SUPPORTING INFORMATION

\boldsymbol{P}-Chiral, \boldsymbol{N}-Phosphoryl Sulfonamide Brønsted Acids with an Intramolecular Hydrogen Bond Interaction that Modulates

 Organocatalysis

 Organocatalysis}

${ }^{\dagger}$ Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

[^0]
Contents:

General Experimental Methods S3
Synthesis of secondary phosphine oxides (SPOs) 7 S4-S5
Conversion of SPOs 7 to the arylphosphinic amides $\mathbf{8}$ S5-S8
Conversion of arylphosphinic amides $\mathbf{8}$ to Brønsted acids $\mathbf{3 b}$ and $\mathbf{4}$ S8-S11
General procedure for synthesis of Brønsted acids $\mathbf{5}$ S11-S14
Transfer hydrogenation of quinolines $\mathbf{1 0}$ to tetrahydroquinolines $\mathbf{1 1}$ S14-S19
Tables 1 and 2 S20
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR Spectra and Chiral HPLC Chromatograms; compounds are listed in numerical order. S21-S75
X-Ray data collection (Table 3) and structure refinement statistics S76-S77
References S78-S79

General Experimental Methods

All reactions were carried out under anhydrous conditions and under an atmosphere of dry argon unless otherwise indicated. Compounds were purified by normal phase flash column chromatography on silica gel (SDS, $60 \AA$ C. C. $40-63 \mathrm{~mm}$) as the stationary phase. Thin Layer Chromatography (TLC) was performed on alumina plates pre-coated with silica gel (Merck silica gel, 60 F254), which were visualized by UV when applicable ($\lambda \max =254 \mathrm{~nm}$ and/or 366 nm) and/or by staining with vanillin or anisadehyde in acidic ethanol and/or KMnO_{4} in basic water followed by heating. Key compounds were fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and HRMS. Chemical shifts (δ) are reported in ppm relative to the internal deuterated solvent or external $\mathrm{H}_{3} \mathrm{PO}_{4}\left(\delta 0.00{ }^{31} \mathrm{P}\right.$), unless indicated otherwise. High-resolution MS spectra were recorded using electrospray ionization (ESI $+/-$) and Fourier transform ion cyclotron resonance mass analyzer (FTMS).
The reactions were monitored either by TLC or analytical HPLC/MS to confirm completion and homogeneity of the products. Analytical HPLC was performed using a reversed phase $\mathrm{C} 185 \mu \mathrm{~m}$ column on a Waters Atlantis T3 instrument and the solvent system indicated below:
Solvent A: $\mathrm{H}_{2} \mathrm{O}, 0.1 \%$ formic acid
Solvent B: $\mathrm{CH}_{3} \mathrm{CN}, 0.1 \%$ formic acid
Mobile phase: linear gradient from $95 \% \mathrm{~A}$ and $5 \% \mathrm{~B}$ to $5 \% \mathrm{~A}$ and $95 \% \mathrm{~B}$ in 13 min , then 2 min at 100% B
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$

Compounds 6-bromo-2-methylquinoline (10a), 2-methylquinoline (10b), 2phenylquinoline ($\mathbf{1 0 c}$) and 4-methylquinoline (10d) were purchased from Sigma Aldrich. The 2 -ethylquinoline ($\mathbf{1 0 e}$), ${ }^{1}$ 2-isopropylquinoline (10f), ${ }^{2}$ 6-nitro-2methylquinoline ($\mathbf{1 0 g})^{3}$ and 6 -methoxy-2-methylquinoline ($\left.\mathbf{1 0 h}\right)^{3}$ were synthesized according to the literature procedures indicated.

The enantiomeric purity of chiral compounds was determined by chiral HPLC using an Agilent 1100 or Agilent 1260 series instrument and the column and solvent system indicated for each compound. The absolute stereochemistry of all compounds was assigned based on several factors, including the single crystal X-ray of the previously reported key precursor compound $\mathbf{6},{ }^{4}$ the single crystal X-ray structures of intermediate phosphinic amide 8d (refer to SI Table 3), the single crystal X-ray structures of catalysts $\mathbf{5 a}$ and $\mathbf{5 c}$, the single crystal X-ray structure of compound (S)-2-bromo-6-methyl-3,4-dihydro- $2 H-1 \lambda^{2}$-quinoline (11a), and by analogy with previously reported compounds in the literature.

The names of all compounds were generated using ChemBioDraw Ultra 12.0.

General synthesis of secondary phosphine oxides (SPOs) 7:
We recently reported the synthesis of SPO intermediates 6, 7a, 7c and 7d. ${ }^{4}$ The synthesis of analogs $\mathbf{7 e}$ and $\mathbf{7 f}$ was achieved using the same protocol. ${ }^{4}$ The synthesis of SPO analogs $\mathbf{7 b}$ was achieved using the previously reported methodology. ${ }^{5}$
(S)-tert-Butyl(2-methoxy-5, 6, 7,8-tetrahydronaphthalen-1-yl)phosphine oxide (7e):

Precursor compound 5-bromo-6-methoxy-1,2,3,4-tetrahydronaphthalene (used to prepare the Grignard reagent) was synthesized according to the method reported by Smith and co-workers. ${ }^{6}$

A three neck flask under argon was charged with SPO 6 (1 mmol) in 2-MeTHF (3 mL) and cooled to $0^{\circ} \mathrm{C}$. 2-Methoxy-5,6,7,8-tetrahydronaphthalen-1-yl magnesium bromide (1 M in 2 -MeTHF, $4 \mathrm{mmol}, 4 \mathrm{~mL}$) was added slowly while keeping the internal temperature $<5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 40 min to completion. Saturated and degassed aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added slowly to quench the reaction. The organic layer was collected and the aqueous residue was extracted with DCM (25 $\mathrm{mL} x 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel (deactivated with 10% water) using a solvent gradient of hexane/EtOAc (from 50:50 to $0: 100, \mathrm{v} / \mathrm{v}$) to obtained the desired product (141 mg) in 53% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~s}, 0.5 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 0.5 \mathrm{H})$, $6.71(\mathrm{dd}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=17.0,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.57$.
More detailed characterization and estimation of the enantiomeric purity was performed at the subsequent step, when 7 e was converted to the corresponding P-chiral (tert-butyl)-P-arylphosphinic amide 8e.
(S)-tert-Butyl(2-methoxy-6-phenylnaphthalen-1-yl)phosphine oxide (7f):

The precursor 1-bromo-2-methoxy-6-phenylnaphthalene (used to prepare the Grignard reagent) was synthesized according to the method reported by Smith and co-workers. ${ }^{6}$

A three-neck flask under argon was charged with SPO 6 (1 mmol) dissolved in 2MeTHF (3 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of 2-methoxy-6-phenylnaphthalen-1-yl
magnesium bromide (1 M in 2-MeTHF, $4 \mathrm{mmol}, 4 \mathrm{ml}$; prepared as previously reported ${ }^{6}$) was added slowly, while keeping the internal temperature $<5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 40 min to complete the reaction. Saturated and degassed aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added slowly to quench the reaction. The organic layer was collected and the aqueous residue was extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (on deactivated silica with 10% water) eluted with a solvent gradient of hexane/EtOAc gradient (50:50 to 0:100, v/v) to obtained the desired product (189 mg) in 56% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 0.5 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.81$ (dd, $J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 0.5 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 3.98$ (s, 3H), 1.26 (d, $J=16.8 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.19$.
More detailed characterization and estimation of the enantiomeric purity was performed at the subsequent step, when $7 \mathbf{f}$ was converted to the corresponding P-chiral (tert-butyl)-P-arylphosphinic amide $\mathbf{8 f}$.

