Supporting Information

Synthesis of Oxazolines via Cascade Reaction between

Azaoxyallyl Cations and 1, 2-Benzisoxazoles
Li Sun \ddagger, Yi Liu \ddagger, Yankai Wang, Yuanyuan Li, Zhiwen Liu,Tao Lu and Wenhai Li*
State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
E-mail: liwenghai@cpu.edu.cn
Table of Contents
General Information S2
General Procedures for the Preparation of α - Halohydroxamates S3
General Procedures for 1, 2-benzisoxazoles S3
Preparation of [3+2] Cyclization Reactions S4
X-ray Crystallography Data of 3ao (CCDC 1900697) S5
Copies of 1H NMR and 13C NMR spectra of the Titled Compounds S6

General Information

Reagents and Solvents: All solvents were purified and dried according to standard methods. PE refers to petroleum ether (b.p. $60-90{ }^{\circ} \mathrm{C}$) and EA refers to ethyl acetate.
Chromatography: Flash column chromatography was carried out using commercially available 200-300 mesh under pressure and conducted by eluting with PE/EA, which are listed as volume/volume ratios.

Data collection: Melting point (m.p.) was measured on a microscopic melting point apparatus. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were collected on BRUKER AV-300 (300MHz) or BRUKER AV-400 (400MHz) spectrometer using CDCl_{3} as solvent. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta=$ 0.00 ppm) with the solvent resonance as an internal standard ($\left.\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift in ppm (δ), multiplicity ($s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{brs}=$ broad singlet, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were reported in ppm with the solvent as the internal standard $\left(\mathrm{CDCl}_{3}, \delta=77.0 \mathrm{ppm}\right)$. High Resolution Mass measurement was performed on Agilent QTOF 6520 mass spectrometer electron spray ionization (ESI) as the ion source. Unless otherwise indicated, all other reagents and solvents were obtained from commercial suppliers and used without further purification. Absorption measurements were performed either using a Shimadzu UV-3600 Plus UV-Vis spectrophotometer. Emission measurements were performed using a Horiba,Ltd Fluoro Max-4 photoluminescence spectrometer.

General Procedures for the Preparation of α-Halohydroxamates ${ }^{1}$

To a suspension of the O-alkyloxyamine hydrochloride and triethylamine in DCM (0.25 M) was added dropwise the alpha-haloacid halide at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature until complete consumption of starting material (detected by TLC). The mixture was warmed to room temperature and quenched with water. The organic phase was washed with water ($\times 3$), then washed with brine ($\times 1$), dried over sodium sulfate, filtered and evaporated. Purification via a flash column chromatography (PE/EA=8/1) provided the α halohydroxamates.

General Procedures for 1, 2-benzisoxazoles ${ }^{2}$

A mixture of $\mathrm{Ph}_{3} \mathrm{P}$ (1.5 eq .) and DDQ (1.5 eq.) in dry $\mathrm{DCM}(5.0 \mathrm{~mL}$) was stirred at room temperature for 1 min . Substituted salicylaldoximes (1.0 mmol) were then added. The green color of the reaction mixture changed to brown after 1 min . TLC monitoring showed completion of the reaction. The solvent was evaporated. Column chromatography of the crude mixture on silica gel using (PE/EA=3/1) as eluent gave the desired products.

[^0]2. N. Iranpoor, H. Firouzabadi and N. Nowrouzi, Tetrahedron Lett., 2006, 47, 8247-8250.

Preparation of [3+2] Cyclization Reactions

To a 10 mL round-bottom flask was sequentially added α-halohydroxamate $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.40 \mathrm{mmol}, 2.0$ eq.), substituted 1, 2-benzisoxazoles 2 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and HFIP (1.0 mL). The reaction mixture was stirred at room temperature for 3 hours. Upon completion of the reaction (monitored by TLC), the reaction mixture was diluted with EA. The crude material was then filtered through celite and washed with EA. The filtrate was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA $=20 / 1$) to afford the pure product.

