. Procedure for intermolecular deuterium exchange with NBS in $\mathrm{D}_{2} \mathrm{O}$ S4-S5
7. Procedure for intermolecular deuterium exchange without NBS in $\mathrm{CF}_{3} \mathrm{COOD}$ S5-S6
8. Procedure for intermolecular deuterium exchange with NBS in $\mathrm{CF}_{3} \mathrm{COOD}$ S6
9. XRD data S7-S7
10. Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR experiment. S9-S10
11. DFT details S11-S16
12. References S17-S18
13. NMR data. S19-S54
14. Procedure for intermolecular competition experiment between $\mathbf{1 b}$ and $\mathbf{1 j}$. A suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%, 2.4 \mathrm{mg})$, NBS (1.2 equiv, 43 mg), TFA (10.0 equiv, $150.0 \mu \mathrm{~L}$), $\mathbf{1 b}(0.2$ $\mathrm{mmol}, 29.8 \mathrm{mg}, 1.0$ equiv $)$, and $\mathbf{1} \mathbf{j}(0.2 \mathrm{mmol}, 36 \mathrm{mg}, 1.0$ equiv) was stirred in DCE (2.0 mL) for 24 h at $50^{\circ} \mathrm{C}$. After cooling to room temperature, the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent. Compound $\mathbf{2 b}$ was isolated in 57% yield and $\mathbf{2} \mathbf{j}$ was formed in trace amount.
15. Procedure for intermolecular competition experiment between 1a and 5: To a oven dried sealed tube, phenylacetamide (1a) ($30 \mathrm{mg}, 0.20 \mathrm{mmol}$), N -benzyl phenylacetamide (5) (45 mg , $0.20 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{NBS}(43 \mathrm{mg}, 0.24 \mathrm{mmol})$, TFA (10 equiv, $150 \mu \mathrm{~L}$) and DCE (2.0 mL) was added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent. Compound 2a was isolated in 38% yield and $\mathbf{4 a}$ was formed in 28% amount.
16. Procedure for intermolecular competition experiment between 1 a and $\mathbf{1 a}_{\mathbf{1}} \mathrm{D}_{\mathbf{5}}$: To a oven dried sealed tube, following the general procedure, phenylacetamide (1a) ($27 \mathrm{mg}, 0.20 \mathrm{mmol}$), deuterated phenylacetamide (1a-D $\mathbf{D}_{\mathbf{5}}$) ($28 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.05 \mathrm{mmol})$,

NBS (43 mg, 0.24 mmol$)$, TFA (10 equiv, $150 \mu \mathrm{~L}$) and DCE (2.0 mL) was added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent. The ratio of $\mathbf{1 a}$ and $\mathbf{1 a} \mathbf{-} \mathbf{D}_{\mathbf{5}}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis, found to be $k_{H} / k_{D} \approx 1.0$.

4. Procedure for parallel experiment between $\mathbf{1 a}$ and $\mathbf{1 a}_{\mathbf{a}} \mathbf{D}_{\mathbf{5}}$: Following the general procedure, two parallel reaction for phenylacetamide (1a) ($27 \mathrm{mg}, 0.25 \mathrm{mmol}$) and deuterated phenylacetamide ($\mathbf{1 a -} \mathbf{D}_{\mathbf{5}}$) ($28 \mathrm{mg}, 0.25 \mathrm{mmol}$), were performed. The mixture was stirred at 50
${ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent. Product 2a was isolated in 18% yield and $\mathbf{2 a -} \mathbf{d}_{\mathbf{4}}$ was isolated in 14% yield.
5. Procedure for H / D exchange experiment without $N B S$ in $D_{2} O$: In a oven dried sealed tube equipped with stirrer bar, was sequentially added phenylacetamide (1a) ($0.25 \mathrm{mmol}, 34.0 \mathrm{mg}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%, 2.8 \mathrm{mg}), \mathrm{D}_{2} \mathrm{O}(10.0$ equiv, $50.0 \mu \mathrm{~L})$ and TFA (10.0 equiv, $\left.190.0 \mu \mathrm{~L}\right)$. Then 2.0 mL of DCE was added in the reaction mixture. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 24 h and the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent to give starting material in 90% yield without any deuterium exchange.
6. Procedure for \mathbf{H} / D exchange experiment with NBS in $\mathrm{D}_{2} \mathrm{O}$: In a oven dried sealed tube equipped with stirrer bar, was sequentially added phenylacetamide (1a) ($0.25 \mathrm{mmol}, 34 \mathrm{mg}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%, 2.8 \mathrm{mg}), \mathrm{NBS}(0.3 \mathrm{mmol}, 53.4 \mathrm{mg}), \mathrm{D}_{2} \mathrm{O}(10.0$ equiv, $50.0 \mu \mathrm{~L})$ and TFA (10.0 equiv, $190 \mu \mathrm{~L}$). Then 2.0 mL of DCE was added in the reaction mixture. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h and the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium
bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent to give product 2 a in 30% yield without any deuterium exchange along with 55% of starting material 1a.
7. Procedure for \mathbf{H} / D exchange experiment without NBS in CF_{3} COOD: In a oven dried sealed tube equipped with stirrer bar, was sequentially added phenylacetamide (1a) (0.25 mmol , $34 \mathrm{mg}), \mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%, 2.8 \mathrm{mg}), \mathrm{D}_{2} \mathrm{O}(10.0$ equiv, $50.0 \mu \mathrm{~L})$ and $\mathrm{CF}_{3} \mathrm{COOD}$ (10.0 equiv, $190.0 \mu \mathrm{~L}$). Then 2.0 mL of DCE was added in the reaction mixture. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h and the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent to give starting material in 90% yield. Deutirium incorporation was determined by ${ }^{1} \mathrm{H}$ NMR.

