Synthesis of defined mono-de- N-acetylated $\beta-(1 \rightarrow 6)-N$-acetyl-Dglucosamine oligosaccharides to characterize PgaB hydrolase activity

Adam Forman, ${ }^{\text {a }}$ Roland Pfoh, ${ }^{\text {b }}$ Alexander Eddenden, ${ }^{\text {a }}$ P. Lynne Howell ${ }^{\text {b,c }}$ and Mark Nitz*a
${ }^{a}$ Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3 H6
${ }^{b}$ Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4
'Department of Biochemistry, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
*Corresponding author; Email address: mark.nitz@utoronto.ca; Tel: +1 416-946-0640

Supplementary Information

Table of contents

Figures S1-S4 2
Tables S1 - S2 4
Synthesis of compounds 5-41, 44-47 5
NMR spectra of compounds $1-4,6-30,34,36-39,41,44-47$ 38
ESI mass spectra of compounds $\mathbf{2}, \mathbf{3}$, and PgaB C-terminal domain assays 131
References 135

Supplementary figures and tables

Figure S1 TLC plate imaged in Fig. 3A.

Figure S2 TLC plate from Fig. S1 visualized by fluorescence imaging (exposure time of 80 $\mathrm{ms})$. **Disaccharide 44 labelled by DBCO-Cy5.

Figure S3 Negative control experiment (no enzyme present) for heptasaccharide 4 (5 mM), incubated in 100 mM HEPES, pH 7.0. Time point aliquots were labelled with DBCO-Cy5 for 1 h by diluting the $1 \mu \mathrm{~L}$ aliquots with $1 \mu \mathrm{~L}$ of 1 mM DBCO-Cy5, then analyzed by TLC (1:1:2 $\mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} / n \mathrm{BuOH}$) and visualized by fluorescence imaging (exposure time 80 ms). **Disaccharide 44 labelled by DBCO-Cy5.

Figure S4 TLC plate imaged in Fig. 4.

Table S1 Yield of products 35 and $\mathbf{3 6}$. ${ }^{1,2}$

Temp. ${ }^{a}\left({ }^{\circ} \mathrm{C}\right)$	Time $^{a}(\mathrm{~h})$	$\mathbf{3 5}(\%)$	$\mathbf{3 6}(\%)$
40	2	83	-
50	2	7	41
60	20	-	64

${ }^{a}$ Conditions for the deprotection of $\mathbf{3 4}$ using aq. NaOH .

Table S2 Raw fluorescence integration values from Fig. 5, calculated from TLC plates with an exposure time of 80 ms (as seen in Fig. S2).

Time (h)	Replicate 1			Replicate 2			Average Turnover (\%)
	44	4	Turnover (\%)	44	4	Turnover (\%)	
0	11	2014	0.5	0	1142	0.0	0.3 ± 0.4
2	102	2109	4.6	47	1676	2.7	3.7 ± 1.3
4	155	2014	7.1	152	1994	7.1	7.1 ± 0.0
8	240	1587	13.1	275	1903	12.6	12.9 ± 0.4
12	467	1918	19.6	423	1951	17.8	18.7 ± 1.2
24	1095	2279	32.5	819	1870	30.5	31.5 ± 1.4
36	1378	2334	37.1	1038	1898	35.4	36.2 ± 1.3

Synthesis

1,3,4,6-Tetra-O-acetyl-2-trifluoroacetamido-2-deoxy-D-glucopyranose (5)

