Supplemental Information

A Strong Organic Electron Donor Incorporating Highly π -Donating

Triphenylphosphonium Ylidyl Substituents

Morgan M. Burgoyne, Thomas M. MacDougall, Zachary N. Haines, Jordan W.

Conrad, Larry A. Calhoun, Andreas Decken and C. Adam Dyker*

Department of Chemistry, University of New Brunswick, Fredericton, New

Brunswick, E3B 5A3 (Canada); E-mail: cadyker@unb.ca

Contents:

NMR Spectra	4
Table 1. Selected 2D NMR correlations for isomers of Bd	15
Table 2. Selected 2D NMR correlations for isomers of Bd ²⁺ -2PF ₆	22
Cyclic Voltammagram of Bd	24
Reductions Using Bd	25
Variable Temperature ¹ H NMR Inversion Transfer Experiments on 5	27
References:	36

List of Figures:

Figure S1 ³¹ P NMR spectrum of 2 in CDCI ₃ .	4
Figure S2 ¹ H NMR spectrum of 2 in CDCI ₃ .	4
Figure S3 ¹³ C NMR spectrum of 2 in CDCI ₃	5
Figure S4 ³¹ P NMR of 3 in CDCl ₃	5
Figure S5 ¹ H NMR of 3 in CDCI ₃ .	6
Figure S6 ¹³ C NMR of 3 in CDCl ₃ .	6

Figure S7 ³¹ P NMR of 4 in CD ₃ CN7
Figure S8 ¹ H NMR of 4 in CD ₃ CN7
Figure S9 ¹³ C NMR of 4 in CD ₃ CN
Figure S10 ³¹ P NMR of 5 in CD ₃ CN
Figure S11 ¹ H NMR of 5 in CD_3CN
Figure S12 ¹³ C NMR of 5 in CD ₃ CN9
Figure S13 NOESY NMR of 5 in CD ₃ CN10
Figure S14 COSY NMR of 5 in CD_3CN_{11}
Figure S15 ³¹ P NMR of <i>E</i> and <i>Z</i> isomers of Bd in C_6D_6 12
Figure S16 ¹ H NMR of <i>E</i> and <i>Z</i> isomers of Bd in C_6D_6
Figure S17 2D NOESY spectrum of <i>E</i> and <i>Z</i> isomers of Bd in C_6D_6 . Correlations between the
$CH_{pyridyl}$ and the CH_3 , which defines the <i>E</i> isomer, are circled13
Figure S18 ³¹ P- ¹ H HMBC of <i>E</i> and <i>Z</i> isomers of Bd in C_6D_6 , showing correlations between the C-
¹ H _{ylidyl} (x axis) and the ³¹ P (y-axis)
Figure S19 ³¹ P NMR spectrum of mixture of Bd ²⁺ -2PF ₆ ⁻ in CD ₃ CN16
Figure S20 ³¹ P NMR of mixture of $Bd^{2+}-2PF_6^-$ in CD ₃ CN (blow up of 8-19 ppm region)16
Figure S21 ¹ H NMR of mixture of $Bd^{2+}-2PF_6^-$ in CD_3CN 17
Figure S22 ¹³ C NMR of mixture of Bd ²⁺ -2PF ₆ ⁻ in CD ₃ CN18
Figure S23 ³¹ P- ¹ H HMBC of mixture of $Bd^{2+}-2PF_{6}^{-}$ in CD ₃ CN, showing correlations between the
C- ¹ H _{ylidyl} (x axis) and the ³¹ P (y-axis)
Figure S24 2D NOESY spectrum of mixture of $Bd^{2+}-2PF_{6}^{-}$ in $CD_{3}CN$
Figure S25 2D COSY spectrum of mixture of $Bd^{2+}-2PF_{6}^{-}$ in $CD_{3}CN$
Figure S26 2D ¹ H- ¹³ C NMR spectrum of mixture of Bd ²⁺ -2PF ₆ ⁻ in CD ₃ CN21
Figure S27 Cyclic voltammogram of Bd ²⁺ -2PF ₆ ⁻ in 0.1 M TBAPF ₆ in DMF, with ferrocene as
internal standard (scan rate of 50 mV/s). At top is a blow-up of the signal for the Bd/Bd ²⁺ -
2PF ₆ ⁻ couple _.
Figure S28 ³¹ P NMR spectrum of the reaction mixture of <i>in situ</i> generated Bd with Ph ₂ PCI in
toluene

