Supplemental Information

A Strong Organic Electron Donor Incorporating Highly π-Donating
 Triphenylphosphonium Ylidyl Substituents
 Morgan M. Burgoyne, Thomas M. MacDougall, Zachary N. Haines, Jordan W.
 Conrad, Larry A. Calhoun, Andreas Decken and C. Adam Dyker*
 Department of Chemistry, University of New Brunswick, Fredericton, New
 Brunswick, E3B 5A3 (Canada); E-mail: cadyker@unb.ca

Contents:

NMR Spectra 4
Table 1. Selected 2D NMR correlations for isomers of Bd 15
Table 2. Selected 2D NMR correlations for isomers of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$ 22
Cyclic Voltammagram of Bd 24
Reductions Using Bd 25
Variable Temperature ${ }^{1} \mathrm{H}$ NMR Inversion Transfer Experiments on 5 27
References: 36
List of Figures:
Figure $\mathrm{S}^{31}{ }^{31} \mathrm{P}$ NMR spectrum of 2 in CDCl_{3} 4
Figure $\mathrm{S} 2{ }^{1} \mathrm{H}$ NMR spectrum of 2 in CDCl_{3}. 4
Figure $\mathrm{S} 3{ }^{13} \mathrm{C}$ NMR spectrum of 2 in CDCl_{3} 5
Figure $\mathrm{S} 4{ }^{31} \mathrm{P}$ NMR of 3 in CDCl_{3} 5
Figure $\mathrm{S}^{1} \mathrm{H}$ NMR of 3 in CDCl_{3} 6
Figure $\mathrm{S}^{13} \mathrm{C}$ NMR of 3 in CDCl_{3} 6
Figure $\mathrm{S} 7{ }^{31} \mathrm{P}$ NMR of 4 in $\mathrm{CD}_{3} \mathrm{CN}$ 7
Figure $\mathrm{S} 8{ }^{1} \mathrm{H} \mathrm{NMR}$ of 4 in $\mathrm{CD}_{3} \mathrm{CN}$ 7
Figure $\mathrm{S} 9{ }^{13} \mathrm{C}$ NMR of 4 in $\mathrm{CD}_{3} \mathrm{CN}$. 8
Figure $\mathrm{S} 10{ }^{31} \mathrm{P}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$. 8
Figure $\mathrm{S} 11{ }^{1} \mathrm{H}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$ 9
Figure $\mathrm{S} 12{ }^{13} \mathrm{C}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$. 9
Figure S13 NOESY NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$ 10
Figure S 14 COSY NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$ 11
Figure $\mathrm{S} 15{ }^{31} \mathrm{P}$ NMR of E and Z isomers of $B d$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ 12
Figure $\mathrm{S} 16{ }^{1} \mathrm{H}$ NMR of E and Z isomers of Bd in $\mathrm{C}_{6} \mathrm{D}_{6}$ 12
Figure S17 2D NOESY spectrum of E and Z isomers of $B d$ in $C_{6} D_{6}$. Correlations between the
$\mathrm{CH}_{\text {pyridyl }}$ and the CH_{3}, which defines the E isomer, are circled 13
Figure $\mathrm{S} 18{ }^{31} \mathrm{P}-1 \mathrm{H}$ HMBC of E and Z isomers of Bd in $\mathrm{C}_{6} \mathrm{D}_{6}$, showing correlations between the C -
${ }^{1} \mathrm{H}_{\text {ylidyl }}$ (x axis) and the ${ }^{31} \mathrm{P}$ (y-axis) 14
Figure $\mathrm{S} 19{ }^{31} \mathrm{P}$ NMR spectrum of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}-$ in $\mathrm{CD}_{3} \mathrm{CN}$ 16
Figure $\mathrm{S}_{2} 0^{31} \mathrm{P}$ NMR of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}-$ in $\mathrm{CD}_{3} \mathrm{CN}$ (blow up of 8-19 ppm region) 16
Figure $\mathrm{S} 21{ }^{1} \mathrm{H}$ NMR of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$. 17
Figure $\mathrm{S} 22{ }^{13} \mathrm{C}$ NMR of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}-$ in $\mathrm{CD}_{3} \mathrm{CN}$ 18
Figure $\mathrm{S} 23{ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HMBC of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}-$ in $\mathrm{CD}_{3} \mathrm{CN}$, showing correlations between the
$\mathrm{C}-{ }^{-1} \mathrm{H}_{\text {ylidyl }}\left(\mathrm{x}\right.$ axis) and the ${ }^{31} \mathrm{P}$ (y-axis) 18
Figure S 24 2D NOESY spectrum of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$. 19
Figure S25 2D COSY spectrum of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$. 20
Figure $\mathrm{S} 262 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ NMR spectrum of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$. 21Figure S 27 Cyclic voltammogram of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$in $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ in DMF, with ferrocene asinternal standard (scan rate of $50 \mathrm{mV} / \mathrm{s}$). At top is a blow-up of the signal for the $\mathrm{Bd} / \mathrm{Bd}^{2+}-$
$\qquad$$2 \mathrm{PF}_{6}{ }^{-}$couple24
Figure $\mathrm{S} 28{ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture of in situ generated Bd with $\mathrm{Ph}_{2} \mathrm{PCl}$ in toluene.25