General procedure for the conversion of SPOs 7 to the P-Chiral (t-butyl) $-P$ arylphosphinic amides 8 :

Chiral SPO 7 (1.0 mmol) was dissolved in 6 mL of degassed acetonitrile and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{CCl}_{4}(1.0 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{mmol})$ and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{OH}(28 \%$ in water, 0.5 mL) were sequentially added dropwise while stirring. The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then warmed to RT and allowed to stir for 16 h . Water (5 mL) was added to the reaction mixture and then extracted with EtOAc, the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product. The pure product was obtained after first passing the crude through a short silica gel column and then doing a crystallization in $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}(1: 5, \mathrm{v} / \mathrm{v})$ at $-20^{\circ} \mathrm{C}$ to obtain the phosphoramide products as highly enriched single enantiomers ($92-99 \%$ ee).
$(R)-P$-(tert-butyl)-P-phenylphosphinic amide (8a); characterization data consistent with previously reported. ${ }^{7}$

Isolated as a white solid in 82% yield (162 mg) and 96.7% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.84$ (m, 2H), 7.57-7.52 (m, 1H), 7.49-7.43 (m, 2 H), 2.72 (brs, 2H), 1.16 (d, $J=15.3 \mathrm{~Hz}, 9 \mathrm{H}$).
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 41.34$.
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$; (R)-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=5.88 \mathrm{~min},(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=7.60 \mathrm{~min}$.
(R)-P-(tert-butyl)-P-(2-methoxyphenyl)phosphinic amide (8b):

Isolated as a white solid in 73% yield (166 mg) and 95% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (ddd, $J=11.9,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.40$ (m, $1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 135.5(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}), 133.3$, 121.0 (dd, $J=10.6,2.5 \mathrm{~Hz}$), 119.4 (d, $J=101.4 \mathrm{~Hz}$), 110.6 (d, $J=7.0 \mathrm{~Hz}$), $55.2,34.3$ (d, $J=93.7 \mathrm{~Hz}$), 24.2.
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.01$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NNaO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.0967$, found: 250.0967 .
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=7.38 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=10.23 \mathrm{~min}$.
(R)- P-(tert-butyl)- P-(4-methoxyphenyl)phosphinic amide (8c)

Isolated as a white solid in 48% yield (109 mg) and $>99 \%$ ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (s, 3H), $2.84(\mathrm{~s}, 2 \mathrm{H}), 1.11$ (d, $J=15.2 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13}{ }^{13} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 121.4(\mathrm{~d}$,
$J=123.0 \mathrm{~Hz}), 113.6(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 55.2,32.3(\mathrm{~d}, J=93.5 \mathrm{~Hz}), 24.8$.
${ }^{31}$ P NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 41.44$.
HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NNaO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.0967$, found: 250.0968 .
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$; (R)-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=7.08 \mathrm{~min},(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=12.49 \mathrm{~min}$.
(R)-P-(tert-butyl)-P-(2-methoxynaphthalen-1-yl)phosphinic amide (8d)

Isolated as a white solid in 42% yield (116 mg) and $>99 \%$ ee.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dt, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, $J=8.6,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (ddd, $J=8.0,6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7$ (d, $J=3.2 \mathrm{~Hz}$), 136.7 (d, $J=6.7 \mathrm{~Hz}$), 134.7, $129.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 128.0,127.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 127.5,124.2,112.8,111.9,111.8$, $56.0,35.9(\mathrm{~d}, J=93.2 \mathrm{~Hz}), 24.4$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 50.06$.
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NNaO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 300.1124$, found: 300.1115.
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}=8.46 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ single peak $)=28.96 \mathrm{~min}$.
(R)-P-(tert-butyl)-P-(2-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphinic amide (8e)

Isolated as a white solid in 45% yield (126 mg) and $>99 \%$ ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=17.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.09(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 145.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 133.25$ (d, $J=2.1 \mathrm{~Hz}$), 131.73 (d, $J=10.3 \mathrm{~Hz}$), $117.61(\mathrm{~d}, J=95.2 \mathrm{~Hz}), 108.24(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, $55.16,35.83(\mathrm{~d}, J=91.8 \mathrm{~Hz}), 29.87,28.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 24.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}), 22.39$ (d, $J=84.5 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 50.18$.

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NNaO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 304.1437$, found: 304.1142.
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}=4.96 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ single peak $)=6.20 \mathrm{~min}$.
(R)- P-(tert-butyl)- P-(2-methoxy-6-phenylnaphthalen-1-yl)phosphinic amide (8f)

Isolated as a white solid in 60% yield (212 mg) and $>99 \%$ ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (s, 1H), $7.80(\mathrm{dd}, J=9.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{brs}, 2 \mathrm{H}), 1.17$ (d, $J=16.1 \mathrm{~Hz}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7$ (d, $J=3.2 \mathrm{~Hz}$), 140.6, 136.5, 135.9 (d, $J=6.7$ $\mathrm{Hz}), 134.9(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 128.9,128.2(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 127.3$, $127.2,127.0,125.63,112.4(\mathrm{~d}, J=93.6 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 56.0,35.9(\mathrm{~d}, J=$ 93.2 Hz), 24.4 .
${ }^{31}$ P NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 50.11$.
HRMS: calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 354.1617$, found: 354.1618.
Chiral HPLC method: Chiralcel OD, hexane/IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}=10.91 \mathrm{~min},(R)$-enanatiomer $($ single peak $) \mathrm{t}_{\mathrm{R}}=15.34 \mathrm{~min}$.

