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Figure S1 3'P NMR spectrum of 2 in CDCls.
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Figure S3 3C NMR spectrum of 2 in CDCl;.
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Figure S7 3'P NMR of 4 in CD3CN.
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Figure S9 3C NMR of 4 in CD3;CN.
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Figure S11 '"H NMR of 5 in CD3;CN.
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Figure S13 NOESY NMR of 5 in CD3;CN
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Table 1. Selected 2D NMR correlations for isomers of Bd

Z isomer
Atom 5 (ppm) NOESY 1H-3"P HMBC
1 H 5.81 7
2 H 5.19 8
4 H 5.60 8
7 H 2.51 1
8 H 2.22 2,4 9
9 3P 5.80 8
E isomer
Atom 5 (ppm) NOESY H-3"P HMBC
1 H 5.81 7
2 H 5.40 8
4 H 5.34 7
7 H 227 1,4
8 H 217 2 8
9 P 6.20 9
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Figure $19 1P NMR
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E/E isomer
32% of mixture

Atom 3 (ppm) NOESY COSsY "H-3'P HMBC

1 H 7.01 2,7 2 (3Jys=7.5Hz)

2 H 5.86 1 1 (duw= 7.5 Hz), 4 (*Juu= 2.7 Hz)

4 H 6.75 8 2 (3Juw= 2.7 Hz)

7 H 3.33 1

8 H 4.44 4 9

9 %P 13.43 - 8

Z/Z isomer
10% of mixture

Atom 3 (ppm) NOESY COSY 'H-*'"P HMBC
1 H 7.06 2 (3Juu= 7.5 Hz)
2 H 6.64 No NOESY 1 (®Jun= 7.5 Hz), 4 (*Jun= 2.7 Hz)
4 H 5.46 correlations 2 ({Jun= 2.7 Hz) -
7 1H 2.92 observed for this — —
8 H 4.37 isomer 9
9 %P 13.16 - 8
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E/Z isomer
58% of mixture

Atom & (ppm) NOESY cosy 'H-*'"P HMBC
1 H 6.82 2,7 2 (Ju= 7.5 Hz)
2 H 5.71 1 1 Cun= 7.5 Hz), 4 (*Jp= 2.7 Hz)
4 H 6.20 8 2 (M= 2.7Hz), 4 -
7 H 3.05 1 --
8 'H 422 4 9
9 s1p 13.37 - - 8
1 H 7.25 2,7 2 (3Junw=7.5Hz) -
2 H 6.76 1,8 1 (dww= 7.5 Hz), 4 (“Ju= 2.7 Hz) -
4 H 5.69 4,2 (= 2.7 Hz)
7 H 3.33 1
g H 448 2 9
9 P 13.86 - 8
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Cyclic Voltammagram of Bd
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Figure S27 Cyclic voltammogram of Bd?*-2PF¢ in 0.1 M TBAPFs in DMF, with
ferrocene as internal standard (scan rate of 50 mV/s). At top is a blow-up of the
signal for the Bd/Bd?*-2PF¢" couple,
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Reductions Using Bd

Reduction of Chlorodiphenylphosphine 9 to Diphosphine 10

5 eq Bd
ph,pcl  —=2989 . 5 Ph,P-PPh,

toluene, -36°C
9 -Bd?*-2PFg 10

— -4.639
— -14.258

T T T T T T T T T T T T T
250 200 150 100 0 0 -50 -100 -150 -200
31p

Figure S28 3'P NMR spectrum of the reaction mixture of in situ generated Bd
with Pho,PCl in toluene.
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Reduction of Dichlorotriphenylphosphorane 7 to Phosphine 8

Cy»PCl 1eqBd Cy»P
Y3 2 CeHe, RT Y3
7 -Bd?*-2CI 8
| || || ‘ | ]
O A O 0 e NN
\ I UiUiSN/nlaa \ |

Figure S29 3'P NMR spectrum of the reaction mixture of in situ generated Bd

with Cy3PCl, in benzene.
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Variable Temperature '"H NMR Inversion Transfer Experiments on 5

NMR spectra were recorded using either a Varian Inova 300 or Agilent 400 MR
NMR spectrometer. Inversion transfer experiments were carried out on the 400
MR spectrometer operating under VnmrJ 3.2A using the PRESAT pulse
sequence. Spectra were recorded by application of a selective 180° degree
inversion pulse of 11.5 ms applied to the 'H signal at 6.81 ppm, followed, after a
variable delay time, by a non-selective 90° pulse. The intensities of the inverted
signal at 6.81 ppm, and the exchange coupled signal at 5.70 ppm were
measured using VnmrJ 4.2 software by applying a baseline correction to the
spectra followed by manual selection of the integral reset points. The exchange
rates at each temperature were determined by fitting the integrations of the
inverted and exchange-coupled signal as a function of the variable delay time to
a two-site exchange model using either Bain’s CIFIT program,! or a spreadsheet
programmed with the McConnell equations for two-site exchange as described

by Led and Gesmar.?

JWU \ h I UL L

8.0 7.5 7.0 6.5 6.0 5.5 5.0 45 4.0 3.5 3.0 25 2.0

5 (ppm)

Figure S$30. Expansion of the "H NMR spectrum of 5 recorded in dmso-d6 at 25
°C.

25



L2 7

Relative Intensity

-0.8 +« T T T T T T T ]
0 2 4 6 8 10 12 14 16

Delay Time (seconds)

Figure S31. Results of an inversion-transfer experiment performed on 5 in
dmso-db6 at 20 °C.

The relative intensities of the 'TH NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 0.09 + 0.02 s-'.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S32. Results of an inversion-transfer experiment performed on 5 in
dmso-d6 at 30 °C.

The relative intensities of the 'TH NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 0.14 + 0.02 s'.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S33. Results of an inversion-transfer experiment performed on 5 in
dmso-d6 at 40 °C.

The relative intensities of the 'TH NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 0.23 + 0.02 s™.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S34. Results of an inversion-transfer experiment performed on 5 in
dmso-db6 at 51 °C.

The relative intensities of the 'TH NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 0.40 + 0.01 s'.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S35. Results of an inversion-transfer experiment performed on 5 in
dmso-db6 at 60 °C.

The relative intensities of the 'TH NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 0.74 + 0.02 s'.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S36. Results of an inversion-transfer experiment performed on 5 in
dmso-d6 at 69 °C.

The relative intensities of the '"H NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 1.26 + 0.02 s™.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S37. Results of an inversion-transfer experiment performed on 5 in
dmso-d6 at 79 °C.

The relative intensities of the 'H NMR resonances of the partially inverted signal
at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles)
were plotted as a function of inversion transfer delay time. Solid lines were
calculated by least-squares fitting of the experimental data to the McConnell
equations as described in Reference 1, yielding a rate constant of 2.39 + 0.03 s™'.
The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm
signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70

ppm signal to +1 at a delay time of 0 seconds.
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Figure S38. Plot of In (k/T) vs 1/T for the exchange rate data of 5 in dmso-
d6b.

Derived from 'H inversion-transfer experiments at 20, 30, 40, 51, 60, 69 and 79
°C (Figures S31 to S37). The solid line was calculated using linear regression
analysis resulting in a correlation coefficient of 0.983. The slopes and intercepts
were used to determine enthalpy (AH*) and entropy (AS#) of activation values of
10.7 £ 0.6 kcal mol-' and -27.0 + 1.9 cal mol! K- respectively, resulting in a free
energy of activation (AG*) of 18.8 £ 0.9 kcal mol' at 298 K.
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Figure $39. HSQC spectrum of the reaction mixture for the formation of Bd in

CeDe.
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