Supporting information

Copper-Catalysed C–H Functionalisation gives access to 2-aminobenzimidazoles

Peter. R. Clark*, Glynn. D. Williams, Nicholas. C. O. Tomkinson

Email: peter.r.clark@gsk.com Email: glynn.d.williams@gsk.com Email: nicholas.tomkinson@strath.ac.uk

Contents

- Pages 2 3: Analytical methods
- Pages 4 7: Experimental and analytical data for guanidine starting materials
- Pages 8 13: Screening & optimisation procedure
- Page 13: Internal standard calibrations
- Page 14: Kinetic isotope effect
- Pages 15 16: Reaction additive screening
- Pages 17 21: 1H NMR spectra of known compounds
- Pages 22 53: NMR spectra of unknown compounds
- Pages 54 57: 1H, 13C & 2D NMRs of compound 6 for structural elucidation

HPLC solvent gradient for reaction monitoring

The solvents utilised were:

A: Water + 0.05% v/v trifluoroacetic acid

B: Acetonitrile + 0.05% v/v trifluoroacetic acid

The gradient employed was:

Time	Flow Rate	%A	%B
(min)	(mL min ⁻¹)		
0.00	1	97	3
3.7	1	5	95
4.0	1	5	95
4.1	1	97	3
5.5	1	97	3

LCMS High pH solvent gradient for reaction monitoring

The solvents employed were:

A = 10 mM ammonium bicarbonate in water adjusted to pH 10 with ammonia solution.

B = Acetonitrile.

The gradient employed was:

Time	Flow Rate	%A	%В
(min)	(mL min ⁻¹)		
0.00	1	97	3
0.05	1	97	3
1.50	1	5	95
1.90	1	5	95
2.00	1	97	3

High Resolution Mass Spectrometry solvent gradient (HRMS)

Time	%A	%В
(min)		
0.00	95	5
0.05	95	5
6.00	0	100
8.50	0	100
9.50	95	5
12.00	95	5

2-(3-Methoxyphenyl)-1,1-dimethylguanidine (4)

Using general procedure 1 with 3-methoxyaniline (6.61 g, 53.7 mmol, 1 equiv), sodium hydride (2.53 g, 63.4 mmol, 1.2 equiv) and dimethylcyanamide (4.44 g, 63.4 mmol, 1.2 equiv). 2-(3-methoxyphenyl)-1,1-dimethylguanidine (4) (5.42 g, 28.0 mmol, 52%) was isolated as a pale-orange crystalline solid after 3.5 hours by crystallisation from heptane/ethyl acetate and rinsing with cold tBME (10 mL).

Melting point: 134–136 °C. FTIR v_{max}/cm^{-1} 3409, 3131 (br), 1653, 1544, 1485, 1396 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.99 (6 H, s), 3.78 (3 H, s), 6.48 – 6.50 (1 H, m), 6.52 (1 H, dd, *J*=2.2, 0.9 Hz), 6.59 (1 H, ddd, *J*=8.1, 2.2, 0.9 Hz), 7.19 (1 H, *app.t*, *J*=8.1 Hz)) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.1 55.6, 109.0, 110.9, 117.6, 130.9, 152.6, 157.1, 162.2 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₀H₁₆N₃O 194.1288, found [M + H]⁺ 194.1280.

1,1-Dimethyl-2-(3-(trifluoromethyl)phenyl)guanidine (7).

Using general procedure 1 with 3-(trifluoromethyl)aniline (3.00 g, 31.0 mmol, 1 equiv), sodium hydride (1.49 g, 37.2 mmol, 1.2 equiv) and dimethylcyanamide (2.61 g, 37.2 mmol, 1.2 equiv), after a 45 minute reaction time, a precipitate formed on addition of water, which was filtered, the liquors extracted and combined with the filtered solid, yielding 1,1-dimethyl-2-(3-(trifluoromethyl)phenyl) guanidine (7) (4.658 g, 20.2 mmol, 65 %) as an off-white crystalline solid after crystallisation from boiling heptane and rinsing with cold tBME (5 mL).

Melting point: 102–104 °C FTIR v_{max} /cm⁻¹ 3450, 3122 (br), 1637, 1566, 1334 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.98 (6 H, s), 7.09 – 7.14 (2 H, m), 7.18 – 7.22 (1 H, m) 7.40 (1 H, *app*. t, *J*=7.9 Hz) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.0, 119.1 (q, *J*=3.8 Hz), 121.7 (q, *J*=3.8 Hz), 125.9 (q, *J*=271.4 Hz), 128.8, 131.0, 132.6 (q, *J*=31.7 Hz), 152.8, 157.3. ¹⁹F NMR (377 MHz, *METHANOL-d*₄) δ ppm -64.14 (1 F, s) HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₀H₁₃F₃N₃ [M + H]⁺ 232.1056, found [M + H]⁺ 232.1047

1,1-Dimethyl-2-phenylguanidine (27).

Using general procedure 1 with aniline (1.00 g, 10.7 mmol, 1 equiv), sodium hydride (0.52 g, 12.9 mmol, 1.2 equiv) and dimethylcyanamide (0.90 g, 12.9 mmol, 1.20 equiv) was reacted for 5 hours before addition of a further portion of dimethylcyanamide (0.26 g, 3.7 mmol, 0.35 equiv) and the reaction stirred at room temperature overnight. After the standard work up, the product was purified by chromatography (Biotage KP-NH silica, EtOAc) and the fractions containing product were recrystallised from EtOAc to yield 1,1-dimethyl-2-phenylguanidine (**27**) as a white crystalline solid (943 mg, 5.8 mmol, 54%) Melting point: 91–93 °C FTIR v_{max}/cm^{-1} 3429, 3144 (br), 1635, 1561, 1484 ⁻¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.99 (6 H, s), 6.90 – 6.94 (2 H, m), 7.00 (1 H, dt, *J*=14.8, 1.2 Hz), 7.26 – 7.32 (2 H, m), ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.1, 123.3, 125.3, 130.3, 151.3, 157.1. HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₉H₁₄N₃ [M + H]⁺ 164.1188, found [M + H]⁺ 164.1183 *The data is in agreement with those previously reported*¹

1-Dimethyl-2-phenyl(D₅)guanidine (28).