Known ${ }^{3,4}$ trifluoroacetamido tetraacetate $5(2: 1 \alpha / \beta)$ was synthesized as described previously. ${ }^{5}$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Chloroform- d) $\delta_{\mathrm{H}} 7.03$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H} \beta$), 6.57 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{N}-\mathrm{H} \alpha), 6.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 5.75$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \beta), 5.31$ (dd, $J=10.5,9.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3 \alpha$), 5.27 (dd, $J=10.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \beta$), 5.23 (t, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \alpha$), 5.14 (t, $J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4 \beta$), 4.44 (ddd, $J=10.7,8.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \alpha$), 4.34 (q, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \beta$), 4.28 (dd, $J=12.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a} \alpha, \mathrm{H}-6 \mathrm{a} \beta$), 4.14 (dd, $J=12.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b} \beta$), 4.07 (dd, $J=$ $12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b} \alpha$), 4.03 (ddd, $J=10.0,4.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \alpha$), 3.86 (ddd, $J=9.9,4.7,2.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 \beta$), $2.20(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{Ac} \alpha), 2.12(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{Ac} \beta), 2.09(\mathrm{~s}, 6 \mathrm{H}, 1 \times \mathrm{Ac} \alpha, 1 \times \mathrm{Ac} \beta$), 2.06 $(\mathrm{s}, 3 \mathrm{H}, 1 \times \mathrm{Ac} \alpha), 2.06(\mathrm{~s}, 6 \mathrm{H}, 1 \times \mathrm{Ac} \alpha, 1 \times \mathrm{Ac} \beta), 2.05(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{Ac} \beta$).
p-Tolyl 3,4,6-tri-O-acetyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-1-thio-D-glucopyranoside (6)

Known ${ }^{3,4}$ trifluoroacetamido tetraacetate $5(9.67 \mathrm{~g}, 21.8 \mathrm{mmol}, 2: 1 \alpha / \beta)$ and p-thiocresol $(8.13 \mathrm{~g}$, $65.5 \mathrm{mmol}, 3$ equiv.) was dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97 \mathrm{~mL}) . \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(13.7 \mathrm{~mL}$, $109.1 \mathrm{mmol}, 5$ equiv.) was added at room temperature. The reaction was stirred under Ar for 40 h (TLC in 3:7 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.4$). The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ then washed carefully with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 120 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 2:8 $\rightarrow 4: 6$) gave thioglycoside $6(9.32 \mathrm{~g}, 84 \%)$ as a white/pale yellow flaky solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Chloroform- d) $\delta_{\mathrm{H}} 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ Ar), $7.24(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar}), 5.24(\mathrm{dd}, J=10.2,9.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 4.93$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.63$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.14 (dd, $J=12.3,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.10(\mathrm{dd}, J=12.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.01$ (q, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.69 (ddd, J $=10.0,4.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.00,1.93,1.79(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Ac}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} 171.64,170.66,169.24\left(3 \times \mathrm{COCH}_{3}\right), 157.16(\mathrm{~d}, J=37.7 \mathrm{~Hz}$, $\left.\mathrm{COCF}_{3}\right), 139.18\left(1 \times 4^{\circ} \mathrm{Ar}\right), 134.15(2 \times \mathrm{Ar}), 129.77(2 \times \mathrm{Ar}), 127.24\left(1 \times 4^{\circ} \mathrm{Ar}\right), 115.66(\mathrm{~d}, J=$ $288.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 86.15 (C-1), 75.83 (C-5), 73.64 (C-3), 68.52 (C-4), 62.34 (C-6), 53.02 (C-2), $21.16\left(\mathrm{ArCH}_{3}\right), 20.70,20.36,20.30\left(3 \times \mathrm{COCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~F}_{3} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 525.15$, found 525.2.
p-Tolyl 2-trifluoroacetamido-2-deoxy- β-1-thio-D-glucopyranoside (7)

Thioglycoside $6(5.60 \mathrm{~g}, 11.0 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(110 \mathrm{~mL})$. Sodium ($85 \mathrm{mg}, 3.7$ mmol, 0.33 equiv.) was added. The reaction was stirred at RT for 2.5 h (TLC in 10:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.3$), then quenched with Dowex $50 \mathrm{WX8}$ cation exchange resin (hydrogen form, $50-100 \mathrm{mesh})$. The resin was filtered and washed with $\mathrm{MeOH}(3 \times 40 \mathrm{~mL})$. The filtrate was concentrated giving triol 7 (4.30 g , quant.) as a white flaky solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta_{\mathrm{H}} 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar}), 4.75(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.87 (dd, $J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $3.75(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.69$ (dd, $J=12.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.52$ (dd, $J=9.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.35(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta_{\mathrm{C}} 139.06\left(1 \times 4^{\circ}\right.$ Ar), $133.57(2 \times \mathrm{Ar}), 130.97\left(1 \times 4^{\circ} \mathrm{Ar}\right), 130.61(2 \times \mathrm{Ar}), 87.92(\mathrm{C}-1), 82.25(\mathrm{C}-5), 76.76(\mathrm{C}-3)$, 71.78 (C-4), $62.83(\mathrm{C}-6), 56.57(\mathrm{C}-2), 21.14\left(\mathrm{CH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~F}_{3} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 404.07$, found 404.1.
p-Tolyl 3,4-di-O-benzoyl-6-tert-butyldiphenylsilyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-1-thio-Dglucopyranoside (8)

