Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Visible-Light Induced Decarboxylative Alkylation of

Quinoxalin-2(1*H*)-ones at C3-position

Wenxuan Xue,^a Yingpeng Su,^a Ke-Hu Wang,^a Rong Zhang,^a Yawei Feng,^a Lindan Cao,^a Danfeng Huang,^a and Yulai Hu^{a,b}*

^aCollege of Chemistry and Chemical Engineering, Northwest Normal University, 967
Anning East Road, Lanzhou 730070, P. R. China
^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
*E-mail: huyl@nwnu.edu.cn.

Table of Contents

1. Control experiments.	2
2. Gram-scale Reaction	4
3. Cyclic Voltammetry Experiment	4
4. Emission quenching experiment	6
5. NMR copies of compounds 3	7
6. NMR copies of compounds 5	31
7. NMR copies of compound 6 .	45
8. NMR copies of compounds 7	46

1. Control experiments.

1.1. Reaction of 1a with $PhI(OAc)_2$, $Ru(bpy)_3Cl_2 6H_2O$ in DMSO-d6 under visible-light.

In a dried Schlenk tube, 1-methylquinoxalin-2(1*H*)-one (0.2 mmol), PhI(OAc)₂ (2.5 equiv) and Ru(bpy)₃Cl₂ $6H_2O$ (2.0 mg, 0.01 equiv) were mixed in DMSO- d_6 (2.0 mL) at room temperature. The tube was placed at a distance (app. 5 cm) from 24 W white LED, and the solution was stirred under visible-light irradiation. After the reaction was completed (monitored by TLC), the reaction mixture was quenched by saturated aqueous Na₂CO₃ solution (5 mL), and then the mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic phase was dried over anhydrous MgSO₄ and evaporated under vacuum. The crude product was purified by column chromatography over silica gel (230–400 mesh) using EtOAc/petroleum ether as eluent to afford the 3-methylquinoxalin-2(1*H*)-ones without deuterated product after detecting by ¹H NMR.

1.2. Reaction of TEMPO with $PhI(OAc)_2$, $Ru(bpy)_3Cl_2 6H_2O$ and 1a under visible-light.

HRMS (ESI): calcd for C₁₀H₂₂NO [M + H]⁺ 172.1701; found 172.1696.

In a dried Schlenk tube, 1-methylquinoxalin-2(1H)-one (0.2 mmol), TEMPO (2.0 equiv), PhI(OAc)₂ (2.5 equiv) and Ru(bpy)₃Cl₂ 6H₂O (2.0 mg, 0.01 equiv) were mixed in DMSO (2.0 mL) at room temperature. The tube was placed at a distance (app. 5 cm) from 24 W white LED, and the solution was stirred under visible-light irradiation. The mixture was stirred at r.t. for 10 h. TLC shows that the product **3a** was not formed and TEMPO-CH₃ adduct **9** was detected by HRMS.

2. Gram-scale Reaction

In a dried round-bottomed flask, quinoxalin-2(1*H*)-ones (1.12g, 7.0 mmol), PhI(OAc)₂ (5.635g, 17.5 mmol) and Ru(bpy)₃Cl₂ $6H_2O$ (52 mg, 1.0 mol%) were mixed in DMSO (70.0 mL) at room temperature. The flask was placed at a distance (app. 5 cm) from 24 W white LED, and the solution was stirred under visible-light irradiation. After the reaction was completed (monitored by TLC), the reaction mixture was quenched by saturated aqueous Na₂CO₃ solution (50 mL), and then the mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic phase was dried over anhydrous MgSO₄ and evaporated under vacuum. The crude product was purified by column chromatography over silica gel (230–400 mesh) using EtOAc/petroleum ether as eluent to afford the desired products **3a** (0.96g, 79% yield).

3. Cyclic Voltammetry Experiment

Furthermore, we probed the mechanism of photochemical oxidative by means of cyclic voltammetric experiment: individual PIDA, **1a**, **3a**. The measurements were executed at room temperature on a PGSTAT128N Autolab workstation (Netherlands) in a three-electrode system. The reference electrode was an Ag/AgCl electrode (saturated KCl solution). A carbon rod was employed as the counter electrode for measurement. A modified glassy-carbon electrode with a diameter of 5 mm was used as the working electrode. Briefly, 2.0 mg of determinand was firstly dispersed in Nafion/ethanol (0.4 mL, 0.25% Nafion) by sonication for 1 h to achieve a well-dispersed ink. Then, 8 μ L of the uniform suspension was pipetted onto the glassy-carbon electrode and dried in open air, which makes the determinand loading is 0.2 mg cm⁻² for all samples.

The potentials vs Ag/AgCl were converted to the reversible hydrogen electrode (RHE) using the Nernst equation:

$$E(vs RHE) = E(vs AgCl/Ag) + E^{0}_{AgCl/Ag} + 0.0591*pH$$
(1)
(where $E^{0}_{AgCl/Ag}$ is 0.199 V at 25 °C)

The potentials vs SCE were converted to the reversible hydrogen electrode (RHE) using the Nernst equation:

$$E(vs RHE) = E(vs SCE) + E_{SCE}^{0} + 0.0591*pH$$
 (2)
(where E_{SCE}^{0} is 0.244 V at 25 °C)

In combination with the equation 1 and 2, the redox potentials of PIDA, **1a** and **3a** can be calculated as $E_{PIDA}(vs \ SCE) = 1.475 \ V$, $E_{1a}(vs \ SCE) = 1.655 \ V$, $E_{3a}(vs \ SCE) = 1.705 \ V$. As the redox potentials of $Ru(bpy)_3Cl_2 \cdot 6H_2O$ are well known in literature $(E_{1/2} (Ru^{III}/Ru^{*II}) = -0.81 V \ vs. \ SCE$, $E_{1/2} (Ru^{III}/Ru^{II}) = +1.29 V \ vs. \ SCE$), in combination with the redox potentials of PIDA, **1a** and **3a**, it could be support the SET events in the proposed mechanism.

4. Emission quenching experiment

Emission intensities were recorded using a HORIBA Jobin Yvon Fluorolog3 Spectrofluorimeter. Initially, emission spectra of 10 μ M Ru(bpy)₃Cl₂•6H₂O in DMSO was collected. Then, appropriate amount of quencher PIDA was added with increasing concentration and subsequent emission spectrum were recorded.

5. NMR copies of compounds 3.

NMR copies of compound **3b**:

NMR copies of compound **3d**:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

NMR copies of compound 3s:

-132.16 -132.16 -132.13 -132.21 -132.22 -132.22 -132.22 -132.25 -132.55 -132.25 -132.55 -132.2

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

6. NMR copies of compounds 5.

NMR copies of compound 5a:

NMR copies of compound **5b**:

7.283 7.528 7.528 7.515 7.502 7.344 7.330 7.330 7.338 7.338 7.285

 13 C NMR 150 MHz, CDC $_{
m b}$

NMR copies of compound **5c**:

NMR copies of compound **5e**:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

7. NMR copies of compound 6.

NMR copies of compound **6**:

8. NMR copies of compounds 7.

NMR copies of compound **7b**:

882 101-111-112 101-111-12 101-111-12 101-111-12 101-111-12 101-111-12 101-111-12 10-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-1