Using general procedure 1 with aniline- D_5 (1.09 g, 11.1 mmol, 1 equiv), sodium hydride (0.51 g, 12.7 mmol, 1.15 equiv) and dimethylcyanamide (0.91 g, 13.0 mmol, 1.2 equiv) was reacted for 5 hours before addition of a further portion of dimethylcyanamide (0.17 g, 0.22 equiv) and the reaction stirred at room temperature overnight. After the standard work up, the product was purified by chromatography (Biotage KP-NH silica, EtOAc) and the fractions containing product were recrystallised from EtOAc to yield 1,1-dimethyl-2-(phenyl- D_5)guanidine (**28**) as a white crystalline solid (461 mg, 2.7 mmol, 25%)

¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.96 (6 H, s), ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.1, 122.8 (t, *J*=23.8 Hz), 124.9 (t, *J*=24.0 Hz), 129.8 (t, *J*=25.0 Hz), 151.1, 157.1. ²H NMR (92 MHz, *DMSO-d*₆) δ ppm 7.4 (2 D, s), 7.1 (1 D, s), 7.1 (2 D, s)

2-(2-Fluorophenyl)-1,1-dimethylguanidine (51).

Using general procedure 1 with 2-fluoroaniline (2.00 g, 18.0 mmol, 1 equiv), sodium hydride (0.87 g, 21.9 mmol, 1.21 equiv) and dimethylcyanamide (1.51 g, 21.6 mmol, 1.2 equiv), 2-(2-fluorophenyl)-1,1-dimethylguanidine (**51**) (2.02 g, 11.2 mmol, 62 %) was isolated as an off-white solid after 15 hours by column chromatography (5% MeOH / CH_2CI_2 with 2% triethylamine in the CH_2CI_2 portion).

Melting point: 86–88 °C FTIR v_{max} /cm⁻¹ 3458, 3134 (br), 1636, 1566, 1481 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 3.02 (6 H, s), 6.95 – 7.03 (2 H, m), 7.03 – 7.11 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.1, 116.9 (d, *J*=20.8 Hz), 124.4 (d, *J*=7.4 Hz), 125.7 (d, *J*=3.6 Hz), 128.1 (d, *J*=2.5 Hz), 139.0 (d, *J*=12.8 Hz), 157.6 (d, *J*=242.4 Hz), 157.4 ¹⁹F NMR (377 MHz, *METHANOL-d*₄) δ ppm -126.93 (s) HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₉H₁₃FN₃ [M + H]⁺ 182.1088, found [M + H]⁺ 182.1079

Ethyl 4-((amino(dimethylamino)methylene)amino) benzoate (52)

Using general procedure 1 with ethyl 4-aminobenzoate (1.00 g, 6.1 mmol, 1 equiv), sodium hydride (0.32 g, 8.0 mmol, 1.3 equiv) and dimethylcyanamide (0.51 g, 7.3 mmol, 1.2 equiv), after 2 hours, ethyl 4-((amino(dimethyl- amino)methylene) amino)benzoate (**52**) was isolated as a white solid by chromatography (Biotage KP-NH silica 0–10% MeOH/CH₂Cl₂) (136 mg, 0.6 mmol, 10%) Melting point: 89–92 °C FTIR v_{max} /cm⁻¹3455, 3124 (br), 1703, 1624, 1551, 1493, 1401 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 1.39 (3 H, t, *J*=7.1 Hz), 3.01 (6 H, s), 4.33 (2 H, q, *J*=7.1 Hz), 6.93 – 7.01 (2 H, m), 7.87 – 7.96 (2 H, m) ¹³C{¹H</sup> NMR (101 MHz, *METHANOL-d*₄) δ ppm 14.8, 38.1, 61.7, 124.0, 124.3, 132.1, 157.1, 157.4, 168.5. HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₂H₁₈N₃O₂ [M + H]⁺ 236.1394, found [M + H]⁺ 236.1384

2-(4-Cyanophenyl)-1,1-dimethylguanidine (53).

Using general procedure 1 with 4-aminobenzonitrile (3.00 g, 25.4 mmol, 1 equiv), sodium hydride (1.32 g, 33.0 mmol, 1.3 equiv) and dimethylcyanamide (2.14 g, 30.5 mmol, 1.2 equiv), after 16 hours 2-(4-cyanophenyl)-1,1-dimethylguanidine (**53**) was isolated as a white crystalline solid after recrystallisation from EtOAc (1.412 g, 7.5 mmol, 30%).

Melting point: 125–127 °C FTIR v_{max} /cm⁻¹ 3482, 3370, 2216, 1631, 1514, 1404 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 3.02 (6 H, s), 6.98 – 7.04 (2 H, m), 7.53 – 7.60 (2 H, m). ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.0, 103.9, 121.0, 125.3, 134.4, 157.4, 157.6.

HRMS (ESI Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{10}H_{13}N_3$ $[M + H]^+$ 189.1135, found $[M + H]^+$ 189.1136

Tert-butyl 3-((amino(dimethylamino)methylene) amino)benzoate (54).

