Supporting Information

Iodine Catalysed Transfer Hydrogenation of Carbon-Carbon

 σ -Bond with Water

Wu Yang, Ching Tat To and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China

Email: <u>ksc@cuhk.edu.hk</u>

Table of Contents

Computation and Isolobal Analogy	p. S2
Experimental Section	p. S4
UV-Vis Spectroscopic Studies	p. S31
NMR Spectra	p. S39
MS Spectra	p. S53
References	p. S58

Computation and Isolobal Analogy

Figure S1 illustrates the computed SOMO of iodine radical and $Rh^{II}(ttp)$ (ttp = 5,10,15,20-tetra-*p*-tolylporphyrinato dianion) metalloradical using Hartree Fock method with the LanL2DZ basis set in the gaseous state.

Figure S1. Computed SOMO for Iodine Radical (Left) and Rh^{II}(ttp) Metalloradical (Right). Hydrogen Atoms are Omitted for Clarity.

The iodine radical may exhibit similar reactivity with the established reactivity of the isolobal d⁷ Rh^{II}(ttp) metalloradical, e.g. bi-metalloradical carbon-carbon bond activation (Scheme S1a) and bi-molecular C-H reductive elimination (Scheme S1b).¹ The BDEs of iodine and Rh(ttp) species are shown in Table S1 and a similar trend is found.

(a) carbon-carbon bond activation

(b) C-H reductive elimination

Rh^{III}(ttp)–Bn + Rh^{III}(ttp)–H → (ttp)Rh^{II}-Rh^{II}(ttp)] + Bn-H I–Bn + I–H → I-I + Bn-H

Scheme S1. Similar Reactivity Patterns between Iodine Radical and Rhodium(II) Metalloporphyrin Radical Species.

Table S1	RDF of L	X Ronde	and R	$h(ttn)_X$	Ronde ²
	DDL 01 I-	A Donus	and r	m(up)-A	Donus.

bond	BDE (kcal/mol)			
bond	$\mathbf{X} = \mathbf{I}$	$X = Rh^{III}(ttp)$		
Х–Н	71.3	60		
Х-Ме	57.1	54.3		
Х–ОН	51.0	38 ³		
X–Bn	44.9	37.1		
Х–Х	36.4	12		

Experimental Section

Unless otherwise specified, all reagents were purchased from commercial suppliers and directly used without further purification. Benzene- d_6 was distilled over sodium under nitrogen. Hexane for chromatography was distilled from anhydrous calcium chloride. Silica gel (Merck, 70–230 and 230–400 mesh) was used for column chromatography in air. Thin-layer chromatography (TLC) was performed on pre-coated silica gel 60 F254 plates. For the reaction conducted in a sealed NMR tube, the mixture was degassed by three freeze (77 K)–pump (0.005 mmHg)–thaw cycles, and then flame-sealed under vacuum, heated in oven in dark and wrapped with aluminum foil to protect from exposure to room light before ¹H and ¹³C NMR measurements. The typical [PCP] employed in sealed NMR tube reaction is 8.9 mM unless otherwise specified. The NMR yields were with benzene residue as the internal standard. Benzene- d_6 stock solutions of [2.2]paracyclophane (10 mM and iodine were prepared separately and transferred to the reaction vessel using gas-tight syringe.

¹H NMR spectra were recorded on a Bruker AV400 (400 MHz). Chemical shifts are reported with reference to the residual solvent protons in C_6D_6 (δ 7.15 ppm) or in CDCl₃ (δ 7.26 ppm) as the internal standard. Coupling constants (*J*) are reported in hertz (Hz). ¹³C{¹H} NMR spectra were recorded on a Bruker AV400 (100 MHz) or Bruker AV700 (175 MHz) spectrometer and referenced to CDCl₃ (δ 77.1 ppm) or C₆D₆ (δ 128.1 ppm). High-resolution mass spectrometry (HRMS) was performed on a Bruker SolariX 9.4 Tesla FTICR MS / Thermofinnigan MAT 95 XL instrument in electrospray ionization (ESI) mode using MeOH/CH₂Cl₂ (1/1) as the solvent.

Preparation of Stock Solutions

Stock Solution of PCP. PCP (10.5 mg, 0.050 mmol) was dissolved in $5.0 \text{ mL } C_6D_6$ to give a 10.0 mM PCP solution.

Stock Solution of Iodine. I_2 (10.0 mg, 0.039 mmol) was dissolved in 2.0 mL C₆D₆ to give a 19.7 mM I_2 solution.

Catalyst Loading Effect

The Sealed NMR Tube Reaction between PCP and Water with 10 mol% of I₂. H₂O (7.5 μ L, 0.42 mmol), iodine stock solution (20 μ L, 0.0004 mmol), PCP stock solution (400 μ L, 0.0040 mmol) and 40 μ L of C₆D₆ were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 140 h, PCP was consumed to give **1** and **2** in 62%, 34% yields, respectively.

The Sealed NMR Tube Reaction between PCP and Water with 25 mol% of I₂. H₂O (7.5 μ L, 0.42 mmol), iodine stock solution (50 μ L, 0.0010 mmol) and PCP stock solution (400 μ L, 0.0040 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 94 h, PCP was consumed to give **1** and **2** in 60%, 38% yields, respectively (Table S2, eq S1, Figure S2). The color of the reaction mixture turned from the characteristic reddish color of I₂ to colorless, and finally back to reddish (Figure S3).

	<u>H</u>	I ₂ (25 mo ₂ O (100 e C ₆ D ₆ , da 200 ^o C, 9	ark, 04 h 3	+ + + + + + + + + + + + + + + + + + +	H+	1	.H H + (E)-2	H
-				NMR yield / %				
	time / h	PCP	di-iodo intermediate 3	mono-iodo intermediate 4	1	2	total organic	
-	0	100	0	0	0	0	100	
	1	65	31	0	0	0	96	
	7	65	31	0	0	0	97	
	23	46	21	18	8	3	97	
	49	20	15	26	26	8	96	
	69	1	1	8	56	31	97	
	94	0	0	0	60	38	98	

Table S2. Reaction Time Profile of I₂ (25 mol%) Catalyzed Transfer Hydrogenation of PCP.

Figure S2. Reaction Time Profile of I₂ (25 mol%) Catalyzed Transfer Hydrogenation of PCP.

Figure S1. Color of reaction mixture at specific time interval.