General procedure for the conversion of arylphosphinic amides $\mathbf{8}$ to $\mathrm{Br} r$ nsted acids $\mathbf{3 b}$ and 4:
A slurry of NaH (3 equiv of $60 \% \mathrm{NaH}$ in oil) in anhydrous THF (3.0 mL) at $0^{\circ} \mathrm{C}$ was added to a solution of phosphinamide $\mathbf{8}(0.5 \mathrm{mmol}, 1$ equiv) and the mixture was stirred for 30 min . The arylsulfonyl chloride (1.5 equiv) was added slowly, and the mixture was warmed to RT and monitored by TLC. After complete conversion ($\sim 12-15 \mathrm{~h}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.1 \mathrm{~g})$ was added portion-wise, the mixture was diluted with THF and filtered. The filtrate was concentrated and the crude residue was purified by flash column chromatography on silica gel to give the desired product. The product was dissolved in $\mathrm{DCM}(15 \mathrm{~mL})$ and thoroughly washed with $4 \mathrm{M} \mathrm{HCl}(2 \mathrm{x})$ to remove any salt impurities and completely protonate the catalyst. The organic layer was separated and concentrated under reduced pressure. The residue was taken up in toluene (5 mL), evaporated to dryness again and dried under high vacuum for 24 h to give the catalyst.

Note: Upon completion of the coupling reaction between intermediate 8 and the sulfonyl chloride, some analogs 4 were used directly in the subsequent demethylation step (without isolation/purification) to get the final catalysts 5 .
(R)-N-(tert-butyl(2-methoxyphenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide (3b): This compound was recently reported by Han and coworkers. ${ }^{8}$

Isolated as a yellow solid in 97% yield (240 mg).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.74$ (ddd, $J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (t, $J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11$ (s, 2H), 6.91 (dd, $J=7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.40$ (m, 2H), $3.54(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 12 \mathrm{H}), 1.14-1.04$ (m, 15H).
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 33.97$;
HRMS: calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]: 516.2308$, found: 516.2305.
(R)- N-(tert-butyl(phenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide (4a):

Isolated as a yellow solid in 96% yield (223 mg).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ ($\mathrm{td}, J=8.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{~s}, 2 \mathrm{H}), 4.51-4.45(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.01(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, 9H);
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 150.8,149.2,142.7,134.8$ (d, $J=112.0 \mathrm{~Hz}$), 134.5 (d, $J=8.1 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 123.6,35.3,33.9(\mathrm{~d}, J=103.8$ Hz), 30.2, 25.6, 25.2, 25.1, 24.33, 24.30;
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 31.74$;
HRMS: calculated for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 486.2202$, found: 486.2194.
(R)-N-(tert-butyl(4-methoxyphenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide (4b):

Upon completion of the coupling reaction with the sulfonyl chloride, compound $\mathbf{4 b}$ was used directly in the subsequent demethylation step to get the final catalyst $\mathbf{5 b}$.
(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (4c):

Compound was isolated as a white solid in 98% yield (173 mg).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.05 (s, 2H), 4.16 (hept, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.10 (s, 3H), 2.81 (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.31 $-1.11(\mathrm{~m}, 21 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.42,152.56,150.27,136.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.92$ (d, $J=2.3 \mathrm{~Hz}$), 135.43, $129.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 128.28,127.99,127.57$ (d, $J=2.3 \mathrm{~Hz}$), 124.64, 123.75, 111.89 (d, $J=8.2 \mathrm{~Hz}$), 110.79, 110.03, $56.53,37.40(\mathrm{~d}, J=89.4 \mathrm{~Hz})$, 34.18, 29.91, 24.91 (d, $J=3.4 \mathrm{~Hz}$), 24.60, 23.63 (d, $J=5.8 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.1$.
HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{4}$ NPS: 542.2499 , found: 542.2491.
(R)-N-(tert-butyl(2-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (4d):

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47$ ($\mathrm{s}, 1 \mathrm{H}$), 7.17 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.08$ (s, 2H), 6.74 (dd, $J=8.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.89 (s, 3H), 3.40 (dt, $J=18.0$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dt, $J=17.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}$, $2 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 15 \mathrm{H}), 1.13(\mathrm{~d}, J=$ 6.7 Hz, 6H).
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 44.0$.
Upon completion of the coupling reaction with the sulfonyl chloride, the crude compound $\mathbf{4 d}$ was used directly in the subsequent demethylation step to get the final catalyst 5d.
(R)-N-(tert-butyl(2-methoxy-6-phenylnaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (4e):

${ }^{1}{ }^{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (t $, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=9.1$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (s, 2H), 4.18 (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.11 (s, 3H), 2.81 (hept, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 15 \mathrm{H}), 1.18(\mathrm{dd}, J=6.9,2.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 6 H).
${ }^{31}$ P NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.2$.
Upon completing of the coupling reaction with the sulfonyl chloride, compound $\mathbf{4 e}$ the crude product was used directly in the subsequent demethylation step to get the final catalyst 5e.

General procedure for the synthesis of Brønsted acids 5:

Note: Upon completion of the coupling reaction between intermediate $\mathbf{8}$ and the sulfonyl chloride, some analogs 4 were used directly in the subsequent demethylation step to get the final catalysts $\mathbf{5}$.

Demethylation step: A solution of intermediates 3b or $\mathbf{4}$ in dry DCM (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, then BBr_{3} (1.2 equiv in hexane) was added slowly over a 5 min period. After the addition was finished, the reaction mixture was allowed to warm-up to RT and stirred overnight. The reaction was quenched with water and diluted with DCM. The organic fraction was washed with 1 N HCl , dried over anhydrous MgSO_{4}, concentrated and purified by flash column chromatography on silica gel. The isolated product was re-dissolved in DCM $(15 \mathrm{~mL})$ and thoroughly washed with $4 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL} \times 2)$ to remove any metal impurities and completely protonate the catalyst. The organic layer
was separated and concentrated under reduced pressure. The residue was taken up in toluene (5 mL), evaporated to dryness again and allowed to dry under high vacuum for a minimum of 24 h to give (R)-phenolic catalyst.
(R)-N-(tert-butyl(2-hydroxyphenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide (5a):

Compound was isolated as a yellow solid in 92% yield (221 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.60(\mathrm{~s}, 1 \mathrm{H}), 7.42$ (ddt, $\left.J=8.4,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.91 (hept, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30-1.14$ (m, 27H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6$ (d, $J=5.0 \mathrm{~Hz}$), 153.7, 150.3, 135.1 (d, $J=2.1$ $\mathrm{Hz}), 134.2(\mathrm{~s}), 133.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 123.9,118.8(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=9.3$ $\mathrm{Hz}), 107.5(\mathrm{~d}, J=117.5 \mathrm{~Hz}), 34.6(\mathrm{~d}, J=86.2 \mathrm{~Hz}), 34.2,30.1,24.7(\mathrm{~d}, J=47.0 \mathrm{~Hz})$, $23.8,23.5$ ($\mathrm{d}, J=4.2 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 45.42$.
HRMS: calculated for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 480.2332$, found: 480.2336 .
(R)-N-(tert-butyl(4-hydroxyphenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide: (5b)