Figure $\mathrm{S} 29{ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture of in situ generated Bd with $\mathrm{Cy}_{3} \mathrm{PCl}_{2}$ in
\qquad
Figure S 30 . Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 recorded in dmso-d6 at $25^{\circ} \mathrm{C}$.27

Figure S31. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $20^{\circ} \mathrm{C} . . .28$
Figure S32. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $30{ }^{\circ} \mathrm{C} . . .29$
Figure S33. Results of an inversion-transfer experiment performed on 5 in dmso- $d 6$ at $40^{\circ} \mathrm{C} \ldots 30$
Figure S34. Results of an inversion-transfer experiment performed on 5 in dmso- $d 6$ at $51^{\circ} \mathrm{C} \ldots .31$
Figure S35. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $60{ }^{\circ} \mathrm{C} \ldots .32$
Figure S36. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $69{ }^{\circ} \mathrm{C} . . .33$
Figure S37. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $79{ }^{\circ} \mathrm{C} . . .34$
Figure $\operatorname{S38}$. Plot of $\ln (k / T)$ vs 1/T for the exchange rate data of 5 in dmso-d6................................ 35
Figure S39. HSQC spectrum of the reaction mixture for the formation of Bd in $\mathrm{C}_{6} \mathrm{D}_{6} \ldots \ldots \ldots \ldots \ldots . .36$

NMR Spectra

Figure $\mathbf{S} 1{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Figure S2 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Figure $\mathrm{S} 3{ }^{13} \mathrm{C}$ NMR spectrum of 2 in CDCl_{3}.

Figure $\mathbf{S} 4{ }^{31} \mathrm{P}$ NMR of $\mathbf{3}$ in CDCl_{3}.

Figure $\mathbf{S 5}^{1} \mathrm{H}$ NMR of $\mathbf{3}$ in CDCl_{3}.

Figure $\mathbf{S 6}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3}$ in CDCl_{3}.

Figure $\mathrm{S} 7{ }^{31} \mathrm{P}$ NMR of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S 9}{ }^{13} \mathrm{C}$ NMR of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S 1 0}{ }^{31} \mathrm{P}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S} 12{ }^{13} \mathrm{C}$ NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S 1 3}$ NOESY NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$

Figure $\mathbf{S 1 4}$ COSY NMR of 5 in $\mathrm{CD}_{3} \mathrm{CN}$

Figure S15 ${ }^{31} \mathrm{P}$ NMR of E and Z isomers of $B d$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16 ${ }^{1} \mathrm{H}$ NMR of E and Z isomers of $\mathbf{B d}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

between the CH^{-1} yrify and the CH_{3}, which defines the Efisomer, are circled. $\sqrt{ }$

Figure S18 ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HMBC of E and Z isomers of Bd in $\mathrm{C}_{6} \mathrm{D}_{6}$, showing correlations between the $\mathrm{C}-{ }^{1} \mathrm{H}_{\text {ylidy }}$ (x axis) and the ${ }^{31} \mathrm{P}$ (y -axis).

Table 1. Selected 2D NMR correlations for isomers of Bd

Atom	$\mathrm{Ph}_{3} \mathrm{P}_{\mathrm{P}}^{2}$		
	δ (ppm)	NOESY	${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC
$1{ }^{1} \mathrm{H}$	5.81	7	---
$2{ }^{1} \mathrm{H}$	5.19	8	---
$4{ }^{1} \mathrm{H}$	5.60	8	---
$7{ }^{1} \mathrm{H}$	2.51	1	---
$8 \quad{ }^{1} \mathrm{H}$	2.22	2, 4	9
$9 \quad{ }^{31} \mathrm{P}$	5.80	---	8
	$\mathrm{Ph}_{3} \stackrel{9}{\mathrm{P}}$		
Atom	δ (ppm)	NOESY	${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC
$1{ }^{1} \mathrm{H}$	5.81	7	---
$2{ }^{1} \mathrm{H}$	5.40	8	---
$4 \quad{ }^{1} \mathrm{H}$	5.34	7	---
$7{ }^{1} \mathrm{H}$	2.27	1,4	---
$8{ }^{1} \mathrm{H}$	2.17	2	8
$9 \quad{ }^{31} \mathrm{P}$	6.20	---	9

Figure $\mathbf{S 2 0}{ }^{31} \mathrm{P}$ NMR of mixture of $\mathbf{B d}^{\mathbf{2 +}}-\mathbf{2} \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$ (blow up of 8-19 ppm region).