The Sealed NMR Tube Reaction between PCP and Water with with 50 mol% of I₂. Iodine (4.7 mg, 0.019 mmol) stock solution in 0.5 mL C₆D₆ was prepared. H₂O (7.5 μ L, 0.42 mmol), iodine stock solution (50 μ L, 0.0019 mmol) and PCP stock solution (400 μ L, 0.0040 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 180 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 72 h, PCP was consumed to give **1** and **2** in 48%, 40% yields, respectively.

Table S3. Catalyst Loading Effect of PCP Hydrogenation

^bQuantitative recovery of PCP. ^cTrace amount formation of CH₃-*p*-C₆H₄-CH₂CH₂-*p*-C₆H₄-CHO.

Catalyst Effect

The Sealed NMR Tube Reaction between PCP and Water with 50 mol% of HI. HI (14.5 μ L 57 wt% HI (aq)) stock solution in 405 μ L H₂O was prepared. HI stock solution (7.5 μ L, 0.0020 mmol), PCP stock solution (400 μ L, 0.0040 mmol) and C₆D₆ (50 μ L) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 64 h, PCP was consumed to give **1** and **2** in 56%, 39% yields, respectively.

Independent Synthesis of the Di-iodo Intermediate 3

Scheme S2. Independent Synthesis of the Di-iodo Intermediate **3**.

Dimethyl 4,4'-(Ethyne-1,2-diyl)dibenzoate

A 100 mL 2-necked round-bottomed flask with a magnetic stirrer was charged with methyl 4-iodobenzoate (202.3 mg, 0.77 mmol), PPh₃ (19.9 mg, 0.076 mmol), CuI (14.5 mg, 0.076 mmol), Pd(OAc)₂ (8.5 mg, 0.038 mmol), NEt₃ (320 µL, 2.30 mmmol) and wet CH₃CN (30 mL). The mixture was degassed by pump (low vacuum) and refilled with N2 three times. Then CaC2 (80 wt%, 194.6 mg, 2.43 mmol) was added under N₂. The mixture was stirred at r.t. under N₂ for 10 h until the complete consumption of methyl 4-iodobenzoate monitored by TLC. The color changed to dark black at the end of the reaction. The reaction mixture was then filtered through a plug of silica gel and washed with DCM/EtOAc (v:v = 1:1). The filtrate was evaporated to dryness further purified column chromatography give dimethyl and by to 4,4'-(ethyne-1,2-diyl)dibenzoate (106.6 mg, 0.36 mmol, 94%) as a yellow solid.⁴

Dimethyl 4,4'-(Ethane-1,2-diyl)dibenzoate

To a solution of dimethyl 4,4'-(ethyne-1,2-diyl)dibenzoate (30.0 mg, 0.102 mmol) in THF (6 mL)/acetone (v:v = 3:1) was added Raney nickel (~4 mg, 0.068 mmol) catalyst (activated, slurry in water). The reaction vessel was thrice evacuated and filled with H_2 gas (balloon). The mixture stirred for 12 h until complete consumption of dimethyl was at r.t. the 4,4'-(ethyne-1,2-diyl)dibenzoate monitored by TLC and GC-MS. Then the reaction mixture was filtered through a plug of silica gel (230-400 mesh). Concentration of the filtrate afforded dimethyl 4,4'-(ethane-1,2-diyl)dibenzoate (30.4 mg, 0.102 mmol, quant. yield) as a white solid.⁵

4,4'-(Ethane-1,2-diyl)dibenzyl Alcohol

To an ice-cold solution of dimethyl 4,4'-(ethane-1,2-diyl)dibenzoate (29.7 mg, 0.10 mmol) in dry THF (4 mL) was added DIBAL-H (1.0 M in hexane, 0.6 mL, 0.6 mmol). After the addition, the solution was warmed to r.t. for 5 h. The reaction was monitored by TLC. After the complete reaction, the reaction was quenched sequentially with 24 μ L H₂O, 24 μ L 15% NaOH (aq), 60 μ L H₂O. After stirring at r.t. for 30 min, anhydrous MgSO₄ was added and the suspension stirred for another 30 min. The suspension was passed through a pad of Celite and evaporation of the solvent led to 4,4'-(ethane-1,2-diyl)dibenzyl alcohol (24.5 mg, 0.10 mmol, quant. yield) as a white solid.^{6,7}

4,4'-Diiodomethylbibenzyl

To a solution of 4,4'-(ethane-1,2-diyl)dibenzyl alcohol (24.5 mg, 0.10 mmol) and KI (51.2 mg, 0.31 mmol) in dry CH₃CN (6 mL) was added BF₃•Et₂O (38 µL, 0.30 mmol). The mixture was stirred at r.t. under N₂ for 1 h. The reaction mixture turned from initial colorless to reddish color. After the reaction, H₂O and sat. Na₂S₂O₃ (aq) was added dropwise to the reaction mixture until it became colorless, and then it was extracted with Et₂O. The combined organic phases were dried over anhydrous Na₂SO₄ and evaporated to dryness. Further purification by column chromatography gave 4,4'-diiomethylbibenzyl **3** (24.8 mg, 0.054 mmol, 54%) as a light yellow solid.^{8,9} R_f = 0.77 (hexane:DCM = 1:1). ¹H NMR (C₆D₆, 400 MHz): δ 2.51 (s, 4H), 3.95 (s, 4H), 6.73 (d, *J* = 8.0 Hz, 4H), 6.95 (d, *J* = 8.0 Hz, 4H). ¹³C{¹H} NMR (C₆D₆, 100 MHz) δ 5.7, 37.5,

129.0, 129.0, 137.4, 141.4. HRMS (ESI-MS): calcd for C₁₆H₁₆I₂Na ([M+Na]⁺) *m/z* 484.9234, found 484.9236.

Independent Synthesis of the Mono-iodo Intermediate 4

Scheme S3. Independent Synthesis of the Mono-iodo Intermediate 4.