Triol 7 (4.30 g 11.3 mmol) and DMAP ($140 \mathrm{mg}, 1.15 \mathrm{mmol}, 0.1$ equiv.) were dissolved in dry pyridine (130 mL). TBDPSCl ($5.9 \mathrm{~mL}, 22.7 \mathrm{mmol}, 2$ equiv.) was added. The reaction was stirred at RT under Ar for 24 h (TLC in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.7$), then $\mathrm{BzCl}(7.9 \mathrm{~mL}, 68.1 \mathrm{mmol}, 6$ equiv.) was added, and stirring continued under the same conditions for an additional 23 h (TLC in $2: 8 \mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.6$). The solution was co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 200 \mathrm{~mL})$ then aq. NaHCO_{3} $(200 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL}$ each $)$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc /pentanes, 1:9 $\rightarrow 3: 7$) gave 8 (9.30 g , quant.) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 7.88(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SiPh}), 7.80(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), 7.73 (dd, $J=$ $8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SiPh}), 7.57(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{SAr}, 2$ $\times \mathrm{SiPh}), 7.40-7.27(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{Bz}, 4 \times \mathrm{SiPh}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.05(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.72(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.66$ (t, $J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.96$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.27$ (q, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.93-3.77$ (m, 3H, $\mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 2.32 (s, 3H, $\left.\mathrm{ArCH} \mathrm{H}_{3}\right), 1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) δ_{C} 167.30, $164.84(2 \times \mathrm{COPh}), 157.14\left(\mathrm{~d}, J=37.8 \mathrm{~Hz}, \mathrm{COCF}_{3}\right), 138.73\left(1 \times 4^{\circ}\right.$ SAr $)$, $135.68(2 \times \mathrm{Bz}), 135.51(2 \times \mathrm{Bz}), 133.78(2 \times \mathrm{SAr}), 133.76,133.35\left(2 \times 4^{\circ} \mathrm{Bz}\right), 132.79(2$ $\times \mathrm{SiPh}), 129.95(2 \times \mathrm{SiPh}), 129.88(2 \times \mathrm{SAr}), 129.71,129.63(2 \times \mathrm{Bz}), 129.57(2 \times \mathrm{SiPh}), 129.04$ $\left(1 \times 4^{\circ} \mathrm{SiPh}\right)$, $128.51(2 \times \mathrm{SiPh}), 128.42(2 \times \mathrm{SiPh}), 128.26\left(1 \times 4^{\circ} \mathrm{SiPh}\right), 127.73(2 \times \mathrm{Bz})$, $127.63(2 \times \mathrm{Bz}), 127.55\left(1 \times 4^{\circ} \mathrm{SAr}\right), 115.54\left(\mathrm{~d}, J=288.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 86.31(\mathrm{C}-1), 79.30(\mathrm{C}-5)$, $74.48(\mathrm{C}-3), 68.47(\mathrm{C}-4), 62.50(\mathrm{C}-6), 53.84(\mathrm{C}-2), 26.65\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 21.23\left(\mathrm{ArCH}_{3}\right) . \mathrm{m} / \mathrm{z}(\mathrm{ESI})\right.$ calculated for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~F}_{3} \mathrm{SiS}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 845.29$, found 845.3.
p-Tolyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-1-thio-D-glucopyranoside (9)