Isolated as a yellow solid, in 80% yield (193 mg).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 7.51-7.44$ (m, 2H), 7.17 (s, 2H), 6.77 (dd, $J=8.5,2.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 12 \mathrm{H}), 1.18-1.03(\mathrm{~m}$, 15 H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 161.4,152.4,149.6,136.6,134.8(\mathrm{~d}, J=11.0 \mathrm{~Hz})$, $123.1,116.5(\mathrm{~d}, J=125.4 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 34.0,33.1(\mathrm{~d}, J=93.4 \mathrm{~Hz}), 28.9$, 23.8 (d, $J=38.7 \mathrm{~Hz}$), 23.0, 22.7 (d, $J=6.2 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 41.15$.
HRMS: calculated for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 480.2332$, found: 480.2335 .
(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (5c):

Isolated as a yellow solid in 95% yield (252 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.88$ (hept, $J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.88$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 21 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}$), 153.4, $150.1,136.5(\mathrm{~d}, J=2.3$ $\mathrm{Hz}), 134.6,133.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=197.2 \mathrm{~Hz}), 125.5$ (d, $J=4.2 \mathrm{~Hz}$), 123.9, 123.2, $120.4(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 36.8(\mathrm{~d}, J=85.8 \mathrm{~Hz}), 34.2,30.2$, 24.8, 24.7 (d, $J=39.8 \mathrm{~Hz}$), 23.5 (d, $J=4.6 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 47.72$.
HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 530.2488$, found: 530.2496.
(R)-N-(tert-butyl(2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (5d):

Isolated as a yellow solid in 93% yield (248 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.75 (dd, $J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (hept, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.13 (ddd, $J=15.9,10.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.98$ $-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 12 \mathrm{H}), 1.18(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, 9H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}$), 153.3, $150.2,140.3$ (d, $J=9.1$ $\mathrm{Hz}), 136.0,135.0,128.9(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 124.0,116.4(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 106.3(\mathrm{~d}, J=$ 109.8 Hz), 36.2 (d, $J=83.9 \mathrm{~Hz}$), 34.1, 30.3, 29.5, 24.8 (d, $J=84.6 \mathrm{~Hz}$), 24.8 (d, $J=$ 14.8 Hz), 24.3, 23.6, 22.4, 22.1.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 49.00$.
HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 534.2801$, found: 534.2808.
(R)-N-(tert-butyl(2-hydroxy-6-phenylnaphthalen-1-yl)phosphoryl)-2,4,6triisopropylbenzenesulfonamide (5e):

Isolated as a yellow solid in 88% yield (267 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.49(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.98 (hept, $\mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.35(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.28$ $-1.12(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.2(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 153.6,150.6,140.0,136.8,135.3$, $134.7,132.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.3,126.9,126.6(\mathrm{~d}, J=126.9$ $\mathrm{Hz}), 126.3(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 124.0,120.3(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 98.3(\mathrm{~d}, J=111.8 \mathrm{~Hz}), 36.9$ (d, $J=85.1 \mathrm{~Hz}$), $34.2,30.3,25.2,24.6,23.5(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 48.88$.
HRMS: calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 606.2801$, found: 606.2803.

General procedure for the transfer hydrogenation of quinolines $\mathbf{1 0}$ to the tetrahydroquinolines 11:

General procedure for the synthesis of the racemic tetrahydroquinolines:

An oven dried 2 dram vial equipped with a stir bar was cooled to ambient temperature in a desiccator and subsequently charged with the requisite quinoline (0.200 mmol). 1 mL of DCM, Hantzsch ester ($152 \mathrm{mg}, 0.600 \mathrm{mmol}$) and diphenylphosphinic acid (21.8 $\mathrm{mg}, 0.500 \mathrm{mmol})$. The vial was capped under air, sealed with parafilm and the mixture was stirred at RT for 2-24 h. Progress of the reaction was monitored by TLC (20% EtOAc and 80% hexanes). The crude product was purified by flash chromatography on silica gel (using EtOAc/hexanes) to afford the desired tetrahydroquinoline.

General procedure for the asymmetric transfer hydrogenation of quinolines 10 to the tetrahydroquinolines 11:

An oven-dried flask was fitted with magnetic stirring bar and charged with the quinoline (reactions were typically carried out at a $0.1-0.2 \mathrm{mmol}$ scale), catalyst ($5 \mathrm{~mol} \%$), Hantzsch ester (3.0 equiv) and solvent (0.5 mL). The resulting mixture was stirred at RT ($\sim 22^{\circ} \mathrm{C}$), unless otherwise indicated and monitored by TLC. When all starting material was consumed, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel using the solvent system indicated to isolate the corresponding product.
(S)-6-bromo-2-methyl-1,2,3,4-tetrahydroquinoline (11a):

Reaction time: 5 h using catalyst 5c. Known compound ${ }^{9}$, purified using a $0-2 \%$ EtOAc/hexanes eluent gradient; isolated as white solid in 98% yield (44.2 mg) and 88% ee. The compound was crystallized from DCM/hexanes to afford the tetrahydroquinoline 11e in 93% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.05$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (dd, $J=8.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{dqd}, J=9.3,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{ddd}, J=17.0,11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.64(\mathrm{dt}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.55$ (m, 1H), 1.20 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta 143.9,131.8,129.5,123.3,115.5,108.4,47.2,29.8$, 26.5, 22.6.

Chiral HPLC method: Chiralpak OD-H, hexane $/ \mathrm{IPA}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$; (R)-enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=8.6 \mathrm{~min},(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=11.2 \mathrm{~min}$.
For the purpose of comparison the product was also analyzed using the same chiral HPLC column and solvent system as previously reported: ${ }^{9}$ Chiralcel OJ-H, hexane/IPA $=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=19.04 \mathrm{~min},(R)$-enatiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=23.19 \mathrm{~min}$.
(S)-2-methyl-1,2,3,4-tetrahydroquinoline (11b):

NMR and chiral HPLC data consistent with those previously reported. ${ }^{10}$

Compound was purified using a $0-1 \% \mathrm{EtOAc} /$ hexanes as the eluent; isolated as a paleyellow oil in 73% yield (21.6 mg) and 88% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.02-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70($ broad s, 1 H$), 3.40(\mathrm{dqd}, J=10.0,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ - $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73$ (ddd, $J=16.3,5.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (dddd, $J=12.8,5.6,3.4,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,129.4,126.8,121.3,117.1,114.1,47.3,30.3$, 26.7, 22.8.