Methyl (E)-4-(4-Methylstyryl)benzoate

A flame-dried 10 mL Schlenk flask was charged under N₂ with methyl 4-bromobenzoate (219.4 mg, 1.0 mmol), K₃PO₄ (297.1 mg, 1.4 mmol), Pd(OAc)₂ (1.2 mg, 0.0053 mmol), 4-methylstyrene (158 μ L, 1.2 mmol) and DMA (4 mL). The Schlenk flask was sealed and placed in an oil bath preheated to 140 °C. The reaction mixture was stirred at 140 °C for 5 h until the

complete consumption of 4-bromobenzoate. After being cooled down to r.t., the mixture was poured into water, extracted with EtOAc three times. The combined organic extracts were dried over Na₂SO₄, and concentrated to dryness. Recrystallization from DCM/hexane gave methyl (E)-4-(4-methylstyryl)benzoate (163.2 mg, 0.65 mmol, 65%) as a white solid.^{10,11}

Methyl 4-(4-Methylphenethyl)benzoate

To a solution of methyl (E)-4-(4-methylstyryl)benzoate (25.5 mg, 0.10 mmol) in THF (3 mL) was added Pd/C (10 wt% Pd, 2.6 mg, 0.0024 mmol). The reaction vessel was thrice evacuated and filled with H₂ gas (balloon). The mixture was stirred at r.t. for 1 h until the complete consumption of methyl (E)-4-(4-methylstyryl)benzoate monitored by TLC and GC-MS. Then the reaction mixture was filtered through a plug of silica gel (230-400 mesh) and washed with DCM. Concentration afforded of the filtrate the desired product of methyl 4-(4-methylphenethyl)benzoate (24.0 mg, 0.094 mmol, 94%) as a white solid.^{12,13} ¹H NMR (CDCl₃, 400 MHz): δ 2.32 (s, 3H), 2.89–2.97 (m, 4H), 3.91 (s, 3H), 7.04–7.10 (m, 4H), 7.23 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 8.1 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 21.1, 37.1, 38.1, 52.1, 128.0, 128.4, 128.7, 129.2, 129.8, 135.7, 138.2, 147.4, 167.3. HRMS (ESI-MS): calcd for $C_{17}H_{18}O_2Na$ ([M+Na]⁺) m/z 277.1199, found 277.1199.

1-*p*-Tolyl-2-(*p*-(hydroxymethyl)phenyl)ethane

To an ice-cold solution of 4-(4-methylphenethyl)benzoate (22.0 mg, 0.0865 mmol) in dry THF (4

mL) was added DIBAL-H (1.0 M in hexane, 0.3 mL, 0.3 mmol). After the addition, the solution was warmed to r.t. for 2 h. The reaction was monitored by TLC. After the complete reaction, the reaction was quenched sequentially with 12 μ L H₂O, 12 μ L 15% NaOH (aq), 30 μ L H₂O. After stirring at r.t. for 30 min, anhydrous MgSO₄ was added and the suspension stirred for another 30 min. The suspension was passed through a pad of Celite and evaporation of the solvent gave 1-*p*-tolyl-2-(*p*-(hydroxymethyl)phenyl)ethane. (19.3 mg, 0.0853 mmol, quant. yield) as a white solid.¹⁴ ¹H NMR (CDCl₃, 400 MHz): δ 1.67 (br, 1H), 2.33 (s, 3H), 2.84–2.94 (m, 4 H), 4.67 (d, *J* = 2.6 Hz, 2H), 7.07–7.12 (m, 4H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 21.1, 37.6, 37.9, 65.4, 127.3, 128.4, 128.8, 129.2, 135.5, 138.5, 138.7, 141.6. HRMS (ESI-MS): calcd for C₁₆H₁₈ONa ([M+Na]⁺) *m/z* 249.1250, found 249.1250.

4-Iodomethyl-4'-methylbibenzyl

To a solution of 1-*p*-tolyl-2-(*p*-(hydroxymethyl)phenyl)ethane (18.3 mg, 0.081 mmol) and KI (22.0 mg, 0.132 mmol) in dry CH₃CN (3 mL) was added BF₃•Et₂O (15 μ L, 0.12 mmol). The mixture was stirred at r.t. under N₂ for 0.5 h. The reaction mixture turned from initial colorless to reddish color. After the reaction, H₂O and sat. Na₂S₂O₃ (aq) was added dropwise to the reaction mixture until it turned into colorless, and then it was extracted with Et₂O. The combined organic phases were dried over anhydrous Na₂SO₄ and evaporated to dryness. Further purification by column chromatography gave 4-iodomethyl-4'-methylbibenzyl **4** (21.8 mg, 0.065 mmol, 80%) as a pale yellow solid. R_f = 0.81 (hexane:DCM = 1:1). ¹H NMR (C₆D₆, 400 MHz): δ 2.13 (s, 3H), 2.62–2.69 (m, 4H), 3.96 (s, 2H), 6.78 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.96–6.98 (m,

4H). ¹³C{¹H} NMR (C₆D₆, 100 MHz) δ 6.21, 21.2, 37.3, 37.9, 128.4, 128.9, 129.0, 129.2, 135.6, 136.9, 138.6, 141.9. HRMS (ESI-MS): calcd for C₁₆H₁₇INa ([M+Na]⁺) *m/z* 359.0267, found 359.0267.

Independent Synthesis of (E)-1-(Iodomethyl)-4-(4-methylstyryl)benzene 5

To probe whether compound **5** is a possible intermediate from dehydrogenation of mono-iodo intermediate **4**, compound **5** was independently synthesized (Scheme S4). From the ¹H NMR analysis of the reaction mixture throughout the reaction process, compound **5** was not observed in the reaction of I₂-catalyzed transfer hydrogenation of PCP with H₂O. Therefore, **5** is unlikely an intermediate. This also indicates that the dehydrogenation of the diiodo intermediate **3** is not competitive with the hydrodeiodination of **3** to give **4**.

Scheme S4. Independent Synthesis of (*E*)-1-(Iodomethyl)-4-(4-methylstyryl)benzene 5.