Figure $\mathbf{S} 21{ }^{1} \mathrm{H}$ NMR of mixture of $\mathbf{B d}^{\mathbf{2 +}} \mathbf{- 2} \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$.

$\begin{array}{lllllllllllllllllllllllllllllllll}70 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35\end{array}$
Figure $\mathbf{S 2 2}{ }^{13} \mathrm{C}$ NMR of mixture of $\mathbf{B d}^{\mathbf{2 +}}-\mathbf{2 P F}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S23 ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HMBC of mixture of $\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{3} \mathrm{CN}$, showing correlations between the $\mathrm{C}-{ }^{-1} \mathrm{H}_{\text {ylidyl }}$ (x axis) and the ${ }^{31} \mathrm{P}$ (y-axis).

(mdd) if

Atom	δ (ppm)	NOESY	COSY	${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC
$1{ }^{1} \mathrm{H}$	7.01	2, 7	$2\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right)$	---
$2{ }^{1} \mathrm{H}$	5.86	1	$1\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 4\left({ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.7 \mathrm{~Hz}\right)$	---
$4{ }^{1} \mathrm{H}$	6.75	8	$2\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=2.7 \mathrm{~Hz}\right)$	---
$7{ }^{1} \mathrm{H}$	3.33	1	---	---
$8 \quad{ }^{1} \mathrm{H}$	4.44	4	---	9
$9 \quad{ }^{31} \mathrm{P}$	13.43	---	---	8
			 omer mixture	
Atom	δ (ppm)	NOESY	COSY	${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC
$1{ }^{1} \mathrm{H}$	7.06		$2\left({ }^{3} \mathrm{JHH}=7.5 \mathrm{~Hz}\right)$	---
$2{ }^{1} \mathrm{H}$	6.64	No NOESY	$1\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 4\left({ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.7 \mathrm{~Hz}\right)$	---
$4{ }^{1} \mathrm{H}$	5.46	correlations	$2\left({ }^{4} \mathrm{JHH}=2.7 \mathrm{~Hz}\right)$	---
$7{ }^{1} \mathrm{H}$	2.92	observed for this	---	---
$8{ }^{1} \mathrm{H}$	4.37	isomer	---	9
$9{ }^{31} \mathrm{P}$	13.16		---	8

 E / Z isomer 58% of mixture				
Atom	δ (ppm)	NOESY	cosy	${ }^{14}-{ }^{31} \mathrm{P}$ HMBC
$1{ }^{1} \mathrm{H}$	6.82	2, 7	$\left.2{ }^{(3}{ }^{\text {HHH}}=7.5 \mathrm{~Hz}\right)$	---
$2{ }^{1} \mathrm{H}$	5.71	1	$\left.\left.1{ }^{(3} \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 4{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.7 \mathrm{~Hz}\right)$	---
$4{ }^{1} \mathrm{H}$	6.20	8	$2\left({ }^{4} \mathrm{JHH}=2.7 \mathrm{~Hz}\right), 4^{\prime}$	---
$7{ }^{1} \mathrm{H}$	3.05	1	---	---
$8 \quad{ }^{1} \mathrm{H}$	4.22	4	---	9
$9{ }^{31} \mathrm{P}$	13.37	---	---	8
1' ${ }^{1} \mathrm{H}$	7.25	$2^{\prime}, 7$	$2^{\prime}\left({ }^{3} \mathrm{JHH}=7.5 \mathrm{~Hz}\right)$	---
2' ${ }^{1} \mathrm{H}$	6.76	${ }^{1}, 8$ '	$1^{\prime}\left({ }^{(}{ }^{\text {JHH }}=7.5 \mathrm{~Hz}\right), 4^{\prime}\left({ }^{4} \mathrm{JHH}=2.7 \mathrm{~Hz}\right)$	---
4' ${ }^{1} \mathrm{H}$	5.69	---	4, 2' (${ }^{4} \mathrm{JHH}=2.7 \mathrm{~Hz}$)	---
7' ${ }^{1} \mathrm{H}$	3.33	${ }^{\prime}$	---	---
8' ${ }^{1 / \mathrm{H}}$	4.48	${ }^{\prime}$	--	9 '
$9^{\prime}{ }^{31} \mathrm{P}$	13.86	---	---	8

Cyclic Voltammagram of Bd

Figure S27 Cyclic voltammogram of $\mathrm{Bd}^{\mathbf{2 +}} \mathbf{- 2 P F}_{6}{ }^{-}$in $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ in DMF, with ferrocene as internal standard (scan rate of $50 \mathrm{mV} / \mathrm{s}$). At top is a blow-up of the signal for the $\mathbf{B d} / \mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-}$couple.