8. Procedure for H/D exchange experiment with NBS in CF $_{3}$ COOD: In a oven dried sealed tube equipped with stirrer bar, was sequentially added phenylacetamide (1a) ($0.25 \mathrm{mmol}, 34$ $\mathrm{mg}), \operatorname{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%, 2.8 \mathrm{mg})$, NBS $(0.3 \mathrm{mmol}, 53.4 \mathrm{mg})$ and DCE $(2.0 \mathrm{~mL})$. Then $\mathrm{CF}_{3} \mathrm{COOD}(10.0$ equiv, $190.0 \mu \mathrm{~L}$) was added in the reaction mixture. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 24 h and the solvent was evaporated in vacuum. The reaction mixture was diluted with ethyl acetate, followed by neutralization with an aqueous solution of sodium bicarbonate. After extraction with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The combined organic layer was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate/hexanes as eluent to give product $\mathbf{2 a}$ in 55% yield without any deuterium exchange.

9. XRD data

(a) XRD data of 2 e (CCDC No. 1909226)

Chemical formula	$\mathrm{C}_{88} \mathrm{BrNO}_{2}$	
Formula weight	$258.07 \mathrm{~g} / \mathrm{mol}$	
Temperature	$298(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.300 \times 0.300 \times 0.300 \mathrm{~mm}$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c}$	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=11.507(4) \AA$	$\beta=100.591(9)^{\circ}$
	$\mathrm{b}=4.8430(18) \AA$	$\gamma=90^{\circ}$
	$\mathrm{c}=17.180(6) \AA$	
Volume	$941.1(6) \AA^{3}$	
Z	4	
Density (calculated)	$1.821 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$4.346 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	512	

Theta range for data collection 2.73 to 24.84°
Index ranges
$-13<=\mathrm{h}<=13,-5<=\mathrm{k}<=5,-20<=1<=20$
Reflections collected
9914
Independent reflections
Refinement method
$1617[\mathrm{R}(\mathrm{int})=0.0923]$

Refinement program
Function minimized
Full-matrix least-squares on F^{2}
SHELXL-2014/ (Sheldrick, 2014)

Data / restraints / parameters
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$

Goodness-of-fit on F2
1617 / 0 / 127
1.022

Final R indices	1029 data; $\mathrm{I}>2 \sigma(\mathrm{I})$ all data	$\mathrm{R} 1=0.0485, \mathrm{wR} 2=0.0749$ $\mathrm{R} 1=0.1020, \mathrm{wR} 2=0.0894$
Weighting scheme	where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	
Largest diff. peak and hole	0.395 and $-0.374 \mathrm{e}^{\AA-3}$	
R.M.S. deviation from mean	$0.089 \mathrm{e}^{-3}{ }^{-3}$	

(b) XRD data of 3m (CCDC No. 1909424)