(E)-4-(4-Methylstyryl)benzaldehyde

A flame-dried Schlenk flask was charged under N₂ with 4-bromobenzaldehyde (373.1 mg, 2.0 mmol), K₃PO₄ (599.0 mg, 2.8 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), 4-methylstyrene (315 μ L, 2.4 mmol) and DMA (5 mL). The Schlenk flask was sealed and placed in an oil bath preheated to 140 °C. The reaction mixture was stirred at 140 °C for 5 h until the complete consumption of 4-bromobenzaldehyde. After being cooled down to r.t., the mixture was poured into water, extracted with EtOAc three times. The combined organic extracts were dried over Na₂SO₄, and concentrated to dryness. Further recrystallization from DCM/hexane gave (*E*)-4-(4-methylstyryl)benzaldehyde (406.5 mg, 1.8 mmol, 90%) as a light yellow solid.^{11,15}

(E)-(4-(4-Methylstyryl)phenyl)methanol

To a stirred solution of (*E*)-4-(4-methylstyryl)benzaldehyde (110.1 mg, 0.5 mmol) in THF (4.5 mL)/H₂O (v:v = 9:1) was added NaBH₄ (18.1 mg, 0.5 mmol) in one portion. The mixture was stirred at r.t. for 1 h. The reaction was then quenched with water, extracted with Et₂O, dried over Na₂SO₄, and concentrated to give (*E*)-(4-(4-methylstyryl)phenyl)methanol (86.6 mg, 0.39 mmol, 78%) as a white solid.¹⁶

(E)-1-(Iodomethyl)-4-(4-methylstyryl)benzene

To a solution of PPh₃ (78.7 mg, 0.30 mmol), imidazole (20.4 mg, 0.30 mmol) in DCM (5 mL) sequentially added iodine (76.1)0.30 was mg, mmol). and (E)-(4-(4-methylstyryl)phenyl)methanol (22.4 mg, 0.10 mmol). The reaction mixture was stirred at r.t. for 4 h. A reddish brown solution with yellow precipitates formed. The reaction was quenched by the addition of sat. $Na_2S_2O_3$ (aq). Upon quenching, the yellow precipitates disappeared and the color turned into colorless. Water was then added, and the aqueous phase was extracted with DCM three times. The combined organic extracts were dried over Na₂SO₄, concentrated under reduced pressure. The resulting residue was purified by pipet column chromatography eluting with the solvent of hexane:DCM (v:v 2:1) to afford (E)-1-(iodomethyl)-4-(4-methylstyryl)benzene 5 (21.7 mg, 0.065 mmol, 65%) as a white solid. $R_f = 0.90$ (DCM). ¹H NMR (C₆D₆, 400 MHz): δ 2.12 (s, 3H), 3.98 (s, 2H), 6.87–7.00 (m, 6H), 7.12 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H). ¹³C{¹H} NMR (C₆D₆, 100 MHz) δ 4.9, 20.3, 126.0, 126.1, 126.5, 128.4, 128.6, 128.8, 134.0, 136.6, 136.8, 137.8. HRMS (ESI-MS): calcd for $C_{16}H_{16}I([M+H]^+) m/z$ 335.0291, found 335.0289.

Reaction of Di-iodo Intermediate 3

The Sealed NMR Tube Reaction between 3 and Water. 3 (1.0 mg, 0.0022 mmol), H₂O (4 μ L, 0.22 mmol), and C₆D₆ (450 μ L) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 180 °C and the reaction progress was monitored by ¹H NMR spectroscopy.

After 76 h, **3** was consumed to give **1** and **2** in 48% and 44% yields, respectively, together with the formation of I_2 with characteristic reddish color (Figure S4, Table S4, eq S3 and Figure S5). Prolonged heating to 100 h did not affect the yields of **1** and **2**.

Figure S2. Color Change of the Reaction for the Transformation of the Diiodo Intermediate 3

Table S4. Reaction Time Profile of Reaction between **3** and H₂O.

time / h			NMR yield	/ %	
time / n	3	4	1	2	total organic
0	100	0	0	0	100
8.5	77	22	1	0	100
22	41	37	11	9	98
30	24	35	23	16	98
41	6	26	39	27	99
48	2	16	46	33	97
56	0	15	45	36	96
76	0	0	48	44	92
100	0	0	46	44	90

Figure S3. Reaction Time Profile of Reaction between 3 and H₂O.

Iodine Catalyzed Dehydrogenation of 4,4'-Dimethylbibenzyl to (E)-4,4'-Dimethylstilbene Independent Synthesis of 4,4'-Dimethylbibenzyl 1

To a stirred solution of RhCl(PPh₃)₃ (8.5 mg, 0.02 mmol) and 4-methylbenzyl bromide (185.0 mg, 1.0 mmol) in anhydrous THF (5 mL) was added Me₂Zn (1.2 M in hexane, 1450 μ L, 1.74 mmol) at r.t.. The mixture was stirred at r.t. for 4 d until the complete consumption of 4-methylbenzyl bromide. The reaction mixture was quenched with 1 M HCl (aq), and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄, concentrated under reduced pressure. The resulting residue was purified by column chromatography to give 4,4'-dimethylbibenzyl **1** (66.7 mg, 0.32 mmol, 64%) as a white solid.^{6b}

The Sealed NMR Tube Reaction of Iodine Catalyzed Dehydrogenation of 1. 1 (2.1 mg, 0.010 mmol) stock solution in 1 mL C₆D₆ was prepared. H₂O (7.5 μ L, 0.42 mmol), iodine stock solution (50 μ L, 0.0010 mmol) and stock solution of 1 (400 μ L, 0.0040 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 180 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 72 h, 2 was formed in 45% yield with 47% recovery yield of 1. Prolonged heating did not show observable changes.

Figure S4. Reaction Time Profile of Iodine Catalyzed Dehydrogenation of 1 to 2.

Scheme S5. Step (i) C-H Activation with Iodine; Step (ii) Dehydroiodination.

Independent Synthesis of 4,4'-Dimethylstilbene

A flame-dried Schlenk flask was charged under N₂ with 4-iodotoluene (444.6 mg, 2.0 mmol), K₃PO₄ (589.7 mg, 2.8 mmol), Pd(OAc)₂ (4.4 mg, 0.02 mmol), 4-methylstyrene (315 μ L, 2.4 mmol) and DMA (5 mL). The Schlenk flask was sealed and placed in an oil bath preheated to 140 °C. The reaction mixture was stirred at 140 °C for 2 d until the complete consumption of 4-iodotoluene. After being cooled down to r.t., the mixture was poured into water, extracted with EtOAc three times. The combined organic extracts were dried over Na₂SO₄, and concentrated to dryness. Recrystallization form DCM/hexane gave the title compound of 4,4'-dimethylstilbene **2** (284.0 mg, 1.36 mmol, 68%) as a white solid.^{11,17}

The Sealed NMR Tube Reaction of Attempted Hydrogenation of 2. 2 (2.1 mg, 0.010 mmol) stock solution in 1 mL C₆D₆ was prepared. H₂O (7.5 μ L, 0.42 mmol), iodine stock solution (50 μ L, 0.0010 mmol) and stock solution of 2 (400 μ L, 0.0040 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 180 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 96 h, 2 was quantitatively recovered and 1 was not observed throughout the reaction.