Chiral HPLC method: Chiralcel OD, hexane $/ \mathrm{IPA}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(R)-$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=6.78 \mathrm{~min},(S)$-enantiomer $($ majot $) \mathrm{t}_{\mathrm{R}}=7.79 \mathrm{~min}$.
(R)-2-phenyl-1,2,3,4-tetrahydroquinoline (11c):

NMR and chiral HPLC data consistent with those previously reported. ${ }^{10}$

Compound was purified using a $0-3 \% \mathrm{EtOAc} /$ hexanes eluent and isolated as a white solid 95% yield (39.9 mg) and 59.3% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.66(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=9.4,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=16.2,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dt}, J=16.3,4.8 \mathrm{~Hz}$, 1 H), 2.13 (dddd, $J=13.1,5.4,4.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dddd}, J=13.0,10.7,9.3,5.1 \mathrm{~Hz}$, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 144.9,144.9,129.4,128.7,127.6,127.0,126.7,121.0$, 117.3, 114.1, 56.4, 31.1, 26.5.

Chiral HPLC method: Chiralcel OD, hexane $/ \mathrm{IPA}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=15.13 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=21.39 \mathrm{~min}($ major $)$.

(R)-4-methyl-1,2,3,4-tetrahydroquinoline (11d):

NMR and chiral HPLC data consistent with those previously reported ${ }^{11}$

Compound purified using a $0-20 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane and isolated a pale-yellow oil in 70% yield and 30% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{tdd}, J=7.3,1.7,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.39-$ 3.23 (m, 2H), 2.92 (h, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.68$ (dddd, $J=13.0,6.9$, $6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3): $\delta 144.3,128.6,126.9,126.8,117.1,114.3,39.2,30.4$, 30.0, 22.8.

Chiral HPLC method: Chiralcel OD, hexane/IPA $=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=16.41 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=17.67 \mathrm{~min}$.
(S)-2-ethyl-1,2,3,4-tetrahydroquinoline (11e):

NMR and chiral HPLC data consistent with those previously reported. ${ }^{10}$

Compound was purified using a $0-2 \%$ EtOAc in hexanes and isolated as a pale-yellow oil in 72% yield (23.1 mg) and 75% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96$ (ddt, $J=8.2,7.4,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60(\mathrm{td}, J=7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dt, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.17$ (dtd, $J=9.4,6.4,2.9 \mathrm{~Hz}$, 1 H), $2.88-2.77$ (m, 1H), 2.73 (ddd, $J=16.3,5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (dddd, $J=12.7$, $5.6,4.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,129.4,126.8,121.5,117.0,114.1,53.2,29.6$, 27.7, 26.6, 10.2.

Chiral HPLC method: Chiralcel OD, hexane $/ \mathrm{IPA}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(R)-$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=6.56 \mathrm{~min},(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=7.91 \mathrm{~min}$.
(R)-2-isopropyl-1,2,3,4-tetrahydroquinoline (11f):

NMR and chiral HPLC data consistent with those previously reported, ${ }^{10}$ purified using a $0-2 \% \mathrm{EtOAc} /$ hexanes eluent; isolated as a pale-yellow oil in 77% yield (27.0 mg) and 66% ee.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ $-6.45(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=10.0,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=16.5$, $11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (dddd, $J=12.5,5.5,3.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ $-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.2,129.3,126.8,121.6,116.9,114.1,57.4,32.7$, 26.8, 24.7, 18.7, 18.4.

Chiral HPLC method: Chiralcel OD, hexane/IPA $=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(S)$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=5.90 \mathrm{~min},(R)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=8.53 \mathrm{~min}$.

(S)-2-methyl-6-nitro-1,2,3,4-tetrahydroquinoline (11g):

NMR and chiral HPLC data consistent with those previously reported; ${ }^{12}$ compound was purified by flash column chromatography on silica gel (silica gel was deactivated with a $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexanes solution) using a $0-15 \% \mathrm{EtOAc} /$ hexanes eluent gradient; isolated an orange solid in 83% yield (44.2 mg) and 86% ee. The compound was recrystallized from $\mathrm{DCM} /$ hexanes to afford the tetrahydroquinoline in 96% ee.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 6.42-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H})$, 3.55 (dqd, $J=9.7,6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.74$ (m, 2H), 2.00 (dtd, $J=12.9,4.8,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.58$ (dtd, $J=13.0,9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.4,137.5,125.9,124.4,119.8,112.2,47.6,29.0$, 26.3, 22.4.

Chiral HPLC method: Chiralcel OD, hexane $/ \mathrm{IPA}=95 / 5,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ;(R)-$ enantiomer $\mathrm{t}_{\mathrm{R}}($ minor $)=19.35 \mathrm{~min},(S)$-enantiomer $\mathrm{t}_{\mathrm{R}}($ major $)=20.67 \mathrm{~min}($ major $)$.
(R)-3-methyl-1,2,3,4-tetrahydroquinoline (11h):

NMR and chiral HPLC data consistent with those previously reported. ${ }^{13}$
Compound was purified by flash column chromatography on silica gel using a $0-10 \%$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$ eluent; isolated as a pale-yellow oil in 71% yield (20.9 mg) and 14% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{ddd}, J=11.0,3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}$, $J=11.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=16.0,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16.0,10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,129.7,126.8,121.3,117.1,114.0,49.0,35.6$, 27.3, 19.2.

Chiral HPLC method: Chiralcel OJ-H, hexane $/$ IPA $=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$; (R)-enantiomer $\mathrm{t}_{\mathrm{R}}=30.77 \mathrm{~min}$ (major), (S) - enantiomer $\mathrm{t}_{\mathrm{R}}=37.77 \mathrm{~min}$ (minor).

(R)-3-phenyl-1,2,3,4-tetrahydroquinoline (11i):

The precursor 3-phenylquinoline was synthesized according to literature procedure. ${ }^{14}$

NMR and chiral HPLC data consistent with those previously reported. ${ }^{15}$ Compound was purified by flash column chromatography on silica gel using $0-6 \% \mathrm{EtOAc} /$ hexanes as the eluent; isolated as a pale-yellow solid in 51% yield $(10.5 \mathrm{mg}$; yield based on recovered starting material) and 4% ee.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H})$, 3.47 (ddd, $J=11.2,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{tdd}, J=10.2,5.8$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.1,144.0,129.7,128.8,127.4,127.1,126.8,121.6$, 117.3, 114.3, 48.5, 38.8, 34.8.

Chiral HPLC method: Chiralcel OD, hexane/IPA $=98 / 2,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$; (R)enantiomer $\mathrm{t}_{\mathrm{R}}=18.81 \mathrm{~min}($ major $),(\mathrm{S})-10.5 \mathrm{mg} \mathrm{t}_{\mathrm{R}}=24.04 \mathrm{~min}($ minor $)$.