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{INO}$
Formula weight	$311.11 \mathrm{~g} / \mathrm{mol}$
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal size	$0.200 \times 0.200 \times 0.300 \mathrm{~mm}$
Crystal system	monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$\mathrm{a}=14.336(7) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=4.975(2) \AA \quad \AA \quad \beta=106.346(13)^{\circ}$
	$\mathrm{c}=16.193(8) \AA \AA^{\circ} \quad \gamma=90^{\circ}$
Volume	1108.2(9) \AA^{3}
Z	4
Density (calculated)	$1.864 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$2.861 \mathrm{~mm}^{-1}$
F(000)	600
Theta range for data collection	2.96 to 24.55°
Index ranges	$-16<=\mathrm{h}<=16,-5<=\mathrm{k}<=5,-18<=1<=18$
Reflections collected	15699
Independent reflections	1844 [R(int) $=0.0857]$

Coverage of independent reflections	99.2\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.5980 and 0.4810
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick 2008)
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2014 (Sheldrick 2014)
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$
Data / restraints / parameters	1844 / 0 / 136
Goodness-of-fit on F2	1.021
Final R indices	1121 data; $\quad \mathrm{R} 1=0.0533, \mathrm{wR} 2=0.1006$ $\mathrm{I}>2 \sigma(\mathrm{I})$
	all data $\quad \mathrm{R} 1=0.1149, \mathrm{wR} 2=0.1204$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0499 \mathrm{P})^{2}+3.3221 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.711 and $-0.421 \mathrm{e}^{\circ}{ }^{-3}$
R.M.S. deviation from mean	$0.109 \mathrm{e}^{-3}{ }^{-3}$

Alert level A

PLAT213_ALERT_2_A Atom C12 has ADP max/min Ratio 12.2 prolat
Explanation: The high variation in ADP max/min ratio of C12 caused by large anisotropic thermal displacements.

10. Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR experiment.

To gain insight into to reaction mechanism, the reaction of phenylacetamide (0.25 mmol) was performed, and ${ }^{1} \mathrm{H}$ NMR was recorded every 30 minutes after sequential addition of catalyst and reagents. Initially, phenylacetamide was stirred with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in CDCl_{3} for 30 min at $50^{\circ} \mathrm{C}$. No changes in NMR spectra was observed [Fig. 2(b)]. Then, we added 10.0 equiv of TFA to the reaction mixture and again stirred for 30 min at $50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum shows the
formation of corresponding imidic acid [Fig. 2(c)]. Further, we added 1.2 equiv of NBS in reaction mixture and reaction was further stirred for 30 min . at $50{ }^{\circ} \mathrm{C}$. Then, ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture was recorded and spectrum revealed that the formation of the desired product started within stipulated time [Fig. 2(d)].

Figure 2. (a) ${ }^{1} \mathrm{H}$ NMR of pure 1a. (b) ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 a}$ with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$. (c) ${ }^{1} \mathrm{H}$ NMR of 1a with $\mathrm{Pd}(\mathrm{OAc})_{2}$ and TFA (10.0 equiv). (d) ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 a}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, TFA (10.0 equiv) and NBS (1.2 equiv).

11. DFT details

Phenylacetamide tautomerizes to form imidic acid in the presence of trifluoroacetic acid. The imidic acid has three possible coordinating sites: (a) imidic nitrogen (=NH) (b) oxygen (c) nitrogen atom of amide to form a six-membered palladacycle intermediate. In reaction mixture, palladium trifluoroacetate may coordinate to these three possible sites resulting in chemical species $\mathbf{A}, \mathbf{A}^{\prime}$ and $\mathbf{A}^{\prime \prime}$ respectively. We have performed DFT calculation to find the relative free energy of $\mathbf{A}, \mathbf{A}^{\prime}$ and $\mathbf{A}^{\prime \prime}$ (Figure 1). DFT calculation revealed that formation of \mathbf{A} is more exothermic than \mathbf{A}^{\wedge} and exothermicity equals to $\Delta \mathrm{H}=-3.78 \mathrm{kcal} / \mathrm{mole}$. In addition, the formation of A^{\prime} is more exothermic than $\mathrm{A}^{\prime \prime}$ and $\Delta \mathrm{H}=-3.84 \mathrm{kcal} / \mathrm{mole}$. The relative free energy change between A and $\mathrm{A}^{`}$ is $\Delta \mathrm{G}=3.6 \mathrm{kcal} / \mathrm{mol}$, for $\mathrm{A}^{`}$ and $\mathrm{A}^{\prime \prime} \Delta \mathrm{G}$ is $5.9 \mathrm{kcal} / \mathrm{mole}$. These results conclude that formation of species A is more favored than A, which prefer to form over $A^{\prime \prime}$ in the reaction mixture.