$$(E)-2$$
quantitative
recovery
$$I_2 (25 \text{ mol}\%)$$

$$C_6D_6, \text{ dark}$$
180 °C, 96 h
no reactions

Deuterium Labeling Experiments

The Sealed NMR Tube Reaction of PCP with 100 equiv D₂O at [PCP] = 8.9 mM and 25 mol% I₂. D₂O (7.5 μ L, 0.41 mmol), iodine stock solution (50 μ L, 0.0010 mmol) and PCP stock solution (400 μ L, 0.0040 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 72 h, PCP was consumed to give 1-*d* and 2-*d* in 48%, 40% yields, respectively. Based on the ¹H NMR spectrum, the terminal benzylic positions of 1-*d* and 2-*d* were 18% deuterated. The internal benzylic positions of 1-*d* were 19% deuterated. The olefinic positions of 2-*d* were 65% deuterated.

The above reaction was repeated for 14 times. The combined **1**-*d* and **2**-*d* was purified by HPLC for independent ¹H and quantitative ¹³C NMR analysis (eq S7, Tables S5-S7, Figures S7 and S8).

Figure S7. Quantitative ¹³C NMR Spectrum of Combined **1**-*d* and Assignment of Terminal Benzylic Isotopic Substitutions.

Table S5. Isotopic Substitution at the Terminal Benzylic Positions in **1**-*d* from Quantitative ¹³C NMR Analysis

isotopic substitution	splitting	peak integration	ratio
- <i>C</i> H ₃	Singlet	0.494	1.0
$-CH_2D$	Triplet (1:1:1)	1.574	3.2
$-CHD_2$	Quintet (1:2:3:2:1)	not choom	ad
- <i>C</i> D ₃	Septet (1:3:6:7:6:3:1)	not observ	eu

Figure S8. Quantitative ¹³C NMR Spectrum of Combined **2**-*d* and Assignment of Terminal Benzylic and Olefinic Isotopic Substitutions.

Table S6. Isotopic Substitution at the Terminal Benzylic Positions in **2**-*d* from Quantitative ¹³C NMR Analysis

isotopic substitution	splitting	peak integration	ratio
- <i>C</i> H ₃	Singlet	0.215	1.0
$-CH_2D$	Triplet (1:1:1)	1.227	5.7
$-CHD_2$	Quintet (1:2:3:2:1)		- J
- <i>C</i> D ₃	Septet (1:3:6:7:6:3:1)	not observ	ed

isotopic substitutionsplittingpeak integrationratio-CHSinglet1.0361.0-CDTriplet (1:1:1)1.5111.5

Table S7. Isotopic Substitution at the Olefinic Positions in **2**-*d* from Quantitative ¹³C NMR Analysis

The Sealed NMR Tube Reaction of PCP with 100 equiv D₂O at [PCP] = 8.9 mM and 10 mol% I₂. D₂O (7.5 µL, 0.41 mmol), iodine stock solution (20 µL, 0.0004 mmol), PCP stock solution (400 µL, 0.004 mmol) and 30 µL C₆D₆ were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 132 h, PCP was consumed to give 1-*d* and 2-*d* in 50%, 34% yields, respectively (eq S8). Based on the ¹H NMR spectrum, the terminal benzylic positions of 1-*d* and 2-*d* were 19% deuterated. The internal benzylic positions of 1-*d* were 3% deuterated. The olefinic positions of 2-*d* were 33% deuterated.

The Sealed NMR Tube Reaction of PCP with 100 equiv D₂O at [PCP] = 8.9 mM and 5 mol% I₂. D₂O (7.5 μ L, 0.41 mmol), iodine stock solution (10 μ L, 0.0002 mmol), PCP stock

solution (400 μ L, 0.004 mmol) and 40 μ L C₆D₆ were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 236 h, PCP was consumed to give 1-*d* and 2-*d* in 43%, 26% yields, respectively (eq S9). Based on the ¹H NMR spectrum, the terminal benzylic positions of 1-*d* and 2-*d* were 19% deuterated. The internal benzylic positions of 1-*d* were 9% deuterated. The olefinic positions of 2-*d* were 31% deuterated.

The Sealed NMR Tube Reaction of I₂ Catalyzed Post H/D Exchange of 1 with D₂O. 1 (2.1

mg, 0.010 mmol) stock solution in 1 mL C₆D₆ was prepared. D₂O (7.5 μ L, 0.41 mmol), iodine stock solution (50 μ L, 0.001 mmol), and stock solution of **1** (400 μ L, 0.004 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 94 h, **1**-*d*' and **2**-*d*' were formed in 75% and 20% yields, respectively. Negligible deuterations were found at the terminal benzylic positions of **1**-*d*' and **2**-*d*'. 70% D was incorporated at the internal benzylic positions of **1**-*d*'. 42% D was incorporated at the olefinic positions of **2**-*d*'.

Scheme S6. Proposed Mechanism for the I₂ Catalyzed Internal Benzylic H/D Exchange of **1** with D₂O. Step (i) C-H Activation with Iodine; Step (ii) Reduction of C-I Bond with DI.

The Sealed NMR Tube Reaction between 3 and 100 equiv of D₂O. 3 (1.0 mg, 0.0022 mmol), H_2O (4 µL, 0.22 mmol), and C_6D_6 (450 µL) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 9 h, 3 was consumed to give 1-*d*" and 2-*d*" in 44% and 39% yields, respectively, together with the formation of I₂. Based on the ¹H NMR spectrum, the terminal benzylic positions of 1-*d*" and 2-*d*" were 17% deuterated. The internal benzylic positions of 1-*d*" were 7% deuterated. The olefinic positions of 2-*d*" were 24% deuterated.

Table S8. Reaction Time Profile of Reaction between 3 and D_2O .

3h50min

6h30min

9h

Figure S9. Reaction Time Profile of Reaction between ${\bf 3}$ and D_2O .

The Sealed NMR Tube Reaction of only 3 in C₆D₆. 3 (1.0 mg, 0.0022 mmol) and C₆D₆ (450 μ L) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 10 h 20 min, **3** was consumed to give **1** and **2** in 46% and 50% yields, respectively, together with the formation of I₂. Prolonged heating to 100 h did not affect the yields of **1** and **2**.