Using general procedure 1 with *tert*-butyl 4-aminobenzoate (2.52 g, 13.1 mmol, 1 equiv), sodium hydride (0.77 g, 19.3 mmol, 1.5 equiv) and dimethylcyanamide (1.13 g, 16.1 mmol, 1.2 equiv), after 16 hours and the standard work-up, the resultant crude solid was washed with heptane (15 mL) and recrystallised from heptane/EtOAc to afford *tert*-butyl 3-((amino(dimethylamino)methylene) amino)benzoate (**54**) as a white crystalline solid (2.61 g, 9.9 mmol 76%)

Melting point: 104–107 °C FTIR v_{max}/cm^{-1} 3446, 2982 (br), 1701, 1563, 1368, 1289 ¹H NMR (400 MHz, METHANOL- d_4) δ ppm 1.60 (9 H, s), 3.01 (6 H, s), 6.95 (2 H, d, *J*=8.4 Hz), 7.86 (2 H, d, *J*=8.4 Hz), ¹³C{¹H} NMR (101 MHz, METHANOL- d_4) δ ppm 27.1, 36.6, 80.2, 123.0, 124.4, 130.4, 155.2, 155.7, 166.5. HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₃H₂₂N₃O₂ [M + H]⁺ 264.1707, found [M + H]⁺ 264.2698

2-(4-Bromophenyl)-1,1-dimethylguanidine (55).

Using general procedure 1 with 4-bromoaniline (4.00 g, 23.3 mmol, 1 equiv), sodium hydride (1.21 g, 30.3 mmol, 1.3 equiv) and dimethylcyanamide (1.91 g, 27.2 mmol, 1.20 equiv), after 16 hours, following the standard work-up the resultant yellow solid was purified by recrystallisation from hot EtOAc and washing the resultant crystals with cold heptane to yield 2-(4-bromophenyl)-1,1-dimethylguanidine (**55**) as a yellow crystalline solid (2.19 g, 9.1 mmol, 39%)

Melting point: 92–94 °C FTIR v_{max} /cm⁻¹ 3540, 3190 (br), 1693, 1633, 1593, 1556 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.99 (6 H, s), 6.81 – 6.85 (2 H, m), 7.37 – 7.42 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.0, 115.5, 127.1, 133.2, 151.0 157.1 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₉H₁₃⁷⁹BrN₃ [M + H]⁺ 242.0297, found [M + H]⁺ 242.0280

3-(3-Chlorophenyl)-1,1-dimethylguanidine (56).

Using general procedure 1 with 3-chloroaniline (1.51 g, 11.8 mmol, 1 equiv), sodium hydride (0.58 g, 14.5 mmol, 1.2 equiv) and dimethylcyanamide (1.00 g, 14.2 mmol, 1.2 equiv), after 2.5 hours, 3-(3-chlorophenyl)-1,1-dimethylguanidine (**56**) was isolated as a white solid after chromatography (0–10% MeOH/CH₂Cl₂) (1.06 g, 5.4 mmol, 46%).

Melting point: 89–91 °C FTIR v_{max} /cm⁻¹3437, 3122 (br), 1637, 1553, 1398, 1302 ¹H NMR (400 MHz, *DMSO-d*₆) δ ppm 2.89 (6 H, s), 5.81 (2 H, br. s), 6.68 – 6.72 (1 H, m), 6.76 (1 H, t, *J*=2.0 Hz), 6.83 – 6.87 (1 H, m), 7.19 (1 H, t, *J*=7.9 Hz) ¹³C{¹H} NMR (101 MHz, *DMSO-d*₆) δ ppm 37.4, 119.9, 121.7, 122.6, 130.3, 133.1, 152.0 153.4. HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₉H₁₃³⁵CIN₃ [M + H]⁺ 198.0793, found [M + H]⁺ 198.0785

3-(3-Bromophenyl)-1,1-dimethylguanidine (57).

Using general procedure 1 with 3-bromoaniline (3.00 g, 17.4 mmol, 1 equiv), sodium hydride (0.84 g, 20.9 mmol, 1.2 equiv) and dimethylcyanamide (1.47 g, 20.9 mmol, 1.2 equiv), after 16 hours and the standard work-up procedure the crude product was purified by reverse-phase chromatography (kP-C₁₈-HS cartridge 15-55% water/acetonitrile with 0.1% NH₄HCO₃ buffer). The fractions containing product were evaporated to remove the acetonitrile and the aqueous pH increased to ~10 with NH₄OH, which was then extracted with tBME (3 × 50 mL). The organic portion was then washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to afford 3-(3-bromophenyl)-1,1-dimethylguanidine (**57**) as an off-white solid (883 mg, 3.7 mmol, 21%) Melting point: 104–106 °C FTIR v_{max}/cm⁻¹ 3437, 3128 (br), 1637, 1598, 1551, 1465, 1398. ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.96 (6 H, s), 6.84 (1 H, ddd, *J*=7.8, 2.0, 1.2 Hz), 7.04 (1 H, t, *J*=2.0 Hz), 7.09 (1 H, ddd, *J*=7.8, 2.0, 1.2 Hz), 7.15 (1 H, t, *J*=7.8 Hz) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.0, 123.7, 124.1, 125.8, 128.2, 131.7, 153.7, 157.2 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₉H₁₃⁷⁹BrN₃ [M + H]⁺ 242.0287, found [M + H]⁺ 242.0275

2-(Benzo[d][1,3]dioxol-5-yl)-1,1-dimethylguanidine (58).

Using general procedure 1 with benzo[d][1,3]dioxol-5-amine (2.49 g, 29.5 mmol, 1 equiv), sodium hydride (1.58 g, 39.6 mmol, 1.3 equiv) and dimethylcyanamide (2.49 g, 35.5 mmol, 1.2 equiv), after 16 hours and the standard work-up, the resultant solid was washed with cold heptane and then EtOAc, and purified by chromatography (0-6% MeOH/CH₂Cl₂, Biotage KP-NH cartridge) to afford 2-(benzo[d][1,3]dioxol-5-yl)-1,1-dimethylguanidine (**58**) as a fluffy grey solid (2.63 g, 12.7 mmol, 43%)

Melting point: 137–138 °C FTIR v_{max} /cm⁻¹ 3435, 3192 (br), 2898, 1634, 1574, 1437 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 2.97 (6 H, s), 5.91 (2 H, s), 6.36 (1 H, dd, *J*=8.2, 2.1 Hz), 6.43 (1 H, d, *J*=2.1 Hz), 6.75 (1 H, d, *J*=8.2 Hz) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 38.1, 102.2, 106.7, 109.4, 117.4, 144.5, 145.4, 149.7, 157.4 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₀H₁₄N₃O₂ [M + H]⁺ 208.1081, found [M + H]⁺ 208.1070

1,1-Diethyl-2-phenylguanidine (59).