Copies of 1H NMR and 13C NMR spectra of the Titled Compounds

(Z)-2-(2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

(Z)-2-(3-bromo-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

(Z)-2-(2-hydroxy-3-methoxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime $53.0 \mathrm{mg}, 78 \%$ yield, $R_{f}=0.39$ (PE/EA $=10 / 1$); white solid, m.p. $84.2-$
 $85.6^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.38(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.22(\mathrm{~m}$, $6 \mathrm{H}), 7.01(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (s, $2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.6, 157.6, 150.2, 148.3, 137.2, 128.4, 128.4, 128.1, 119.9, 118.8, 115.8, 109.3, 77.0, 67.3, 56.2, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ 3ac $=341.1496$, found 341.1497.

(Z)-2-(3-(tert-butyl)-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl

 oxime
(Z)-2-(4-fluoro-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

$3 a e$ $56.0 \mathrm{mg}, 85 \%$ yield, $R_{f}=0.44$ (PE/EA $=10 / 1$); white solid, m.p. 83.5 - $84.4{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ, ppm $11.43(\mathrm{~s}, 1 \mathrm{H})$, 7.76 (dd, $J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=$ $10.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.63 (ddd, $J=8.8,8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H})$, 1.51 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.4 ($\mathrm{d}, \mathrm{J}=252.0 \mathrm{~Hz}$), 162.0 ($d, J=13.0 \mathrm{~Hz}$), 159.9, 157.4, 137.1, 130.3 ($d, J=11.0 \mathrm{~Hz}$), 128.5, 128.4, 128.1, 107.2 (d, $J=23.0 \mathrm{~Hz}$), 105.8 (d, $J=3.0 \mathrm{~Hz}$), 104.3 (d, J = 24.0 Hz), 77.1, 67.2, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ $=329.1296$, found 329.1291 .
(Z)-2-(4-chloro-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

$57.0 \mathrm{mg}, 83 \%$ yield, $R_{f}=0.50$ (PE/EA = 10/1); white solid, m.p.
 101.6 - $102.3^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.30(\mathrm{~s}, 1 \mathrm{H}), 7.69$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89 (dd, J = 8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11 (s, 2H), 1.51 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.5, 159.9, 157.2, 140.2, 137.0, 129.4, 128.5, 128.4, 128.1, 119.8, 117.4, 107.7, 77.2, 67.3, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=345.1000$, found 345.1003 .
(Z)-2-(4-bromo-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

$70.0 \mathrm{mg}, 90 \%$ yield, $R_{f}=0.50$ (PE/EA $=10 / 1$); white solid, m.p. 99.8 - $100.7^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.20(\mathrm{~s}, 1 \mathrm{H}), 7.53$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $160.4,160.0,157.2,137.0,129.4,128.5,128.5$,
$3 a g$ 128.4, 128.1, 122.7, 120.4, 108.1, 77.2, 67.3, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=389.0495$, found 389.0491 .
(Z)-2-(2-hydroxy-4-methylphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime
$52.5 \mathrm{mg}, 81 \%$ yield, $R_{f}=0.42$ (PE/EA $=10 / 1$); white solid, m.p.
 $70.3-71.2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11 (s, 2H), 2.33 (s, 3H), 1.50 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.4,159.9,157.9,145.5,137.2,128.5,128.4,128.2$, 128.1, 120.4, 117.3, 106.5, 77.0, 67.18, 28.1, 22.0; HRMS (ESI)

3ah
calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=325.1547$, found 325.1545.
(Z)-2-(2-hydroxy-4-methoxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

$3 a i$
$54.4 \mathrm{mg}, 80 \%$ yield, $R_{f}=0.40(\mathrm{PE} / \mathrm{EA}=10 / 1)$; white solid, m.p. 106.1 - $107.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.28(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.46 (dd, J = 8.8, 2.4 Hz, 1H), 5.11 (s, 2H), 3.81 (s, 3H), $1.50(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) 164.6, 161.9, 160.2, 158.0, 137.2, 129.6, 128.4, 128.4, 128.0, 107.1, 102.2, 100.9, 77.00, 67.0, 55.5, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=341.1496$, found 341.1493.
(Z)-2-(5-chloro-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime
$60.0 \mathrm{mg}, 87 \%$ yield, $R_{f}=0.45(\mathrm{PE} / \mathrm{EA}=10 / 1)$; white solid, m.p.
$116.9-117.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.06(\mathrm{~s}, 1 \mathrm{H}), 7.67$
$(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.04(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 159.6,158.5$,
$157.1,137.0,134.2,128.5,128.4,128.1,127.6,124.1,118.6$,
$110.0,77.2,67.4,28.0 ; \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$
$\mathrm{m} / \mathrm{z}=345.1000$, found 345.1003.
(Z)-2-(5-bromo-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