Methyl (R)-1,2,3,4-tetrahydroquinoline-2-carboxylate (11 \mathbf{j})

Reaction time: 4 h at $50^{\circ} \mathrm{C}$ using catalyst $\mathbf{5 c}$. NMR and chiral HPLC data consistent with those previously reported. ${ }^{16}$
purified using a $0-8 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes eluent; isolated as a colourless oil in 71% yield $(27.2 \mathrm{mg})$ and 30% ee.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{td}$, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=8.8,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dtd}, J=13.0,5.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (dtd, $J=13.0,9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,143.1,129.3,127.2,120.7,117.8,114.7,54.1$, 52.5, 26.0, 24.8.

Chiral HPLC method: Chiralpak AD, hexane $/ \mathrm{IPA}=80 / 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$; $(\mathrm{R})-$ $t_{R}=7.62 \mathrm{~min}$ (major), $(S)-\mathrm{t}_{\mathrm{R}}=9.04 \mathrm{~min}$ (minor).

Table 1: Solvent Screening and Optimization of Reaction Conditions

Table 2: Optimization of Hantzsh Ester

Entry	R	Time (h)	Yield (\%)	$e e(\%)$
1	Me	5	99	88
2	Et	5	99	89
3	t-Bu	3	99	85

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectra and chiral HPLC chromatograms

Compounds Listed in Numerical Order

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}$

${ }^{31}$ P NMR of 3b

${ }^{13} \mathrm{C}$ NMR of 3b

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}$

${ }^{31} \mathrm{P}$ NMR of $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a}$

Chiral HPLC Chromatograms of 4a

Method: HPLC instrument: Agilent 1260 HPLC; $\lambda=220 \mathrm{~nm}$
Colum: Phenomenex Lux Cellulose-2, 4.6x 100 mm
Solvent A: $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{HClO}_{4}$ in water, Solvent B: $\mathrm{CH}_{3} \mathrm{CN} ; 50-90 \%$ solvent B in 15 min at a flow rate of $1.2 \mathrm{~mL} / \mathrm{min}$
Top panel, racemic (in red) superimposed with (R)-enantiomer (in blue); bottom panel (R)-4a; (R)-enantiomer $\mathrm{t}_{\mathrm{R}}=11.44 \mathrm{~min}$ (major), (S) - enantiomer $\mathrm{t}_{\mathrm{R}}=12.36 \mathrm{~min}($ minor $)$.

${ }^{1}$ HNMR of $\mathbf{4 c}$

${ }^{31} \mathrm{P}$ NMR of $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 c}$

${ }^{1}$ HNMR of 4d

${ }^{31} \mathrm{P}$ NMR of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 e}$

${ }^{31} \mathrm{P}$ NMR of $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR of 5 a

${ }^{31} \mathrm{P}$ NMR of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}$

${ }^{31}$ P NMR of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 b}$

${ }^{1}$ H NMR of $5 \mathbf{c}$

${ }^{31}$ P NMR of 5 c

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 c}$

${ }^{1}$ H NMR of 5d

${ }^{31}$ P NMR of 5d

${ }^{1} \mathrm{H}$ NMR of 5 e

${ }^{31}$ P NMR of $\mathbf{5 e}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 e}$

${ }^{1} \mathrm{H}$-NMR of $7 \mathbf{e}$

7e
(
${ }^{31} \mathrm{P}$-NMR of 7e

${ }^{1} \mathrm{H}$-NMR of 7 f

${ }^{31} \mathrm{P}$-NMR of 7f

${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of compound 8a were consistent with those previously reported. ${ }^{7}$

Chiral HPLC chromatograms of 8a

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.881		0.2069	5673.06494	411.40399	98.3002
2	7.600		0.2540	98.09958	5.90015	1.6998

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 b}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 b}$

Chiral HPLC chromatograms of $\mathbf{8 b}$

${ }^{1} \mathrm{H}$ NMR of 8 c

${ }^{31}$ P NMR of 8c

${ }^{13} \mathrm{C}$ NMR of 8 c

Chiral HPLC chromatograms of 8 c

${ }^{1} \mathrm{H}$ NMR of 8d

${ }^{31}$ P NMR of 8d

Chiral HPLC chromatograms of 8d

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.963 BB	1.0990	. 57264 e	216.1050	00.00

${ }^{31}$ P NMR of $8 \mathbf{e}$
(

Chiral HPLC chromatograms of $\mathbf{8 e}$

${ }^{1}$ H NMR of $\mathbf{8 f}$

${ }^{31}$ P NMR of $\mathbf{8 f}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 f}$

Chiral HPLC chromatograms of $\mathbf{8 f}$

| Peak
 RetTime Type
 $\#$Width
 [min] | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [min] | [mAU*s] | [mAU] | \% |

(S)-6-bromo-2-methyl-1,2,3,4-tetrahydroquinoline (11a)
${ }^{1} \mathrm{H}$ NMR of 11a

(1000
${ }^{13}$ C NMR of 11a

Chiral HPLC Chromatograms of 11a

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	8.575		0.4773	492.90408	16.00656	5.2228
2	11.171	BB	0.4480	8944.63574	316.22061	94.7772

For comparison compound 11a was also analyzed using a chiracel OJ-H comlun in comparison with the literature. ${ }^{9}$ Chiral HPLC Chromatograms of 11a

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	19.035	MM	0.5867	1.50542 e 4	427.68332	93.9108
2	23.192		0.6424	976.11206	25.32313	6.0892

Chiral HPLC Chromatogram of crystallized product 11a

Peak $\#$	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	18.989	MM	0.5980	$2.30864 e 4$	643.44177	96.5849
2	23.121	MM	0.7581	816.29865	17.94708	3.4151

(S)-2-methyl-1,2,3,4-tetrahydroquinoline (11b)
${ }^{1} \mathrm{H}$ NMR of 11b

${ }^{13}$ C NMR of 11b

Chiral HPLC Chromatograms of 11b

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area $\%$
1	6.777	MM	0.1708	2120.12207	206.83456	5.7703
2	7.786		0.2332	3.46218 e 4	2474.55640	94.2297

(R)-2-phenyl-1,2,3,4-tetrahydroquinoline (11c)
${ }^{1} \mathrm{H}$ NMR of 11c

${ }^{13} \mathrm{C}$ NMR of 11 c

Chiral HPLC Chromatograms of 11c

(R)-4-methyl-1,2,3,4-tetrahydroquinoline (11d)

${ }^{13} \mathrm{C}$ NMR of 11d

Chiral HPLC Chromatograms of 11d

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 웅
1	16.412		0.5150	$1.74665 e 4$	565.20856	35.2382
2	17.669	MM	0.5373	$3.21006 e 4$	995.67267	64.7618

(S)-2-ethyl-1,2,3,4-tetrahydroquinoline (11e)
${ }^{1} \mathrm{H}$ NMR of 11 e

${ }^{13} \mathrm{C}$ NMR of 11e

Chiral HPLC Chromatograms of 11e

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.562		0.1823	2201.67993	201.33543	12.6316
2	7.910	MM	0.2248	1.52283 e 4	1129.25708	87.3684