The di-O-benzoyl ester $\mathbf{8}(6.50 \mathrm{~g}, 7.9 \mathrm{mmol})$ was dissolved in dry THF $(110 \mathrm{~mL})$. AcOH $(4.5$ $\mathrm{mL}, 78.6 \mathrm{mmol}, 10$ equiv.) was added, followed by TBAF (1.0 M in $\mathrm{THF}, 39 \mathrm{~mL}, 39.0 \mathrm{mmol}, 5$ equiv.). The reaction was stirred at RT under N_{2} for 18 h (TLC in 3:7 $\mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.5$). The solution was diluted with $\operatorname{EtOAc}(150 \mathrm{~mL})$ then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$. The aqueous layer was re-extracted with $\operatorname{EtOAc}(2 \times 50 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \rightarrow 40: 1\right)$ gave acceptor $9(4.5 \mathrm{~g}, 97 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta_{\mathrm{H}} 9.84(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.84(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.75(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), 7.65 $-7.57(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.51-7.40(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{Bz}, 2 \times \mathrm{SAr}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr})$, $5.64(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.34(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.98$ ($\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{OH}), 4.11(\mathrm{q}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.92(\mathrm{ddd}, J=10.0,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), 3.63 (ddd, $J=12.3,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{C}} 165.67,165.01(2 \times \mathrm{COPh}), 156.54\left(\mathrm{~d}, J=36.8 \mathrm{~Hz}, \mathrm{COCF}_{3}\right)$, $138.04\left(1 \times 4^{\circ} \mathrm{SAr}\right)$, $134.11(2 \times \mathrm{Bz}), 132.49(2 \times \mathrm{SAr}), 130.20(2 \times \mathrm{SAr}), 129.61(2 \times \mathrm{Bz})$, $129.50(2 \times \mathrm{Bz}), 129.27\left(1 \times 4^{\circ} \mathrm{Bz}\right), 129.21(2 \times \mathrm{Bz}), 129.15(2 \times \mathrm{Bz}), 128.98\left(1 \times 4^{\circ} \mathrm{Bz}\right)$, $128.65\left(2 \times 4^{\circ} \mathrm{SAr}\right), 116.07\left(\mathrm{~d}, J=288.3 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 84.91(\mathrm{C}-1), 78.71(\mathrm{C}-5), 74.81(\mathrm{C}-3), 69.55$ (C-4), $60.60(\mathrm{C}-6), 53.25(\mathrm{C}-2), 21.10\left(\mathrm{ArCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~F}_{3} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$607.17, found 607.2.
p-Tolyl 3,4-di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-1-thio-Dglucopyranoside (10)

Acceptor 9 (3.70 g 6.3 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(63 \mathrm{~mL})$. Pyridine ($2.0 \mathrm{~mL}, 24.7 \mathrm{mmol}, 4$ equiv.) was added, followed by chloroacetyl chloride ($1.0 \mathrm{~mL}, 12.6 \mathrm{mmol}, 2$ equiv.). The reaction was stirred at RT for 15 min (TLC in $3: 7 \mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.7$). The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 75 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL}$ each $)$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, giving chloroacetate $\mathbf{1 0}$ (4.30 g, quant.) as white crystals/pale yellow flakes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 7.84$ (ddd, $J=9.9,8.3,1.3$ $\mathrm{Hz}, 4 \mathrm{H}, 4 \times \mathrm{Bz}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.42(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 7.34(\mathrm{dd}, J=8.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), 7.28 (dd, $J=8.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{Bz}), 7.20(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 5.87(\mathrm{dd}, J=10.3,9.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 5.50(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.04(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.41(\mathrm{dd}, J=12.2,3.1$ Hz, 1H, H-6a), 4.37 (dd, $J=12.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.32$ (q, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.08 (ddd, J $=10.0,4.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.96\left(\mathrm{dd}, J=24.5,15.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} 167.14\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.96,165.10(2 \times \mathrm{COPh}), 157.26(\mathrm{~d}, J$ $\left.=37.9 \mathrm{~Hz}, \mathrm{COCF}_{3}\right), 139.20\left(1 \times 4^{\circ} \mathrm{SAr}\right), 134.14(2 \times \mathrm{SAr}), 133.97,133.74(2 \times \mathrm{Bz}), 129.88(2 \times$

SAr $)$, $129.85(2 \times \mathrm{Bz}), 129.60(2 \times \mathrm{Bz}), 128.57(2 \times \mathrm{Bz}), 128.51(2 \times \mathrm{Bz}), 128.36,127.92\left(2 \times 4^{\circ}\right.$ $\mathrm{Bz}), 126.83$ ($1 \times 4^{\circ} \mathrm{SAr}$), 115.44 (d, $J=288.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 86.11 (C-1), 75.89 (C-5), 73.71 (C-3), $68.83(\mathrm{C}-4), 63.97(\mathrm{C}-6), 53.60(\mathrm{C}-2), 40.54\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 21.21\left(\mathrm{ArCH}_{3}\right) . \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~F}_{3} \mathrm{SCl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 683.14$, found 683.1.