(Z)-2-(2-hydroxy-5-methylphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime
$53.8 \mathrm{mg}, 83 \%$ yield, $R_{f}=0.39$ (PE/EA $=10 / 1$); white solid, m.p. $104.3-105.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92 (d, J = 8.4 Hz, 1H), 5.13 (s, 2H), 2.28 (s, 3H), 1.51 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) 160.4, 157.9, 157.8, 137.3, 135.3, 128.5, 128.4, 128.3, 128.1, 128.1, 116.8, 108.6, 77.3, 67.3, 28.0, 20.3; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=325.1547$, found
(Z)-2-(2-hydroxy-6-methoxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime
$\mathrm{BnO} \quad 52.4 \mathrm{mg}, 77 \%$ yield, $R_{f}=0.51(\mathrm{PE} / \mathrm{EA}=10 / 1)$; white solid, m.p. 87.8 $-88.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.33(\mathrm{~s}, 0 \mathrm{H}), 7.49-7.21(\mathrm{~m}$,
 $6 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H})$, 3.85 (s, 3H), 1.51 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.2, 161.3, 159.9, 158.5, 137.4, 134.2, 128.3, 128.1, 127.8, 109.9, 102.0, 99.4, 76.8, 65.0, 56.2, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ $=341.1496$, found 341.1493 .
(Z)-2-(1-hydroxynaphthalen-2-yl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime $57.6 \mathrm{mg}, 80 \%$ yield, $R_{f}=0.37$ (PE/EA $=10 / 1$); white solid, m.p. 133.7 - $134.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.24(\mathrm{~s}, 1 \mathrm{H}), 8.83$ (dd, $J=8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, $J=8.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (ddd, $J=8.6,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 1.58(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.9, 162.7, 158.1, 137.5, 135.6, 131.4, 129.9, 129.0, 128.5, 128.4, 128.0, 127.9, 124.9, 123.7, 119.0, 100.9, 78.2, 65.0, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: $m / z=361.1547$, found 361.1548 .
(Z)-2-(3, 5-dibromo-2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-benzyl oxime

(Z)-2-(2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one \mathbf{O}-methyl oxime

3ca
28.0; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=235.1077$, found 235.1077.
(Z)-2-(2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-ethyl oxime

$29.8 \mathrm{mg}, 60 \%$ yield, $R_{f}=0.40(\mathrm{PE} / \mathrm{EA}=10 / 1)$; white solid, m.p. $84.1-$ $85.2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{dt}, J=7.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, $J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (dd, $J=8.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.4, 159.9, 157.0, 134.3, 128.5, 119.1, 117.0, 109.1, 70.7, 67.1, 28.0, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=249.1234$, found 249.1235.
(Z)-2-(2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one \mathbf{O}-ally oxime

$38.0 \mathrm{mg}, 73 \%$ yield, $R_{f}=0.36(\mathrm{PE} / \mathrm{EA}=10 / 1)$; white solid, m.p. $85.6-$ $86.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.18$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.83$ (dt, $J=7.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{tt}, \mathrm{J}=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (td, J = 7.7, 7.2, 1.1 Hz, 1H), 6.18-5.98 (m, 1H), $5.43-5.26(\mathrm{~m}$, 2 H), $4.62(\mathrm{dt}, J=5.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ 160.3, 159.9, 157.5, 134.3, 133.6, 128.5, 119.2, 118.3, 117.0, 109.0, 75.9, 67.3, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ 3ea $=261.1234$, found 261.1234.
(Z)-2-(2-hydroxyphenyl)-4, 4-dimethyloxazol-5(4H)-one O-(tert-butyl) oxime

$42.0 \mathrm{mg}, 76 \%$ yield, $R_{f}=0.35$ (PE/EA = 10/1); white solid, m.p. $97.7-$ $98.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.34(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dt}, J=7.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43(\mathrm{~m}, 1 \mathrm{H}), 7.05$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.01-6.88(\mathrm{~m}$, 1H), 1.55 (s, 6H), $1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.7, 159.9, 155.7, 134.1, 128.6, 119.0, 116.9, 109.3, 79.6, 67.0, 28.1, 27.2; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=277.1547$, found 277.1545 .
3fa
(Z)-2-(2-hydroxyphenyl)-4-methyloxazol-5(4H)-one O-benzyl oxime