Reductions Using Bd

Reduction of Chlorodiphenylphosphine 9 to Diphosphine 10

$$
\mathrm{Ph}_{2} \mathrm{PCl} \xrightarrow[\text { toluene, }-36^{\circ} \mathrm{C}]{\text { 0.5 eq } \mathrm{Bd}} 0.5 \mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{2}
$$

$9 \quad-\mathrm{Bd}^{2+}-2 \mathrm{PF}_{6}{ }^{-} \quad 10$

Figure S28 ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture of in situ generated Bd with $\mathrm{Ph}_{2} \mathrm{PCl}$ in toluene.

Reduction of Dichlorotriphenylphosphorane 7 to Phosphine 8

Figure S29 ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture of in situ generated Bd with $\mathrm{Cy}_{3} \mathrm{PCl}_{2}$ in benzene.

Variable Temperature ${ }^{1} \mathrm{H}$ NMR Inversion Transfer Experiments on 5

NMR spectra were recorded using either a Varian Inova 300 or Agilent 400 MR
NMR spectrometer. Inversion transfer experiments were carried out on the 400 MR spectrometer operating under VnmrJ 3.2A using the PRESAT pulse sequence. Spectra were recorded by application of a selective 180° degree inversion pulse of 11.5 ms applied to the ${ }^{1} \mathrm{H}$ signal at 6.81 ppm , followed, after a variable delay time, by a non-selective 90° pulse. The intensities of the inverted signal at 6.81 ppm , and the exchange coupled signal at 5.70 ppm were measured using VnmrJ 4.2 software by applying a baseline correction to the spectra followed by manual selection of the integral reset points. The exchange rates at each temperature were determined by fitting the integrations of the inverted and exchange-coupled signal as a function of the variable delay time to a two-site exchange model using either Bain's CIFIT program, ${ }^{1}$ or a spreadsheet programmed with the McConnell equations for two-site exchange as described by Led and Gesmar. ${ }^{2}$

Figure S30. Expansion of the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 recorded in dmso-d6 at 25 ${ }^{\circ} \mathrm{C}$.

Figure S31. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $20^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.09 \pm 0.02 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S32. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $30^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1 , yielding a rate constant of $0.14 \pm 0.02 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S33. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $40^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.23 \pm 0.02 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 $p p m$ signal to +1 at a delay time of 0 seconds.

Figure S34. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $51^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1 , yielding a rate constant of $0.40 \pm 0.01 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S35. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $60^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1 , yielding a rate constant of $0.74 \pm 0.02 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S36. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $69{ }^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $1.26 \pm 0.02 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S37. Results of an inversion-transfer experiment performed on 5 in dmso-d6 at $79{ }^{\circ} \mathrm{C}$.

The relative intensities of the ${ }^{1} \mathrm{H}$ NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $2.39 \pm 0.03 \mathrm{~s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S38. Plot of $\ln (\mathbf{k} / \mathbf{T})$ vs $1 / \mathrm{T}$ for the exchange rate data of 5 in dmso$d 6$.

Derived from ${ }^{1} \mathrm{H}$ inversion-transfer experiments at 20, 30, 40, 51, 60, 69 and 79 ${ }^{\circ} \mathrm{C}$ (Figures S31 to S37). The solid line was calculated using linear regression analysis resulting in a correlation coefficient of 0.983 . The slopes and intercepts were used to determine enthalpy ($\Delta \mathrm{H}^{\ddagger}$) and entropy ($\Delta \mathrm{S}^{\ddagger}$) of activation values of $10.7 \pm 0.6 \mathrm{kcal} \mathrm{mol}^{-1}$ and $-27.0 \pm 1.9 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ respectively, resulting in a free energy of activation ($\Delta \mathrm{G}^{\ddagger}$) of $18.8 \pm 0.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at 298 K .

Figure S39. HSQC spectrum of the reaction mixture for the formation of Bd in $\mathrm{C}_{6} \mathrm{D}_{6}$.

References:

1 A. D. Bain and J. A. Cramer, J. Magn. Reson., 1996, 118, 21-27.
2 J. J. Led and H. J. Gesmar, J. Magn. Reson., 1982, 49, 444-463.