(R)-2-isopropyl-1,2,3,4-tetrahydroquinoline (11f)
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1 f}$

${ }^{13}$ C NMR of $\mathbf{1 1 f}$

Chiral HPLC Chromatograms of 11f

(S)-2-methyl-6-nitro-1,2,3,4-tetrahydroquinoline (11g)
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1} \mathbf{g}$

${ }^{13} \mathrm{C}$ NMR of 11 g

Chiral HPLC Chromatogram of $\mathbf{1 1} \mathrm{g}$

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	19.126	MM	0.6119	256.38251	6.98332	7.1706
2	20.442		0.9745	3319.06494	56.76318	92.8294

Chiral HPLC Chromatogram of crystallized product 11g

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area $\%$
1	19.352	MM	0.6727	41.21978	1.02125	2.0388
2	20.673	MM	0.9551	1980.56396	34.56263	97.9612

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1 h}$

${ }^{13}$ C NMR of $\mathbf{1 1 h}$

Chiral HPLC Chromatograms of $\mathbf{1 1 h}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1 i}$
\%
ヘñ N

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1 i}$

Chiral HPLC Chromatograms of 11i

Signal 6: DAD1 $\mathrm{F}, \mathrm{Sig}=254,4 \operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	18.810	MM	0.5948	2835.94873	79.46480	51.8408
2	24.040		0.7355	2634.54956	59.70087	48.1592
Totals	S :			5470.49829	139.16567	

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1} \mathbf{j}$

Chiral HPLC Chromatograms of $\mathbf{1 1} \mathbf{j}$

Signal 6: DAD1 F, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} *_{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	7.620		0.4169	$2.45852 e 4$	982.85883	65.2355
2	9.041		0.4524	1.31016 e 4	482.72311	34.7645
Totals	S :			3.76868 e 4	1465.58194	

X-Ray Data Collection and Structural Refinement Statistics

The X-ray data were collected on a Bruker D8 Venture dual-source diffractometer equipped with a PHOTON II detector and an Oxford Cryostream 800 cooling system, using mirrormonochromatized $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.54184 \AA$) from a microfocus source, in a series of φ - and ω-scans. APEX3 software was used for data collection, integration and reduction. ${ }^{17}$ Semi-empirical absorption correction was applied using SADABS-2016/2. ${ }^{18}$

The structures were solved using SHELXT-2014/5 (5a_123K, 11a_253K) or SHELXT2018/2 (5c_253K, 8d_253K) ${ }^{19}$ and refined by full-matrix least-squares using SHELXL-2018/3 ${ }^{20}$ within Olex 2^{21} and WinGX ${ }^{22}$ packages. All non-hydrogen atoms were refined anisotropically. All carbon-bound hydrogen atoms were calculated to their optimal positions and treated as riding atoms using isotropic displacement parameters 1.2 (or 1.5 in case of methyl groups) times larger than the respective parent atoms. Nitrogen- and oxygen-bound hydrogen atoms were found in the difference electron density map and were modelled as constrained, with isotropic displacement parameters 1.2 (for nitrogen-bound) or 1.5 (for oxygen-bound) times larger than those of the respective parent atoms. In case of 11a_253K, the amino group was instead allowed to refine as a rigid body to allow for the partial sp^{3} character of the nitrogen, i.e. the out-of-plane position of the attached hydrogen atom. For disordered moieties, 1,2- and 1,3-interatomic distances were restrained to be equal and the anisotropic displacement parameters of the atoms were restrained to be equal for bonded and spatially close atoms. In case of $\mathbf{5 c} \mathbf{2 5 3 K}$, the minor disorder component of the 2,4,6triisopropylbenzenesulfonyl group was partially refined as a rigid body including the benzene ring with the attached secondary carbon atoms of isopropyl groups and the sulfonyl ($-\mathrm{SO}_{2}{ }^{-}$) group. The occupancies of the disordered moieties were either allowed to refine freely $\left(\mathbf{5 c} _\mathbf{2 5 3 K}\right)$ or were fixed to 0.5 as required by the proximity of a two-fold rotation axis (8d_253K).

CCDC 1935843-1935846 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Table 3. Crystallographic data

Complex	5a_123K	5c_253K	8d_253K	11a_253K
CCDC Number	1935843	1935844	1935845	1935846
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{PS}$	$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{PS}$	$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrN}$
Formula weight	479.59	561.69	639.50	226.12
T / K	123.0(1)	253.0(1)	253.0(1)	253.0(1)
Crystal system	Monoclinic	Orthorhombic	Tetragonal	Orthorhombic
Space group	$P 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 4{ }_{1}{ }_{1} 2$	$P 2_{1} 2_{1} 2_{1}$
a / \AA	10.6790(7)	10.5840(6)	10.7127(2)	16.0321(5)
b / \AA	12.0178(8)	15.7917(8)	10.7127(2)	6.1532(2)
c / \AA	11.2241(7)	18.4493(10)	27.9476(6)	9.7828(3)
$\alpha /{ }^{\circ}$	90	90	90	90
$\beta /{ }^{\circ}$	112.3257(14)	90	90	90
$\gamma /{ }^{\circ}$	90	90	90	90
V / \AA^{3}	1332.50(15)	3083.6(3)	3207.32(14)	965.06(5)
Z	2	4	4	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.195	1.210	1.324	1.556
μ / mm^{-1}	1.878	1.721	3.070	5.338
Max. and min transmission	0.7543 and 0.5780	0.7536 and 0.6107	0.7536 and 0.6332	0.7543 and 0.5764
$F(000)$	516.0	1208.0	1352.0	456.0
Crystal color and shape	colorless, prism	yellow, lath	colorless, prism	colorless, block
Crystal size $/ \mathrm{mm}^{3}$	$0.655 \times 0.634 \times 0.502$	$0.644 \times 0.628 \times 0.384$	$0.314 \times 0.283 \times 0.221$	$0.337 \times 0.312 \times 0.294$
2θ range for data collection 10	8.952 to 161.056	7.368 to 145.612	8.84 to 144.914	10.594 to 161.068
Index ranges	$\begin{aligned} & -13 \leq h \leq 13, \\ & -15 \leq k \leq 14, \\ & -14 \leq l \leq 14 \end{aligned}$	$\begin{aligned} -13 & \leq h \leq 13, \\ -19 & \leq k \leq 19 \\ -22 & \leq l \leq 22 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13, \\ & -13 \leq k \leq 13, \\ & -34 \leq l \leq 32 \end{aligned}$	$\begin{aligned} & -20 \leq h \leq 20 \\ & -7 \leq k \leq 7 \\ & -12 \leq l \leq 12 \end{aligned}$
Reflections collected	31499	60068	45989	25154
Reflections [$R_{\text {int }}$]	5643 [0.0313]	6006 [0.0411]	3167 [0.0835]	2073 [0.0457]
Data completeness (\%)	99.5 to $2 \theta=135.500^{\circ}$	97.6 to $2 \theta=135.358^{\circ}$	99.2 to $2 \theta=135.500^{\circ}$	97.6 to $2 \theta=135.358^{\circ}$
Data/restraints/parameters	5643/1/300	6006/981/483	3167/20/208	2073/0/114
Goodness-of-fit on F^{2}	1.034	1.137	1.054	1.145
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{l}=0.0271 \\ & w R_{2}=0.0709 \end{aligned}$	$\begin{aligned} & R_{l}=0.0437 \\ & w R_{2}=0.1133 \end{aligned}$	$\begin{aligned} & R_{1}=0.0278 \\ & w R_{2}=0.0741 \end{aligned}$	$\begin{aligned} & R_{l}=0.0656 \\ & w R_{2}=0.1579 \end{aligned}$
Final R indices [all data]	$\begin{aligned} & R_{1}=0.0273 \\ & w R_{2}=0.0711 \end{aligned}$	$\begin{aligned} & R_{I}=0.0440 \\ & w R_{2}=0.1137 \end{aligned}$	$\begin{aligned} & R_{I}=0.0280 \\ & w R_{2}=0.0744 \end{aligned}$	$\begin{aligned} & R_{1}=0.0662 \\ & w R_{2}=0.1581 \end{aligned}$
Largest diff. peak/hole (e \AA^{-3})	0.346/-0.258	0.477/-0.282	0.253/-0.190	0.475/-0.632
Flack parameter x	0.014(9)	0.029(4)	-0.007(5)	0.050(18)
Extinction coefficient	0.0090(10)	0.0130(15)	-	0.014(2)