Using general procedure 1 with aniline (1.50 g, 16.1 mmol, 1 equiv), sodium hydride (0.869 g, 21.7 mmol, 1.4 equiv) and diethylcyanamide (1.74 g, 17.7 mmol, 1.1 equiv), after 24 hours using the standard work-up and purification by chromatography (0–10% MeOH/CH₂Cl₂) yielded 1,1-diethyl-2-phenylguanidine (**59**) as a white solid (1.09 g, 5.7 mmol, 35%).

Melting point: 59–61 °C FTIR v_{max} /cm⁻¹ 3441, 3074 (br), 2976, 1637, 1543 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 1.22 (6 H, t, *J*=7.1 Hz), 3.41 (4 H, q, *J*=7.1 Hz), 6.89 – 6.95 (2 H, m), 7.00 (1 H, tt, *J*=7.4, 1.2 Hz), 7.25 – 7.33 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 12.5, 41.6, 121.8, 124.0, 128.9, 150.2, 153.8 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₈N₃ [M + H]⁺ 192.1495, found [M + H]⁺ 192.1488

N-phenylpiperidine-1-carboximidamide (60).

Using general procedure 1 with aniline (1.23 g, 13.2 mmol, 1 equiv), sodium hydride (0.643 g, 16.1 mmol, 1.2 equiv) and piperidine-1-carbonitrile (1.41 g, 12.8 mmol, 1.0 equiv) after 16 hours and the standard work-up was isolated *N*-phenylpiperidine-1-carboximidamide (**60**) by chromatography (1% triethylamine in EtOAc) (555 mg, 2.7 mmol, 21% based on piperidine-1-carbonitrile).

Melting point: 74–76 °C FTIR v_{max} cm⁻¹ 3435, 2857, 1637 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 1.57 – 1.76 (6 H, m), 3.37 – 3.45 (4 H, m), 6.87 – 6.94 (2 H, m), 7.00 (1 H, tt, *J*=7.4, 1.2 Hz), 7.25 – 7.33 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 24.4, 25.5, 46.4, 121.9, 123.5, 128.9, 149.7, 155.6 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₂H₁₈N₃ [M + H]⁺ 204.1495, found [M + H]⁺ 204.1486

N-phenylmorpholine-4-carboximidamide (61).

Using general procedure 1 with aniline (1.00 g, 10.7 mmol, 1 equiv), sodium hydride (0.589 g, 14.7 mmol, 1.4 equiv) and morpholine-4-carbonitrile (1.26 g, 11.3 mmol, 1.1 equiv) after 24 hours and the standard work-up was isolated *N*-phenylmorpholine-4-carboximidamide (**61**) as a white solid by chromatography (80% EtOAc/heptane \rightarrow EtOAc w/ 2% triethylamine in EtOAc portions). (752 mg, 3.6 mmol, 34%)

Melting point: 131–133 °C FTIR v_{max} /cm⁻¹3453, 3354, 2848 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 3.37 – 3.41 (4 H, m), 3.72 – 3.78 (4 H, m), 6.88 – 6.94 (2 H, m), 7.02 (1 H, tt, *J*=7.6, 1.2 Hz), 7.31 (2 H, tt, *J*=7.6, 1.2 Hz) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 45.9, 66.4, 122.2, 123.4, 129.0, 149.4, 155.7 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₆N₃O [M + H]⁺ 206.1288, found [M + H]⁺ 206.1278

2-(4-bromophenyl)-1,1-diethylguanidine (62).

Using general procedure 1 with 4-bromoaniline (2.44 g, 14.2 mmol, 1 equiv), sodium hydride (0.732 g, 18.3 mmol, 1.3 equiv) and diethylcyanamide (1.61 g, 16.4 mmol, 1.2 equiv) after 24 hours at room temperature was added further diethylcyanamide (0.42 g, 4.3 mmol, 0.3 equiv). After a further 5 hours using the standard work-up was isolated 2-(4-bromophenyl)-1,1-diethylguanidine (**62**) as a white crystalline solid by chromatography (1% MeOH/EtOAc w/ 1% triethylamine in EtOAc portions) and subsequent recrystallisation (heptane/EtOAc) (700 mg, 2.6 mmol, 18%)

Melting point: 53–54 °C FTIR v_{max} /cm⁻¹ 3453, 3139, 2976 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 1.17 (6 H, t, *J*=7.1 Hz), 3.37 (4 H, q, *J*=7.1 Hz), 6.70 – 6.88 (2 H, m), 7.28 – 7.44 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 12.4, 41.6, 114.0, 125.8, 131.8, 149.7, 153.8 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₇⁷⁹BrN₃ [M + H]⁺ 270.0600, found [M + H]⁺ 270.0599

N-(4-bromophenyl)morpholine-4-carboximidamide (63).

Using general procedure 1 with 4-bromoaniline (2.46 g, 14.3 mmol, 1 equiv), sodium hydride (0.78 g, 19.6 mmol, 1.4 equiv) and morpholine 4-carbonitrile (1.76 g, 15.7 mmol, 1.1 equiv) after 16 hours and chromatography (1–3% MeOH in EtOAc w/ 1% triethylamine in EtOAc portion) was isolated *N*-phenylmorpholine-4-carboximidamide (**63**) as an off-white solid (2.84 g, 10.0 mmol, 70%)

Melting point: 110–112 °C FTIR v_{max} /cm⁻¹ 3447, 3069 (br), 2852, 1635, 1589, 1560, 1433 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 3.38 (4 H, t, J=4.8 Hz), 3.74 (4 H, t, J= 4.8 Hz), 6.79 – 6.86 (2 H, m), 7.38 – 7.44 (2 H, m) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 45.8, 66.3, 114.4, 125.3, 131.9, 149.1, 155.6 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₅⁷⁹BrN₃O [M + H]⁺ 284.0393, found [M + H]⁺ 284.0384

N-(2-bromophenyl)morpholine-4-carboximidamide (64).