3ga 134.5, 128.5, 128.5, 128.4, 128.1, 119.2, 117.1, 108.9, 77.0, 60.9, 20.4; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=297.1234$, found 297.1236.
(Z)-2-(2-hydroxyphenyl)-4,4-dimethyloxazol-5(4H)-one oxime

To an 10 mL round-bottom flask equipped with a magnetic stir bar, Pd/C (0.0075

5
mmol, 0.1 eq.), and (Z)-2-(2-(benzyloxy)phenyl)-4,4-dimethyloxazol $-5(4 \mathrm{H})$-one O-benzyl oxime(3aa) ($30.0 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were added. The tube was sealed with rubber stopper, evacuated and backfilled with H_{2} (this process was repeated for 3 times), then $\mathrm{MeOH}(1.5 \mathrm{~mL})$ via syringe was added at room temperature. The mixture was stirred at room temperature for 24 h . Upon completion, the reaction mixture was then purified by preparative thin layer chromatography using petroleum ether/ethyl acetate system (petroleum ether / ethyl acetate $=15 / 1$) to give product 5 as a thick colorless oil in 97% yield $(12.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.56(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.25,159.94,159.14,134.44,128.39$, 119.28, 117.09, 108.98, 67.26, 27.88; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=$ 221.0881, found 221.0922.

Ethyl (E)-3-(2-((Z)-5-((benzyloxy)imino)-4,4-dimethyl-4,5-dihydrooxazol-2yl)phenoxy)acrylate

6

To an 10 mL round-bottom flask equipped with a magnetic stir bar, Dabco ($0.0075 \mathrm{mmol}, 0.1$ eq.), ethyl propiolate ($0.0825 \mathrm{mmol}, 1.1$ eq.) and (Z)-2-(2-(benzyloxy)phenyl)-4,4-dimethyloxazol-5(4H)-one O-benzyl oxime(3aa) ($30.0 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were added. The tube was sealed with rubber stopper, evacuated and backfilled with N_{2} (this process was repeated for 3 times), then DCM (1.5 mL) via syringe was added at room temperature. The mixture was stirred at room temperature for 24 h . Upon completion, the reaction mixture was then purified by preparative thin layer chromatography using petroleum ether/ethyl acetate system (petroleum ether / ethyl acetate $=10 / 1$) to give product 6 as a thick colorless oil in 78% yield $(29.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (dd, $J=7.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74-$ 7.68 (m, 1H), $7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dt, J = 12.4, 1.8 Hz, 1H), $5.10(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H})$, $1.51-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{td}, \mathrm{J}=6.5,3.6 \mathrm{~Hz}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.96$, 159.59, 155.78, 154.24, 144.77, 137.39, 133.54, 131.47, 128.34, 128.26, 127.89, 125.46, 120.42, 118.22, 102.21, 76.80, 68.25, 60.10, 27.64, 14.32; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: m / z=409.1719$, found 409.1759.

Optical Properties

(Z)-2-(2-hydroxyphenyl)-4,4-dimethyloxazol-5(4H)-one O-benzyl oxime(3aa)

Figure S1: Normalized absorption (black line), excitation (red line, Detection: 267 nm) and emission (blue line, Ex.: 316 nm) spectra of 3aa. The concentration of dichloromethane solution is $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$.
(Z)-2-(2-hydroxy-4-methoxyphenyl)-4,4-dimethyloxazol-5(4H)-one

O-benzyl oxime(3ai)

Figure S2: Normalized absorption (black line), excitation (red line, Detection: 267 nm) and emission (blue line, Ex.: 323 nm) spectra of 3ai. The concentration of dichloromethane solution is $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$.
(Z)-2-(3,5-dibromo-2-hydroxyphenyl)-4,4-dimethyloxazol-5(4H)-one

O-benzyl oxime(3ao)

Figure S3: Normalized absorption (black line), excitation (red line, Detection: 266 nm) and
emission (blue line, Ex.: 316 nm) spectra of 3ao. The concentration of dichloromethane solution is $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$.

[^0]: 1. C. S. Jeffrey, K. L. Barnes, J. A. Eickhoff and C. R. Carson, J. Am. Chem. Soc., 2011, 133, 7688-7691.