Table S9. Reaction Time Profile of Reaction of only 3 and C_6D_6 .

		,D ₆ , dark 200 °C № 20min	4 intermediate	+	+ 1 46%	(E)- 2 50%	I ₂
-	time			yield /	%		
	time	3	4	1	(E)- 2	total organic	
-	0	100	0	0	0	100	
	30min	72	8	1	0	82	
	1h10min	72	16	3	0	92	
	2h40min	68	39	8	7	122	
	4h10min	42	40	14	13	109	
	5h40min	15	26	16	16	73	
	10h20min	0	0	44	50	96	

Figure S10. Reaction Time Profile of Reaction of only 3 and C₆D₆.

The Sealed NMR Tube Reaction of PCP with 100 equiv D₂O at [PCP] = 3.3 mM and 25 mol% I₂. D₂O (2.8 μ L, 0.15 mmol), iodine stock solution (20 μ L, 0.0004 mmol), PCP stock solution (150 μ L, 0.0015 mmol) and 280 μ L of C₆D₆ were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 110 h, PCP was consumed to give 1-*d* and 2-*d* in 43%, 36% yields, respectively. Based on the ¹H NMR spectrum and GC-MS analysis, the terminal benzylic positions of 1-*d* and 2-*d* were 21% and ~17% deuterated, respectively. The internal benzylic

The Sealed NMR Tube Reaction of PCP with Diphenyl Disulfide. Diphenyl disulfide (8.7 mg, 0.0098 mmol) stock solution in 0.5 mL C₆D₆ was also prepared. Diphenyl disulfide stock solution (50 μ L, 0.004 mmol) and PCP stock solution (400 μ L, 0.004 mmol) were added into a Teflon screw head stoppered NMR tube. The reaction was heated at 200 °C and the reaction progress was monitored by ¹H NMR spectroscopy. After 161 h, PCP and diphenyl disulfide were quantitatively recovered. PhS-SPh (S-S BDE = 51.2 kcal/mol)² can be a trapping agent in the homolysis of C-C bond.¹⁸ The absence of reaction suggests that I₂ is unlikely a radical trap under the current reaction conditions.

+ PhS-SPh
$$\frac{C_6D_6, \text{ dark}}{200 \,^{\circ}\text{C}, 161 \,\text{h}}$$
 no reactions
quantitative recovery

It is also unlikely that PCP undergoes oxidation with I_2 to generate PCP radical cation prior to the C-C bond cleavage.¹⁹ The 1st oxidation potential of PCP is 1.57 V in MeCN (vs SCE),²⁰ and the oxidation potential of I⁻ to I₂ is 0.267 V in 1:1 MeCN/DMF (vs SCE).²¹ This suggests that the oxidation of PCP with I₂ is estimated to be endothermic by 1.303 V. Therefore, the possibility of single electron transfer from PCP to I₂ is ruled out, particularly in non-polar benzene solvent.

UV-Vis Spectroscopic Studies

UV-Vis Absorption Spectroscopy for the Determination of [I2]

1. UV-Vis Calibration Curve for [I2]

Stock solutions of I₂ was first prepared by dissolving I₂ (27.3 mg, 0.108 mmol) in 6.0 mL hexanes. To the four UV cells were added 50, 40, 30 and 20 μ L of I₂ solutions, and diluted to 3.10 mL with hexanes. Finally, 0.450 mL C₆H₆ was added to each UV cells to form the respective standards with [I₂] = 0.253, 0.197, 0.141 and 0.084 mM for UV-Vis spectroscopic analysis. They absorb with $\lambda_{max} = 516$ nm.

Figure S11. Stacked UV-Vis Absorption Spectra of I₂ Standards.

Figure S12. Calibration Curve for [I₂] from 0.084 mM to 0.253 mM.

entry	$I_2 \text{ in UV cell / } \mu mol$	$[I_2] \text{ in UV cell / mM} \\$	Absorbance / arbitrary
1	0.90	0.253	0.212
2	0.70	0.197	0.167
3	0.50	0.141	0.124
4	0.30	0.084	0.081

Table S10. Numerical Data for the Calibration.

2. UV-Vis Determination of Recovered [I2] After Reactions:

Table S11. UV-Vis Spectroscopic Analysis Results.

entry	I ₂ loading (n) / mol%	I ₂ loading / μmol	time / h	absorbance at 516 nm	dilution factor	I ₂ recovered / μmol
1	5	0.20	236	peak obscured ^a	1.00	N/A
2	10	0.40	132	0.105	0.55	0.226
3	25	1.00	72	0.084	2.33	0.732
4 ^b	25	1.00	72	0.237	1.00	1.017

 $^{\rm a}$ the absorption at 516 nm is probably too weak and obscured by the absorption of PCP $^{\rm b}$ no PCP added

Figure S13. Color of Reaction Mixtures at the End of Reaction.

Table S12. Calculation of Ratio on Terminal Benzylic Deuterium Incorporated to I₂ Consumed.

eq	I2 loading / µmol	I2 recovered / µmol	I2 consumed / µmol	terminal benzylic deuterium introduced / μmol	(no. of mol of terminal benzylic deuterium) / (I ₂ consumed)
S13	0.40	0.226	0.174	3.55	20.4
S14	1.00	0.732	0.268	2.75	10.2

Mechanistic Proposal Relating the I₂ Consumption and Terminal Benzylic Deuteration, and other I₂ Consuming Pathways

<u>Case 1:</u>

(i) generation of reductant D-I

 $3I_2 + 3D_2O \longrightarrow 5D-I + DIO_3$

(ii) CCA of PCP

(iii) reduction of C-I bond to C-D bond with DI

Based on this proposal, 3 moles of I_2 reacts with 3 moles D_2O to generate 5 moles of DI. According to the overall stoichiometry, 1 mole of I_2 reacts with 5 moles of PCP to yield 5 moles of transfer hydrogenation product with 2 terminal benzylic deuterium, e.g. 10 moles of deuterium. If (no. of mol of terminal benzylic deuterium) / (I_2 consumed) > 10, I_2 is catalytic for the transfer hydrogenation. This is the maximum case. Since the I_2 consumption determined from the UV-Vis

analysis covers other concurrent I_2 consuming reactions, e.g. post H/D exchange, the results shown in Table S12 strongly indicate the catalytic role of I_2 . However, we are unclear if there were additional pathways regenerating I_2 in the reaction system based on the current understandings.