Using general procedure 1 with 2-bromoaniline (2.00 g, 11.6 mmol, 1 equiv), sodium hydride (0.61 g, 15.1 mmol, 1.3 equiv) and morpholine 4-carbonitrile (1.44 g, 12.9 mmol, 1.1 equiv) after 16 hours and chromatography (EtOAc:heptane, 1:1, w/ 2% triethylamine in EtOAc portion) was isolated a white solid. The solid was then recrystalised from TBME to yield *N*-(2-bromophenyl)morpholine-4-carboximidamide (**64**) as a white crystaline solid (1.48 g, 5.2 mmol, 45%)

Melting point: 98–100 °C FTIR v_{max}/cm⁻¹ 3458, 3150 (br), 2974, 1630, 1546, 1426, 1275 ¹H NMR (400 MHz, *METHANOL-d*₄) δ ppm 3.41 – 3.47 (4 H, m), 3.74 – 3.79 (4 H, m), 6.94 (1 H, td, *J*=7.6, 1.6 Hz), 6.98 (1 H, dd, *J*=8.0, 1.6 Hz), 7.29 (1 H, td, *J*=7.6, 1.4 Hz), 7.59 (1 H, dd, *J*=8.0, 1.4 Hz) ¹³C{¹H} NMR (101 MHz, *METHANOL-d*₄) δ ppm 46.0, 66.4, 118.9, 123.7, 125.3, 128.1, 132.8, 148.2, 155.1 HRMS (ESI Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₅⁷⁹BrN₃O [M + H]⁺ 284.0393, found [M + H]⁺ 284.0384

MeO、N、_NMe ₂	CuOAc (15 mol%) PivOH (1 equiv)	MeO
4	Solvent (0.3 M) 100 °C, 21 h air (6 bar)	NMe₂ 5

Solvent	Flash point	Product (5, HPLC Area	Starting material (4, HPLC	Comments
		%)	area %)	
Ethylene carbonate	150 °C	-	-	Decomposition
Ethylene glycol	111 °C	0%	> 90%	Poor conversion
NMP	91 °C	36%	16%	
Octanoic acid	130 °C	0%	>90%	Poor conversion

Screen of copper sources, additives and solvent for the cyclisation of 4.

MeO N NMe ₂ CuX ₂ or CuX (0. Additive (1 ec NH ₂ Solvent (0.3 80 °C, 16 air (6 bar)	5 equiv) quiv.) Met M) h)	N N N N N N N N N N N N N N N N N N N	MeO 22 MeO	N N N N N N N N N N N N N N N N N N N	Ле ₂
Catalyst / Solvent / Additive	[Cu] /	Additive /	4/ HPLC%	5/ HPLC%	6/ HPLC%
CuOAc / Sulfolane / PivOH	7.91	5.5	30	45	5
CuOAc / Sulfolane / AcOH	8.06	s.s	33	42	6
CuOAc / Sulfolane / NaOPiv	8.02	16.02	79	9	1
CuOAc / Sulfolane / NaOAc	7.89	10.57	72	15	1
CuOAc / DMSO / PivOH	7.95	s.s	45	19	6
CuOAc / DMSO / AcOH	7.89	<i>s.s</i>	42	16	7
CuOAc / DMSO / NaOPiv	7.92	15.96	78	3	0.4
CuOAc / DMSO / NaOAc	7.92	10.57	80	5	0.8
CuOAc / NMP / PivOH	7.91	<i>s.s</i>	25	33	13
CuOAc / NMP / AcOH	7.92	5.5	27	32	12
CuOAc / NMP / NaOPiv	7.93	16.83	74	8	2
CuOAc / NMP / NaOAc	7.95	10.72	66	14	3
CuTC / Sulfolane / PivOH	11.95	s.s	34	27	7
CuTC / Sulfolane / AcOH	12.59	5.5	38	44	3
CuTC / Sulfolane / NaOPiv	12.09	15.79	82	8	0.3
CuTC / Sulfolane / NaOAc	11.81	10.58	51	19	7
CuTC / DMSO / PivOH	12.58	s.s	66	17	2.4
CuTC / DMSO / AcOH	11.72	<i>s.s</i>	67	17	2
CuTC / DMSO / NaOPiv	11.85	15.88	71	9	1.6
CuTC / DMSO / NaOAc	15.70	10.60	75	5	1.4
CuTC / NMP / PivOH	12.82	<i>s.s</i>	37	30	7.5
CuTC / NMP / AcOH	12.29	<i>s.s</i>	34	25	10
CuTC / NMP / NaOPiv	11.66	16.07	70	11	2
CuTC / NMP / NaOAc	15.72	10.60	57	18	4
CuEH ₂ / Sulfolane / PivOH	23.00	S.S	63	30	0.5
CuEH ₂ / Sulfolane / AcOH	23.07	<i>s.s</i>	53	35	1.5
CuEH ₂ / Sulfolane / NaOPiv	23.24	15.86	60	27	2.5