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- α-D-glucopyranosyl bromide (11)

Thioglycoside $10(3.40 \mathrm{~g}, 5.10 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}) . \mathrm{Br}_{2}(300 \mu \mathrm{~L}, 5.86$ mmol, 1.15 equiv.) was added. The reaction was stirred at RT under Ar in the dark for 1.5 h (TLC in 2:8 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.6$). The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ then washed with 20% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$, then $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The aqueous layers were reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, giving crude bromide donor 11 (3.52 g , quant.) as a yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 7.95$ (dd, $J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), 7.90 (dd, $J=$ $8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.39(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Bz}), 7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 6.69(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.80(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.76(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), $4.58-4.50$ (m, 2H, H-2, H-5), 4.47 (dd, $J=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.40 (dd, $J=12.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.15\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right)$.

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-p-Tolyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-1-thio-D-glucopyranoside (12)

Acceptor $9(2.00 \mathrm{~g}, 3.39 \mathrm{mmol})$ and glycosyl bromide $11(3.17 \mathrm{~g}, 5.10 \mathrm{mmol}, 1.5$ equiv; 3.52 g crude) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(76 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS (5.0 g). The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . AgOTf (1.74 g , $6.77 \mathrm{mmol}, 2$ equiv.) in dry toluene (10 mL) was added, and the reaction was stirred for 2 h (TLC in 2:8 acetone/pentanes, $\mathrm{R}_{\mathrm{f}}=0.2$) and then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80$ $\mathrm{mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 250 \mathrm{~mL})$. The aqueous layers were reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (acetone/hexanes, $2: 8 \rightarrow 3: 7$) gave disaccharide 12 (3.45 $\mathrm{g}, 90 \%$) as a pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} 7.96-7.87$ $(\mathrm{m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.82(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.51\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}, 4 \times \mathrm{Bz}\right), 7.44(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 7.35(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 6.92(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.92(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.65(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{l}), 5.58(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4$ '), $5.42(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.14(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$,

H-1'), 4.53 (q, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 4.34 (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 4.25$ (dd, $J=12.0,2.0$ Hz, 1H, H-6a'), 3.97 (dd, $J=23.68,15.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), $3.95-3.88$ (m, 3H, H-2, H-5, H-5'), $3.60\left(\mathrm{dd}, J=11.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right.$), 2.37 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} 167.06\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.45,166.33,165.91,165.12(4 \times \mathrm{COPh}), 157.65(\mathrm{~d}, J=37.9 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{COCF}_{3}\right), 157.09\left(\mathrm{~d}, J=38.0 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 139.40\left(1 \times 4^{\circ} \mathrm{SAr}\right), 134.07(1 \times \mathrm{Bz}), 133.95(2 \times$ $\mathrm{SAr})$, $133.68(2 \times \mathrm{Bz}), 133.64(1 \times \mathrm{Bz})$, $130.14(2 \times \mathrm{SAr}), 129.91(2 \times \mathrm{Bz}), 129.86(2 \times \mathrm{Bz})$, $129.75(2 \times \mathrm{Bz}), 129.72(2 \times \mathrm{Bz}), 128.59(1 \times \mathrm{Bz}), 128.50(2 \times \mathrm{Bz}), 128.49(2 \times \mathrm{Bz}), 128.47$, $128.45(2 \times \mathrm{Bz}), 128.35,128.20,128.06\left(3 \times 4^{\circ} \mathrm{Bz}\right), 126.35\left(1 \times 4^{\circ} \mathrm{SAr}\right), 115.89(\mathrm{~d}, J=287.8$ $\mathrm{Hz}, 1 \times \mathrm{CF}_{3}$), $115.68\left(\mathrm{~d}, J=288.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 101.44(\mathrm{C}-1$ '), $84.85(\mathrm{C}-1), 77.19(\mathrm{C}-5), 72.88$ (C-3), 72.61 (C-3'), 72.07 (C-5'), 68.94 (C-4), 68.88 (C-4'), 68.13 (C-6'), 63.58 (C-6), 54.58 (C$\left.2^{\prime}\right), 53.83(\mathrm{C}-2), 40.55\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 21.15\left(\mathrm{ArCH}_{3}\right) . \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated for $\mathrm{C}_{53} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{~F}_{6} \mathrm{SCl}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1148.25$, found 1148.2.