Case 2:

(i) generation of reductant D-I

$$I_2 + D_2O \longrightarrow D-I + DOI$$

(ii) CCA of PCP

(iii) reduction of C-I bond to C-D bond with DI

Based on this proposal, 1 mole of I_2 reacts with 1 mole D_2O to generate 1 mole of DI. According to the overall stoichiometry, 1 mole of I_2 reacts with 1 mole of PCP to yield 1 mole of transfer

hydrogenation product with 2 terminal benzylic deuterium, e.g. 2 moles of deuterium. If (no. of mol of terminal benzylic deuterium) / (I_2 consumed) > 2, I_2 is catalytic for the transfer hydrogenation. This is the minimum case.

Other I₂ Comsuming Pathways:

1. Post H/D exchange at the internal benzylic positions and dehydrogenation

2. Disproportionation Reactions (Deuterium Independent)

NMR Spectra

No.	Spectra	Page
1	¹ H NMR Spectrum of 3 Intermediate	S41
2	¹ H NMR Spectrum of Dimethyl 4,4'-(Ethyne-1,2-diyl)dibenzoate	S41
3	¹ H NMR Spectrum of Dimethyl 4,4'-(Ethane-1,2-diyl)dibenzoate	S42
4	¹ H NMR Spectrum of 4,4'-(Ethane-1,2-diyl)dibenzyl Alcohol	S42
5	¹ H NMR Spectrum of 4,4'-Diiodomethylbibenzyl 3	S43
6	$^{13}C{^{1}H}$ NMR Spectrum of 4,4'-Diiodomethylbibenzyl 3	S43
7	¹ H NMR Spectrum of Methyl (<i>E</i>)-4-(4-Methylstyryl)benzoate	S44
8	¹ H NMR Spectrum of Methyl 4-(4-Methylphenethyl)benzoate	S44
9	¹³ C{ ¹ H} NMR Spectrum of Methyl 4-(4-Methylphenethyl)benzoate	S45
10	¹ H NMR Spectrum of 1- <i>p</i> -Tolyl-2-(<i>p</i> -(hydroxymethyl)phenyl)ethane	S45
11	$^{13}C{^{1}H}$ NMR Spectrum of 1- <i>p</i> -Tolyl-2-(<i>p</i> -(hydroxymethyl)phenyl)ethane	S46
12	¹ H NMR Spectrum of 4-Iodomethyl-4'-methylbibenzyl 4	S46
13	¹³ C{ ¹ H} NMR Spectrum of 4-Iodomethyl-4'-methylbibenzyl 4	S47
14	¹ H NMR Spectrum of (E)-4-(4-Methylstyryl)benzaldehyde	S47
15	¹ H NMR Spectrum of (<i>E</i>)-(4-(4-Methylstyryl)phenyl)methanol	S48
16	¹ H NMR Spectrum of (<i>E</i>)-1-(Iodomethyl)-4-(4-methylstyryl)benzene 5	S48
17	¹³ C{ ¹ H} NMR Spectrum of (<i>E</i>)-1-(Iodomethyl)-4-(4-methylstyryl)benzene 5	S49
18	¹ H NMR Spectrum of 4,4'-Dimethylbibenzyl 1	S49
19	¹ H NMR Spectrum of (<i>E</i>)-4,4'-Dimethylstilbene 2	S 50
20	¹ H NMR Spectrum of mixture of 1- <i>d</i> and 2- <i>d</i> (eq 5)	S 50
22	¹ H NMR Spectrum of isolated 1 - <i>d</i> from 14 runs (eq S7)	S 51
23	¹ H NMR Spectrum of isolated 2 - <i>d</i> from 14 runs (eq S7)	S51

¹H NMR Spectrum of Diiodo Intermediate 3

¹H NMR Spectrum of Dimethyl 4,4'-(Ethyne-1,2-diyl)dibenzoate

¹H NMR Spectrum of 4,4'-(Ethane-1,2-diyl)dibenzyl Alcohol

¹H NMR Spectrum of 4,4'-Diiomethylbibenzyl **3**

 $^{13}C\{^{1}H\}$ NMR Spectrum of 4,4'-Diiomethylbibenzyl **3**

¹H NMR Spectrum of Methyl (*E*)-4-(4-Methylstyryl)benzoate

¹H NMR Spectrum of Methyl 4-(4-Methylphenethyl)benzoate

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Methyl 4-(4-Methylphenethyl)benzoate

¹H NMR Spectrum of 1-*p*-Tolyl-2-(*p*-(hydroxymethyl)phenyl)ethane

¹³C{¹H} NMR Spectrum of 1-*p*-Tolyl-2-(*p*-(hydroxymethyl)phenyl)ethane

¹H NMR Spectrum of 4-Iodomethyl-4'-methylbibenzyl **4**

¹³C NMR Spectrum of 4-Iodomethyl-4'-methylbibenzyl **4**

¹H NMR Spectrum of (*E*)-4-(4-Methylstyryl)benzaldehyde

¹H NMR Spectrum of (*E*)-(4-(4-Methylstyryl)phenyl)methanol

¹H NMR Spectrum of (*E*)-1-(Iodomethyl)-4-(4-methylstyryl)benzene **5**

¹³C{¹H} NMR Spectrum of (*E*)-1-(Iodomethyl)-4-(4-methylstyryl)benzene **5**

¹H NMR Spectrum of 4,4'-Dimethylbibenzyl **1**

¹H NMR Spectrum of the Deuterium Labeling Reaction (eq 5)

¹H NMR Spectrum of isolated **1**-*d* from 14 runs (eq S7)

¹H NMR Spectrum of isolated **2**-*d* from 14 runs (eq S7)

S51

 ^1H NMR Spectrum of the Post-Exchange Reaction of 1 with D_2O (eq 6)

MS Spectra

HRMS S	Spectrum	of 4,4'-	Diiodometh	ylbibenzyl 3
		- 2		J J -

Molecular formula :	$C_{16}H_{16}I_2$
Experimental Mass [M+Na] ⁺ :	484.92356
Theoretical Mass [M+Na] ⁺ :	484.92336
Error (ppm) :	0.4