CuEH2 / DMSO / PivOH 23.08 s.s 68 17 2 CuEH2 / DMSO / AcOH 23.17 s.s 69 16 2 CuEH2 / DMSO / NaOPiv 23.52 15.88 72 9 2	
CuEH2 / DMSO / AcOH 23.17 s.s 69 16 2 CuEH2 / DMSO / NaOPiv 23.52 15.88 72 9 2	
CuEH ₂ / DMSO / NaOPiv 23.52 15.88 72 9 2	
CuEH ₂ / DMSO / NaOAc 23.09 10.70 75 6 1	
CuEH ₂ / NMP / PivOH 23.55 <i>s.s</i> 47 35 4	
CuEH2 / NMP / AcOH 23.22 s.s 46 30 5	
CuEH2 / NMP / NaOPiv 23.04 15.90 66 14 5	
CuEH ₂ / NMP / NaOAc 22.60 10.58 59 17 6	
Cu 3-MeSal / Sulfolane / PivOH 13.93 s.s 55 29 0.8	3
Cu 3-MeSal / Sulfolane / AcOH 13.99 s.s 71 19 0	
Cu 3-MeSal / Sulfolane / NaOPiv 14.01 15.93 91 2.5 0	
Cu 3-MeSal / Sulfolane / NaOAc 13.97 10.67 55 10 4	
Cu 3-MeSal / DMSO / PivOH 13.99 s.s 76 13 0	
Cu 3-MeSal / DMSO / AcOH 14.00 s.s 62 11 2.5	5
Cu 3-MeSal / DMSO / NaOPiv 14.00 15.95 70 7 2	
Cu 3-MeSal / DMSO / NaOAc 14.01 10.60 75 5 1	
Cu 3-MeSal / NMP / PivOH 14.00 s.s 54 20 3.5	5
Cu 3-MeSal / NMP / AcOH 14.34 s.s 54 20 4	
Cu 3-MeSal / NMP / NaOPiv 13.89 15.96 62 13 4	
Cu 3-MeSal / NMP / NaOAc 13.94 10.70 67 10 3	
Cu(II)(acacF ₆) ₂ / Sulfolane / PivOH 30.94 <i>s.s</i> 68 17 0.5	5
Cu(II)(acacF ₆) ₂ / Sulfolane / AcOH 30.96 s.s 78 14 0	
Cu(II)(acacF ₆) ₂ / Sulfolane / NaOPiv 30.98 16.00 70 20 0.5	5
Cu(II)(acacF ₆) ₂ / Sulfolane / NaOAc 31.24 10.61 74 9 0.5	5
Cu(II)(acacF ₆) ₂ / DMSO / PivOH 31.65 s.s 94 1 0	
Cu(II)(acacF ₆) ₂ / DMSO / NaOPiv 32.02 15.99 57 12 2.4	1
Cu(II)(acacF ₆) ₂ / DMSO / NaOAc 30.96 10.92 54 11 4	
Cu(II)(acacF ₆) ₂ / NMP / PivOH 31.55 s.s 82 7 0	
Cu(II)(acacF ₆) ₂ / NMP / AcOH 30.83 s.s 84 7 0	
Cu(II)(acacF ₆) ₂ / NMP / NaOPiv 30.87 16.00 45 25 4	
Cu(II)(acacF ₆) ₂ / NMP / NaOAc 32.10 10.79 53 19 4	
Cu(II)(EAA) ₂ / Sulfolane / PivOH 20.95 s.s 25 54 2	
Cu(II)(EAA) ₂ / Sulfolane / AcOH 20.98 s.s 31 49 2	
Cu(II)(EAA) ₂ / Sulfolane / NaOPiv 21.02 15.98 80 9 0	
Cu(II)(EAA)2 / Sulfolane / NaOAc 21.11 10.45 71 9 0	
Cu(II)(EAA) ₂ / DMSO / PivOH 21.02 s.s 41 32 0	
Cu(II)(EAA) ₂ / DMSO / NaOPiv 21.04 16.00 44 13 0.5	5
Cu(II)(EAA) ₂ / DMSO / NaOAc 21.07 10.825 81 2 0	
Cu(II)(EAA) ₂ / NMP / PivOH 21.04 s.s 10 43 0.4	1
Cu(II)(EAA) ₂ / NMP / AcOH 21.05 s.s 15 43 1	
Cu(II)(EAA) ₂ c / NMP / NaOPiv 21.18 16.00 56 19 0.5	5
Cu(II)(EAA) ₂ / NMP / NaOAc 21.13 10.48 46 22 0	
Cu(NCMe) ₄ .PF ₆ / Sulfolane / PivOH 24.00 s.s 52 24 5	

$Cu(NCMe)_4.PF_6$ / Sulfolane / AcOH	24.01	<i>s.s</i>	60	20	4		
Cu(NCMe) ₄ .PF ₆ / Sulfolane / NaOPiv	24.02	16.00	78	7	0		
Cu(NCMe) ₄ .PF ₆ / Sulfolane / NaOAc	24.02	10.71	61	11	0.8		
Cu(NCMe) ₄ .PF ₆ / DMSO / PivOH	24.02	5.5	83	9	0		
Cu(NCMe) ₄ .PF ₆ / DMSO / AcOH	24.02	5.5	70	3	1		
Cu(NCMe) ₄ .PF ₆ / DMSO / NaOPiv	24.02	15.99	55	12	4		
Cu(NCMe) ₄ .PF ₆ / DMSO / NaOAc	24.01	10.46	53	11	4		
Cu(NCMe) ₄ .PF ₆ / NMP / PivOH	24.03	5.5	58	9	2		
Cu(NCMe) ₄ .PF ₆ / NMP / AcOH	24.01	<i>s.s</i>	64	7	3		
Cu(NCMe) ₄ .PF ₆ / NMP / NaOPiv	24.03	16.00	43	19	8		
Cu(NCMe) ₄ .PF ₆ NMP / NaOAc 24.04 10.52 54 16 2.5							
s.s = dispensed in stock solution of solvent. Mass accuracy given to 2.d.p as weighings were performed on a 4.d.p mg balance. EH = 2-ethylhexanoate, TC = thiophene 2-carboxylate, 3-MeSal = 3-methyl salicylic acid, EAA = ethyl							

acetoacetate

Design of Experiments Optimisation procedure

Reaction number	7 / mg	Cu(EAA) ₂ / mg	Cu(EAA) ₂ /mol%	Temperature / °C	PivOH / mg	PivOH / eq
1	23.06	1.56	4.9	100	10.53	1.03
2	23.28	8.01	24.7	130	10.82	1.05
3	23.07	1.67	5.2	130	20.39	2.00
4	93.44	32.15	24.7	130	83.19	2.02
5	24.09	24.09	24.1	100	21.44	2.02
6	57.92	12.14	15.1	115	28.49	1.50
7	93.66	6.43	4.9	100	82.89	2.00
8	92.45	32.21	25.0	100	40.82	1.00
9	58.34	12.07	14.9	115	38.63	1.50
10	92.53	6.44	5.0	130	40.63	0.99

Table 1: masses used for DoE experimentation. Mass accuracy given to 2.d.p as weighings were performed on a 4.d.p mg balance.