References

1. Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. PalladiumCatalyzed Benzylic Addition of 2-Methyl Azaarenes to N-Sulfonyl Aldimines via C-H Bond Activation. J. Am. Chem. Soc. 2010, 132, 3650-3651.
2. Wen, J.; Tan, R.; Liu, S.; Zhao, Q.; Zhang, X. Strong Brønsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a $\mathrm{Rh}-$ thiourea chiral phosphine complex via anion binding. Chem. Sci., 2016, 7, 30473051.
3. (a) Matsugi, M.; Tabusa, F.; Minamikawa, J. Doebner-Miller synthesis in a twophase system: practical preparation of quinolines. Tetrahedron Lett. 2000, 41, 85238525. (b) Tahtaoui, C.; Guillier, F.; Klotz, P.; Galzi, J-L.; Hibert, M.; Ilien, B. On the Use of Nonfluorescent Dye Labeled Ligands in FRET-Based Receptor Binding Studies. J. Med. Chem. 2005, 48, 7847-7859.
4. Li, S.G.; Yuan, M.; Topic, F.; Han, Z.S.; Senanayake, C.H.; Tsantrizos, Y.S. Asymmetric library synthesis of P-chiral t-butyl-substituted secondary and tertiary phosphine oxides. J. Org. Chem. 2019, 84, 7291-7302.
5. Han, Z.S.; Wu, H.; Xu, Y.; Zhang, Y.; Qu, B.; Li, Z.; Caldwell, D.R.; Fandrick, K.R.; Zhang, L.; Roschangar, F.; Song, J.J.; Senanayake, C.H. General ans stereoselective method for the synthesis of sterically congested and structurally diverse P-stereogenic secondary phosphine oxides. Org. Lett. 2017, 19, 1796.
6. Jolliffe, J.D.; Armstrong, R.J.; Smith, M.D. Catalytic enantioselective synthesis of atropisomeric biaryl by a cation-directed O-alkylation. Nature Chem. 2017, 9, 558562.
7. Han, Z. S.; Zhang, L,; Xu, Y.; Sieber, J. D.; Marsini, M. A.; Li, Z.; Reeves, J. T.; Fandrick, K. R.; Patel, N. D.; Desrosiers, J.; Qu, B.; Chen, A.; Rudzinski, D. M.; Samankumara, L. P.; Ma, S.; Grinberg, N.; Roschangar, F.; Yee, N. K.; Wang, G.; Song,J. J.; Senanayake, C. H. Efficient asymmetric synthesis of structurally diverse Pstereogenic phosphinamides for catalyst design. Angew. Chem. Int. Ed. 2015, 54, 5474-5477.
8. Han, Z.S.; Wu, H.; Qu, B.; Wang, Y.; Wu, L.; Zhang, L.; Xu, Y.; Wu, L.; Zhang, Y.; Lee, H.; Roschangar, F.; Son g, J.J.; Senanayake, C.H. New class of P-stereogenic chiral Brønsted acids catalysts derived from chiral phosphinamides. Tetrahedron Lett. 2019, 60, 1834-1837.
9. Yang, T.; Yin, Q.; Gu, G.; Zhang, X. A one-pot process for the enantioselective synthesis of tetrahydroquinolines and tetrahydroisoquinolines via asymmetric reductive amination (ARA). Chem. Commun. 2018, 54, 7247-7250.
10. Wang, C.; Li, C.; Wu, X.; Pettman A.; Xiao, J. pH-Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water. Angew. Chem. Int. Ed. 2009, 48, 6524-6528.
11. Rueping, M.; Theissmann, T.; Stoeckel, M.; Antonchick, A. P. Direct enantioselective access to 4 -substituted tetrahydroquinolines by catalytic asymmetric transfer hydrogenation of quinolines Org. Biomol. Chem. 2011, 9, 6844-6850
12. Gou, F-R.; Zhang, X.; Liang, Y-M. Iridium-Catalyzed Asymmetric Hydrogenation of Quinoline Derivatives with C3*-TunePhos. Adv. Synth. Catal. 2010, 352, 24412444.
13. Zhao, X.; Xiao, J.; Tang. W. Enantioselective reduction of 3-substituted quinolones with a cyclopentadiene-based chiral Brønsted acid. Synthesis, 2017, 49, 3157-3164.
14. Batsyts, S.; Vedmid, R.; Namyslo, J. C.; Nieger, M.; Schmidt, A. 3-Aryl substituted 1-methylquinolinium salts as carbine precursors. Eur. J. Org. Chem., 2019, 1301-1310.
15. Rueping, M.; Theissmann, T.; Raja, S.; Bats. J. W. Asymmetric counterion pair catalysis: An enantionselective Brønsted acid-catalyzed protonation. Adv. Synth. Catal. 2008, 350, 1001-1006.
16. Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6327-6328.
17. Bruker. APEX3. Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
18. Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination.
J. Appl. Cryst. 2015, 48, 3.
19. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3.
20. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3.
21. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339.
22. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849 .

[^0]: * Email: youla.tsantrizos@mcgill.ca