D:\Raw data\qksc020 06/27/17 16:03:51 WY664 qksc020 #214 RT: 0.97 AV: 1 SB: 254 0.40-0.66 , 1.05-1.93 NL: 1.15E6 T: FTMS + p ESIFulims [150.0000-1000.0000] 484,92356 3 304.26111 335.02914 360.32376 413.26606 393.29758 441.29780 292.22466 500.89709 750 950 1000 600 650 700 800 850 900 450 500 550 200 250 350 300 qksc020 #214 RT: 0.97 AV: 1 SB: 254 0.40-0.66 , 1.05-1.93 NL: 1.15E6 T: FTMS + p ESI Full ms [150.0000-1000.0000] 100- 484.92356 485.92710 A 487.0 487.2 487.4 487.6 487.8 488.0 484.6 485.4 485.6 486.2 m/z 486.8 485.0 485.2 485.8 486.4 486.6 484.8 486.0 S53

HRMS S	pectrum of	f Methyl 4-(4-Methyl	phenethyl)benzoate
					/

Molecular formula :	C ₁₇ H ₁₈ O ₂
Experimental Mass (M+Na)⁺:	277.11986
Theoretical Mass (M+Na) ⁺ :	277.11990
Error (ppm) :	0.1

S54

HRMS Spectrum of	1- <i>p</i> -Tolyl-2-(p-(hydroxymetl	hyl)phenyl)ethane
------------------	------------------------	----------------	-------------------

Molecular formula :	C ₁₆ H ₁₈ O
Experimental Mass (M+Na)⁺:	249.12499
Theoretical Mass (M+Na)⁺:	249.12499
Error (ppm) :	0.0

S55

Molecular formula :	C ₁₆ H ₁₇ I
Experimental Mass (M+Na)⁺:	359.02671
Theoretical Mass (M+Na) ⁺ :	359.02671
Error (ppm) :	0.0

HRMS Spectrum of (*E*)-1-(Iodomethyl)-4-(4-methylstyryl)benzene 5

Molecular formula :	C ₁₆ H ₁₅ I
Experimental Mass [M+H]⁺:	335.02893
Theoretical Mass [M+H]⁺:	335.02912
Error (ppm) :	0.5

References

- (1) (a) To, C. T.; Choi, K. S.; Chan, K. S. J. Am. Chem. Soc. 2012, 134, 11388–11391. (b) Tam, C. M.; To, C. T.; Chan, K. S. Dalton Trans 2017, 46, 10057–10063.
- (2) Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press: Boca Raton, FL, 2007.
- (3) Sarkar, S.; Li, S.; Wayland, B. B. J. Am. Chem. Soc. 2010, 132, 13569-13571.
- (4) Chuentragool, P.; Vongnam, K.; Rashatasakhon, P.; Sukwattanasinitt, M.; Wacharasindhu, S. *Tetrahedron* 2011, 67, 8177–8182.
- (5) Christensen, H.; Schjøth-Eskesen, C.; Jensen, M.; Sinning, S.; Jensen, H. H. Chem. Eur. J. 2011, 17, 10618–10627.
- (6) (a) Taladriz, A.; Healy, A.; Flores Pérez, E. J.; Herrero García, V.; Ríos Martínez, C.; Alkhaldi, A. A. M.; Eze, A. A.; Kaiser, M.; de Koning, H. P.; Chana, A.; Dardonville, C. J. *Med. Chem.* 2012, 55, 2606–2622. (b) Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. *Org. Lett.* 2014, *16*, 3756–3759.
- (7) Guduguntla, S.; Gualtierotti, J.-B.; Goh, S. S.; Feringa, B. L. ACS Catal. 2016, 6591–6595.
- (8) Valério, C.; Moulines, F.; Ruiz, J.; Blais, J.-C.; Astruc, D. J. Org. Chem. 2000, 65, 1996–2002.
- (9) (a) Hayat, S.; Atta ur, R.; Mohammed Khan, K.; Iqbal Choudhary, M.; Maharvi, G. M.; Zia, U.; Bayer, E. *Synth. Commun.* 2003, *33*, 2531–2540. (b) Bandgar, B. P.; Sadavarte, V. S.; Uppalla, L. S. *Tetrahedron Lett.* 2001, *42*, 951–953.
- (10)(a) Kang, L.; Zhang, F.; Ding, L.-T.; Yang, L. RSC Adv. 2015, 5, 100452–100456. (b)
 Shimasaki, T.; Konno, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2009, 11, 4890–4892.
- (11) Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68, 7528–7531.
- (12) Weber, K. H.; Stransky, W.; Walther, G.; Kuefner-Muehl, U.; Heuer, H.; Birke, F.; Muacevic, G.; Bechtel, W. D. New Heterocycle-Fused Diazepines Acting as PAF Antagonists and Their Use as Drugs. EP407955A1, 1991.
- (13) Marshall, R. J.; Richards, T.; Hobday, C. L.; Murphie, C. F.; Wilson, C.; Moggach, S. A.;
 Bennett, T. D.; Forgan, R. S. *Dalton Trans.* 2016, 45, 4132–4135.
- (14) Camaioni, D. M.; Franz, J. A. J. Org. Chem. 1984, 49, 1607-1613.
- (15)(a) Katsuyama, I.; Chouthaiwale, P. V.; Akama, H.; Cui, H.-L.; Tanaka, F. Tetrahedron Lett.

2014, *55*, 74–78. (b) Gégout, A.; Figueira-Duarte, T. M.; Nierengarten, J.-F.; Listorti, A.; Armaroli, N. Synlett **2006**, *2006*, 3095–3099.

- (16) McNulty, J.; McLeod, D. Tetrahedron Lett. 2011, 52, 5467-5470.
- (17)Zhang, M.; Jia, T.; Sagamanova, I. K.; Pericás, M. A.; Walsh, P. J. Org. Lett. 2015, 17, 1164–1167.
- (18) Mlinaric-Majerski, K.; Majerski, Z.; Rakvin, B.; Veksli, Z. J. Org. Chem. 1989, 54, 545-548.
- (19)(a) Adam, W.; Miranda, M.; Mojarrad, F.; Sheikh, H. *Chem. Ber.* 1994, *127*, 875-879. (b)
 Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G. *Eur. J. Org. Chem.* 2000, 2711-2716.
- (20) Sato, T.; Torizuka, K. J. Chem. Soc., Perkin Trans. 2 1978, 1199-1204.
- (21) Jayati, D.; Abhijit, B.; Kumar, K. K. Bull. Chem. Soc. Jpn. 1988, 61, 1735-1742.