Figure S29 ³¹P NMR spectrum of the reaction mixture of *in situ* generated Bd with Cy₃PCl₂ in benzene.
Figure S30. Expansion of the ¹H NMR spectrum of 5 recorded in dmso-*d*6 at 25 °C.
Figure S31. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 20 °C.
Figure S32. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 40 °C.
Figure S33. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 40 °C.
Figure S34. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 51 °C.
Figure S35. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 60 °C.
Figure S36. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 60 °C.
Figure S37. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 69 °C.
Figure S38. Plot of ln (k/T) vs 1/T for the exchange rate data of 5 in dmso-*d*6.
Figure S39. HSQC spectrum of the reaction mixture for the formation of **Bd** in C₆D₆.

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 fl (ppm)

Figure S1 ³¹P NMR spectrum of 2 in CDCl₃.

Figure S2 ¹H NMR spectrum of 2 in CDCl₃.

CĽ

Cl PPh₃

Figure S3 ¹³C NMR spectrum of 2 in CDCl₃.

Figure S4 ³¹P NMR of 3 in CDCl₃.

Figure S5 ¹H NMR of 3 in CDCl₃.

Figure S6 ¹³C NMR of 3 in CDCl₃.

Figure S10 ³¹P NMR of 5 in CD₃CN.

Figure S12 13 C NMR of 5 in CD₃CN.

Figure S13 NOESY NMR of 5 in CD_3CN

Figure S14 COSY NMR of 5 in CD_3CN

Figure S15 ³¹P NMR of *E* and *Z* isomers of **Bd** in C_6D_6 .

Figure S16 ¹H NMR of *E* and *Z* isomers of Bd in C_6D_6 .

(uudd) ŢJ

Table 1. Selected 2D NMR correlations for isomers of Bd

Figure S20 ³¹P NMR of mixture of $Bd^{2+}-2PF_6^-$ in CD₃CN (blow up of 8-19 ppm region).

Figure S21 ¹H NMR of mixture of $Bd^{2+}-2PF_6^-$ in CD₃CN.

4.54 4.52 4.50 4.48 4.46 4.44 4.42 4.40 4.38 4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18 4.16 4.14 ¹H NMR

Figure S23 ³¹P-¹H HMBC of mixture of $Bd^{2+}-2PF_{6}^{-}$ in CD₃CN, showing correlations between the C-¹H_{ylidyl} (x axis) and the ³¹P (y-axis).

(wdd) țj

	$PF_{6}^{-7}7' PF_{6}^{-7}$ $PF_{6}^{-7}7' PF_{6}^{-7}7' $								
At	tom	δ (ppm)	NOESY	COSY	¹ H- ³¹ P HMBC				
1	¹ H	6.82	2, 7	2 (³ J _{HH} = 7.5 Hz)					
2	¹ H	5.71	1	1 (³ J _{HH} = 7.5 Hz), 4 (⁴ J _{HH} = 2.7 Hz)					
4	¹ H	6.20	8	2 (⁴ J _{HH} = 2.7 Hz), 4'					
7	¹ H	3.05	1						
8	¹ H	4.22	4		9				
9	³¹ P	13.37			8				
1'	¹ H	7.25	2', 7'	2' (³ J _{HH} = 7.5 Hz)					
2'	¹ H	6.76	1', 8'	1' (³ J _{HH} = 7.5 Hz), 4' (⁴ J _{HH} = 2.7 Hz)					
4'	¹ H	5.69		4, 2' (⁴ J _{HH} = 2.7 Hz)					
7'	¹ H	3.33	1'						
8'	¹ H	4.48	2'		9'				
9'	³¹ P	13.86			8'				

Cyclic Voltammagram of Bd

Figure S27 Cyclic voltammogram of $Bd^{2+}-2PF_{6}$ in 0.1 M TBAPF₆ in DMF, with ferrocene as internal standard (scan rate of 50 mV/s). At top is a blow-up of the signal for the $Bd/Bd^{2+}-2PF_{6}$ couple.