The calculated statistical model fitted to the data is described below and imported directly from the DX10 Design of Experiments software.

Response 2 Product %

Center Points Detected: The ANOVA is presented in two ways: Adjusted model: The factorial model includes a curvature term, which separates the curvature from the lack-of-fit sum of squares. The adjusted model provides the factorial model coefficients you'd get if there were no center points and is used for diagnostics (by default). Unadjusted model: The model coefficients are fit using all the data (including the center points) without a curvature term. The unadjusted model is used to create the model graphs and for optimization predictions. **ANOVA Summary**

Adjusted Model Unadjusted Model

	F-value	p-value		F-value	p-value	
Model	110.16	< 0.0001	significant	10.80	0.0073	significant
Curvature	65.43	0.0002	significant			
Lack of Fit	94.11	0.0781		935.36	0.0250	Curvature appears significant. Augment to RSM if you want to explain what is causing the curvature or if curvature is in a desirable direction for your goal. Model Summary
	Adjusted	Model		Unadjusted	Model	
	Coefficient			Coefficient		
Factor	Estimate	p-value		Estimate	p-value	
Intercept	44.66			50.68		
C-Catalyst	24.23	< 0.0001		24.23	0.0026	
D-Temp	4.64	0.0316		4.64	0.4113	
Ctr Pt 1	30.06	0.0002				

The following ANOVA is for a model that does not adjust for curvature.

ANOVA for selected factorial model							
Analysis of	variance	tal	ble [Parti	al sum o	of squares	- Type III]	
Source	Squares	df	Square	Value	Prob > F		
Model	4869.88	2	2434.94	10.80	0.0073	significant	
C-Catalyst	4697.76	1	4697.76	20.83	0.0026		
D-Temp	172.12	1	172.12	0.76	0.4113		
Residual	1578.71	7	225.53				
Lack of Fit	1578.43	6	263.07	935.36	0.0250	significant	
Pure Error	0.28	1	0.28				
Cor Total	6448.59	9					

The following ANOVA is for a model that adjusts for curvature. This is the default model used for the diagnostic plots. This model is also used for prediction and model plots.

ANOVA for selected factorial model							
Analysis of	variance	tal	ole [Partia	al sum o	f squares	- Type III]	
	Sum of		Mean	F	p-value		
Source	Squares	df	Square	Value	Prob > F		
Model	4869.88	2	2434.94	110.16	< 0.0001	significant	
C-Catalyst	4697.76	1	4697.76	212.54	< 0.0001		
D-Temp	172.12	1	172.12	7.79	0.0316		
Curvature	1446.09	1	1446.09	65.43	0.0002		
Residual	132.62	6	22.10				
Lack of Fit	132.34	5	26.47	94.11	0.0781	not significant	
Pure Error	0.28	1	0.28				
Cor Total	6448.59	9					

The Model F-value of 110.16 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant.

In this case C, D are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model.

The "Curvature F-value" of 65.43 implies there is significant curvature (as measured by difference between the average of the center points and the average of the factorial points) in the design space. There is only a 0.02% chance that a "Curvature F-value" this large could occur due to noise.

The "Lack of Fit F-value" of 94.11 implies there is a 7.81% chance that a "Lack of Fit F-value" this large could occur due to noise. Lack of fit is bad -- we want the model to fit. This relatively low probability (<10%) is troubling.

Std. Dev.	4.70	R-Squared	0.9735			
Mean	50.68	Adj R-Squared	0.9647			
C.V. %	9.28	Pred R-Squared	0.9321			
PRESS	339.91	Adeq Precision	19.820			
-2 Log Likelihood	54.23	BIC	61.14			
		AICc	64.23			

The "Pred R-Squared" of 0.9321 is in reasonable agreement with the "Adj R-Squared" of 0.9647; i.e. the difference is less than 0.2.

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 19.820 indicates an adequate signal. This model can be used to navigate the design space.

	Coefficient		Standard	95% CI	95% CI	
Factor	Estimate	df	Error	Low	High	VIF
Intercept	44.66	1	1.66	40.60	48.73	
C-Catalyst	24.23	1	1.66	20.17	28.30	1.00
D-Temp	4.64	1	1.66	0.57	8.71	1.00
Ctr Pt 1	30.06	1	3.72			

Final Equation in Terms of Coded Factors:				
Product %	=			
+44.66				
+24.23	* C			
+4.64	* D			

The equation in terms of coded factors can be used to make predictions about the response for given levels of each factor. By default, the high levels of the factors are coded as +1 and the low levels of the factors are coded as -1. The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients.

Final Equation in Tern	ns of Actual Factors:
Product %	=

i iouuce 70	
-21.23251	
+2.42326	* Catalyst
+0.30923	* Temp

The equation in terms of actual factors can be used to make predictions about the response for given levels of each factor. Here, the levels should be specified in the original units for each factor. This equation should not be used to determine the relative impact of each factor because the coefficients are scaled to accommodate the units of each factor and the intercept is not at the center of the design space.

Proceed to Diagnostic Plots (the next icon in progression). Be sure to look at the:

1) Normal probability plot of the studentized residuals to check for normality of residuals.

2) Studentized residuals versus predicted values to check for constant error.

3) Externally Studentized Residuals to look for outliers, i.e., influential values.