Figure S 1 . Coordination mode primary amide with $\mathrm{Pd}(\mathrm{TFA})_{2}$ in reaction mixture.

Computational Details

All the calculations were carried out with Gaussian 16^{1}. All geometry optimizations were performed using B3LYP ${ }^{2}$ level of theory of DFT method in gas phase. The LANL2DZ ${ }^{3}$ basis set with effective core potential (ECP) was used for Pd, and the 6-31G (d) ${ }^{4}$ basis set was used for all H, C, N, F, and O atoms. Frequency analysis was conducted at the same level of theory to verify that the stationary points are minima. Solvent effects were computed using the same DFT method and basis sets in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ with the integral equation formalism for the polarizable continuum model (IEF-PCM) ${ }^{5}$ at 323.15 K . Frequency analysis were carried out at the same level to evaluate the zero-point vibrational energy and thermal corrections at 323.15 K . The relative Gibbs free energies are given in $\mathrm{kcal} / \mathrm{mol}$. Computed structures are visualized using GaussView0.5. ${ }^{6}$

Cartesian coordinates and Energy (in hartrees unit) of Complex A:

Symbol	X	Y	Z
C	-3.2791270	2.2049650	0.8524900
C	-2.0779420	2.7975330	0.4381090
C	-2.0285290	3.4252390	-0.8152130
C	-3.1564470	3.4594620	-1.6373640
C	-4.3492330	2.8678820	-1.2142190
C	-4.4085590	2.2404640	0.0324430
H	-3.3320050	1.7205930	1.8246550
H	-1.1051790	3.8961350	-1.1443410
H	-3.1044190	3.9529530	-2.6037730
H	-5.2284250	2.8977770	-1.8516430
H	-5.3336500	1.7807820	0.3686440
C	0.1036620	1.6125720	1.1215790

C	-0.8576390	2.7696520	1.3305920
H	-0.2602930	3.6816320	1.2107810
H	-1.1435160	2.7328590	2.3887310
C	3.4980090	0.0829960	0.1763680
O	3.3241570	0.4093050	1.3555130
O	2.6471610	-0.3408740	-0.6772160
C	-1.9944870	-1.6939390	-0.2947820
O	-0.9023750	-1.9982680	0.3276390
C	4.9246090	0.1811370	-0.4227670
O	-2.2043150	-0.7885770	-1.0912060
C	-3.1420460	-2.6604850	0.1013690
Pd	0.8153680	-1.0466340	-0.1211160
F	-2.8028040	-3.9394740	-0.1565150
F	-3.4089790	-2.5619580	1.4197140
F	-4.2658370	-2.3839850	-0.5726950
F	4.9331360	1.0271000	-1.4702680
F	5.8081180	0.6220700	0.4803640
F	5.3336500	-1.0260840	-0.8583740
O	1.1079890	1.6316990	1.9604210
N	-0.0688330	0.7188710	0.2011490
H	-0.9233790	0.7880910	-0.3525200
	1.8556390	0.9920650	1.7299200
H			

Absolute Free Energy: -1619.274784 Hartree
Absolute Enthalpy: -1619.175028 Hartree
Cartesian coordinates and Energy (in hartrees unit) of Complex A'

Symbol	1 X	Y	Z
C	1.1764720	3.9217080	-0.2554290
C	-0.0246230	3.1975970	-0.2067150
C	-1.2395410	3.8984530	-0.2538600
C	-1.2537140	5.2914860	-0.3483590
C	-0.0518070	6.0024860	-0.3965380
C	1.1636260	5.3147890	-0.3498540
H	2.1239980	3.3889180	-0.2284660
H	-2.1765320	3.3474080	-0.2258150
H	-2.2022410	5.8196130	-0.3896800
H	-0.0623250	7.0861400	-0.4733870
H	2.1017630	5.8610690	-0.3922690
C	-0.0043820	1.1212020	1.3012850
O	0.0025800	-0.1239690	1.5391340
N	-0.0060160	1.9510220	2.3382010
H	-0.0016530	1.5855070	3.2825710
H	-0.0120630	2.9527770	2.1972560
C	-0.0103930	1.6887710	-0.1020750
H	-0.8830170	1.2435680	-0.5979380
H	0.8697320	1.2596430	-0.5987840
C	2.7917040	-1.0733840	-0.4677900
O	2.5065120	-0.1542430	-1.2225020
O	2.0180520	-1.8235600	0.2452300
C	-2.7743580	-1.1093940	-0.4681270
O	-2.5012030	-0.1864200	-1.2224770