Reductions Using Bd

Figure S28 ³¹P NMR spectrum of the reaction mixture of *in situ* generated **Bd** with Ph_2PCI in toluene.

Reduction of Dichlorotriphenylphosphorane 7 to Phosphine 8

Figure S29 ³¹P NMR spectrum of the reaction mixture of *in situ* generated **Bd** with Cy_3PCI_2 in benzene.

Variable Temperature ¹H NMR Inversion Transfer Experiments on 5

NMR spectra were recorded using either a Varian Inova 300 or Agilent 400 MR NMR spectrometer. Inversion transfer experiments were carried out on the 400 MR spectrometer operating under VnmrJ 3.2A using the PRESAT pulse sequence. Spectra were recorded by application of a selective 180° degree inversion pulse of 11.5 ms applied to the ¹H signal at 6.81 ppm, followed, after a variable delay time, by a non-selective 90° pulse. The intensities of the inverted signal at 6.81 ppm, and the exchange coupled signal at 5.70 ppm were measured using VnmrJ 4.2 software by applying a baseline correction to the spectra followed by manual selection of the integral reset points. The exchange rates at each temperature were determined by fitting the integrations of the inverted and exchange-coupled signal as a function of the variable delay time to a two-site exchange model using either Bain's CIFIT program,¹ or a spreadsheet programmed with the McConnell equations for two-site exchange as described by Led and Gesmar.²

Figure S30. Expansion of the ¹H NMR spectrum of **5** recorded in dmso-*d*6 at 25 °C.

Figure S31. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 20 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.09 \pm 0.02 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S32. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 30 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.14 \pm 0.02 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S33. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 40 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.23 \pm 0.02 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S34. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 51 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.40 \pm 0.01 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S35. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 60 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $0.74 \pm 0.02 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $1.26 \pm 0.02 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S37. Results of an inversion-transfer experiment performed on 5 in dmso-*d*6 at 79 °C.

The relative intensities of the ¹H NMR resonances of the partially inverted signal at 6.81 ppm (squares) and the exchange coupled signal at 5.70 ppm (circles) were plotted as a function of inversion transfer delay time. Solid lines were calculated by least-squares fitting of the experimental data to the McConnell equations as described in Reference 1, yielding a rate constant of $2.39 \pm 0.03 \text{ s}^{-1}$. The intensities of the two signals were scaled to adjust the intensity of 6.81 ppm signal to +1 at a delay time of 14 seconds, and to adjust the intensity of the 5.70 ppm signal to +1 at a delay time of 0 seconds.

Figure S38. Plot of ln (k/T) vs 1/T for the exchange rate data of 5 in dmso-d6.

Derived from ¹H inversion-transfer experiments at 20, 30, 40, 51, 60, 69 and 79 °C (**Figures S31** to **S37**). The solid line was calculated using linear regression analysis resulting in a correlation coefficient of 0.983. The slopes and intercepts were used to determine enthalpy (Δ H[‡]) and entropy (Δ S[‡]) of activation values of 10.7 ± 0.6 kcal mol⁻¹ and -27.0 ± 1.9 cal mol⁻¹ K⁻¹ respectively, resulting in a free energy of activation (Δ G[‡]) of 18.8 ± 0.9 kcal mol⁻¹ at 298 K.

Figure S39. HSQC spectrum of the reaction mixture for the formation of Bd in C_6D_6 .

References:

- 1 A. D. Bain and J. A. Cramer, *J. Magn. Reson.*, 1996, **118**, 21–27.
- 2 J. J. Led and H. J. Gesmar, *J. Magn. Reson.*, 1982, **49**, 444–463.