4) Box-Cox plot for power transformations.

If all the model statistics and diagnostic plots are OK, finish up with the Model Graphs icon.

Internal standard calculations for 7 and 8

 $K_{x} = \frac{\frac{\%_{Int.Std.}}{/\%_{x.}}}{Wt_{Int.Std.}}/Wt_{x.}}$

Equation 1: K_x value calculation from stock solutions of known amount of 4,4'-di-tertbutyl-1,1'-biphenyl and **X** where X = 7 or **8**

5-Trifluoromethyl-*N*,*N*-dimethyl-1*H*-benzo[d]imidazol-2-amine (**8**) and 4,4'-di-tertbutyl-1,1'-biphenyl (internal standard) were made up to a 25 mL solution in acetonitrile in a volumetric flask. Kx calculations were performed using equation 1 with HPLC peak area response % (PAR%). Masses were recorded on a 5-figure balance.

Int. Std. / mg	8 / mg	Acetonitrile / mL	8 PAR%	Int. Std. PAR%	Кх	
28.5	26.7	25	79.368	20.632	0.243	
28.5	26.7	25	79.241	20.759	0.245	
27.6	26.7	25	79.761	20.339	0.244	
27.6	25.7	25	79.700	20.300	0.244	
				Kx average:		0.244

Table 2: 8 Kx calculations. Masses were recorded on a 5-figure balance.

1,1-Dimethyl-2-(3-(trifluoromethyl)phenyl)guanidine (7) and 4,4'-di-tertbutyl-1,1'-biphenyl (internal standard) were made up to a 25 mL solution in acetonitrile in a volumetric flask. Kx calculations were performed using equation 1 with HPLC peak area response % (PAR%). Masses were recorded on a 5-figure balance.

Int. Std. / mg	7 / mg	Acetonitrile / mL	7 PAR%	Int. Std. PAR%	Кх	
8.9	18.9	25	66.913	33.087	1.050	
8.9	18.9	25	66.892	33.108	1.051	
8.6	27	25	74.791	25.209	1.058	
8.6	27	25	74.865	25.135	1.054	
8.5	23.4	25	72.59	27.41	1.040	
8.5	23.4	25	72.561	27.439	1.041	
8.2	22.8	25	72.398	27.602	1.060	
8.2	22.8	25	72.48	27.52	1.056	
				Kx average:		1.051

Table 3: **7** Kx calculations. Masses were recorded on a 5-figure balance.

Kinetic isotope effect

Kx calculations were performed with substrates **27** and **28** as described previously. Through use of an internal standard (4,4'di-*tert*-butylbiphenyl) the rate of consumption of aryl-guanidine was monitored by HPLC analysis. Taking a log-plot of arylguanidine *vs*. time and taking a ratio of the gradients from the resultant straight line plot the K.I.E was calculated. 0.0021 / 0.0015 = 1.4. This result comes from an n = 2.

Consumption of aryl-guanidine vs time

Plot

Log (aryl guanidine %) vs time

orange/baby blue is consumption of 27, plot in red/dark blue is consumption of 28

Different additives experimental procedure

The table below summarises the solution yield of **8** using the internal standard 4,4'-di-tertbutyl-1,1'-biphenyl. Reactions at short time points remained unchanged after 16 hours/960 mins.

$$F_{3}C \xrightarrow{N} NMe_{2} \xrightarrow{NHe_{2}} NH_{2} \xrightarrow{M} NMe_{2} \xrightarrow{N} NMe_{2} \xrightarrow{N}$$

Additive	Time / minutes	Product (8) / %	Additive	Time / minutes	Product (8) / %
Pivalic acid	1440	54	Acetic acid	960	41
Adamantane carboxylic acid	1440	45	Trifluoroacetic acid	960	< 1
Benzoic acid	960	21	Methane sulfonic acid	960	0ª
Trimethylbenzoic acid	960	37	p-Toluenesulfonic acid	960	0ª
2,4,6-triethylbenzoic acid	960	44	Phenylphosphonic acid	960	*
2,4,6-tri- <i>tert</i> -butylbenzoic acid	960	53	Oxalic acid	240	0
p-methoxybenzoic acid	960	41	Oxamic acid	240	*
p-nitrobenzoic acid	960	23	Citric acid	240	0
3,4,5-trifluorobenzoic acid	960	16	2-hydroxypropanoic acid	960	9
3,4,5-trimethoxybenzoic acid	960	42	Ethyl acetoacetate	240	3
Triphenylacetic acid	240	3	Cyanamide	960	< 1
Alanine	150	0	Phenol	960	6
2-aminoisobutyric acid	150	0	2-hydroxypyridine	960	14

2-phenylbenzoic acid	960	40	Benzamidine	960	12
2-hydroxybenzoic acid	960	4	Benzamidine.HCl	960	1
3-hydroxypyridine	960	0			

^ano conversion of starting material. *reaction heterogenous and sampling not accurate.

1H NMR spectra of known compounds

4-cyano-1,4-diazepane-1-carboxylate (45)

NMR Spectra of novel compounds

2-(3-Methoxyphenyl)-1,1-dimethylguanidine (4).

1,1-Dimethyl-2-(3-(trifluoromethyl)phenyl)guanidine (7)

100 185 180 175 170 185 180 175 170 185 180 151 130 145 140 135 130 125 120 115 110 165 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Comencil Shift Sprint

6 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

¹⁹F NMR

32 24 15 6 0 -8 -16 -24 -32 -40 -48 -56 -54 -72 -80 -88 -96 -104 -112 -120 -126 -136 -144 -152 -160 -168 -176 -194 -192 -200 -208 -21 Chemical Shift (pm)

¹⁹F NMR

Compound 6 elucidation

COSY NMR

ROESY NMR

HMBC NMR

Interpretation of NMRs

(1) Gross, M.; Held, P.; Schubert, H. *Journal für Praktische Chemie* **1974**, *316*, 434.