C	4.2783200	-1.4722020	-0.2617070
O	-1.9906570	-1.8510610	0.2427380
C	-4.2558910	-1.5256240	-0.2599990
Pd	0.0125890	-1.6665230	0.1552270
F	-4.6146580	-1.3792170	1.0320040
F	-5.0806920	-0.7784060	-1.0064340
F	-4.4435600	-2.8179840	-0.5960510
F	4.4797010	-2.7645560	-0.5894190
F	5.0925650	-0.7208420	-1.0154510
F	4.6389320	-1.3126670	1.0283170

Absolute Free Energy: -1619.269018 Hartree
Absolute Enthalpy: -1619.169002 Hartree
Cartesian coordinates and Energy (in hartrees unit) of Complex $A^{\prime \prime}$

Symbol X		Y	Z
C	3.9827900	-0.3679440	0.3491840
C	3.2108470	-1.5018270	0.6308640
C	3.7764050	-2.7745080	0.4653580
C	5.0942200	-2.9098960	0.0281790
C	5.8619540	-1.7746990	-0.2483050
C	5.3037610	-0.5055120	-0.0857880
H	3.5565390	0.6233680	0.4716220
H	3.1820590	-3.6587220	0.6800090
H	5.5218580	-3.9011950	-0.0937650
H	6.8889600	-1.8800950	-0.5865710
H	5.8941410	0.3817460	-0.2968380

C	0.8040740	-1.9843250	0.1368350
C	1.7726310	-1.3617200	1.1236410
H	1.6383090	-1.8952030	2.0696140
H	1.5294290	-0.3092840	1.2893700
C	-3.7786960	-1.4449830	-0.4336950
O	-4.6276820	-2.2602320	-0.7416690
O	-2.5174400	-1.5007210	-0.7387600
C	0.8606320	2.0198530	-0.4318710
O	-0.2238450	1.6889510	0.1737970
C	-4.2272870	-0.2494530	0.4565690
O	1.4974300	1.3984000	-1.2830670
C	1.4597860	3.3556010	0.0790810
Pd	-1.3192570	0.0526720	-0.2933840
F	2.0091360	4.0450660	-0.9306190
F	0.5573940	4.1380630	0.6856260
F	2.4366360	3.0731310	0.9724980
F	-5.4709520	0.1315310	0.2033600
F	-4.1102910	-0.5474370	1.7552000
F	-3.4213650	0.8764790	0.2459130
O	0.4549700	-3.1405760	0.1418110
N	0.3065800	-1.1005670	-0.9072860
H	0.9697970	-0.3650540	-1.2185010
H	-0.0405120	-1.6561010	-1.6933120

Absolute Free Energy: - 1619.259533 Hartree
Absolute Enthalpy: -1619.162867 Hartree

12. References

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, A. Montgomery, J. Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. ;Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
2. a) C. Lee, W. Yang and R. G. Parr, Matter Mater. Phys., 1988, 37, 785; b) A. D. Becke, J. Chem. Phys., 1993, 98, 1372.; c) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
3. P. J. Hay and W. R. J. Wadt, J. Chem. Phys., 1985, 82, 270.
4. a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 1971, 54, 724.; b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213.
5. a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys. 1997, 107, 3032.; b) M. Cossi, V. Barone, R. Cammi and J. Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.; c) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem. 1998, 19, 404.
6. R. Dennington, T. Keith and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.

13. NMR spectra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of 2aa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 b b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2 h}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\{\mathrm{H}\}$ and ${ }^{19}$ Fspectra of $\mathbf{2 i}$

(005
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\{\mathrm{H}\}$ and ${ }^{19}$ Fspectra of $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of 3aa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3} \mathbf{b b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 d}$
(

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 g}$
(

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 h}$

${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}\{\mathrm{H}\},{ }^{19} \mathrm{~F}$ and spectra of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{4 a}$
(205

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ spectra of $\mathbf{5 a}$