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- α-D-glucopyranosyl bromide (13)

Disaccharide thioglycoside $\mathbf{1 2}(2.00 \mathrm{~g}, 1.77 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL}) . \mathrm{Br}_{2}$ ($118 \mu \mathrm{~L}, 2.30 \mathrm{mmol}, 1.3$ equiv.) was added. The reaction was stirred at RT under Ar in the dark for 1.5 h (TLC in 7:13 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.4$). The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ then washed with 20% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ then $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous layers were reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 7 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, giving crude glycosyl bromide 13 (2.00 g , quant.) as a yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.01$ (dd, $J=8.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.95-7.84(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 3 \times \mathrm{Bz})$, $7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.40-7.33\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}, 6 \times \mathrm{Bz}\right), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-$ H), $6.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.84(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.72\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{B}^{\prime}\right)$, $5.68(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.56\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{'}^{\prime}\right), 4.67$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right), 4.46$ (q, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.43-4.34$ (m, 2H, H-5, H-5', H-6a, H-6b), 4.30 (dd, $J=12.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.04 (d, $J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), 3.94 (dt, $J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.57 (dd, $J=$ $11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$ ').

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (14)

Crude glycosyl bromide 13 ($1.92 \mathrm{~g}, 1.76 \mathrm{mmol} ; 2.00 \mathrm{~g}$ crude) and 3-chloropropanol (1.5 mL , $17.9 \mathrm{mmol}, 10$ equiv.) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS (2.5 g). The mixture was cooled to $0^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . $\operatorname{AgOTf}(0.59 \mathrm{~g}, 2.30 \mathrm{mmol}, 1.3$ equiv.) in dry toluene (3 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 1:3 acetone/pentanes, $\mathrm{R}_{\mathrm{f}}=0.2$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 80 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{pentanes}, 28: 72 \rightarrow 4: 6$) gave disaccharide $14(1.72 \mathrm{~g}, 89 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) δ_{H} 8.78 (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}\right), 8.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.95(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{Bz}), 7.92-7.84(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.66-7.53(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Bz}), 7.51-7.38(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 5.84$ (dd, $J=10.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.81(\mathrm{dd}, J=10.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $5.49(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), $5.48\left(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 5.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.10\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.41 (dd, $\left.J=12.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 4.37-4.31$ (m, 2H, H-2, H-6b'), $4.31-4.14$ (m, 6H, H-2, H-5, H-5', H-6a, $\mathrm{COCH}_{2} \mathrm{Cl}$), 4.07 (dt, $J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH}_{2}$), 3.87 (dd, $J=11.8,6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.79 (ddd, $J=12.7,7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{CH}_{2}$), 3.69 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$), $2.16-1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone $-d_{6}$) $\delta_{\mathrm{C}} 167.68$ $\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.42(2 \times \mathrm{COPh}), 166.00,165.87(2 \times \mathrm{COPh}), 134.49,134.45,134.37,134.35(4$ $\times \mathrm{Bz}), 130.52(2 \times \mathrm{Bz}), 130.40(2 \times \mathrm{Bz}), 130.34(2 \times \mathrm{Bz}), 130.32(2 \times \mathrm{Bz}), 130.14,130.06$, 130.06, $130.03\left(4 \times 4^{\circ} \mathrm{Bz}\right), 129.48(2 \times \mathrm{Bz}), 129.44(2 \times \mathrm{Bz}), 129.40(2 \times \mathrm{Bz}), 129.37(2 \times \mathrm{Bz})$, 101.16 (C-1), 100.97 (C-1'), 73.87 (C-5), 73.76 (C-3), 73.73 (C-3'), 72.58 (C-5'), 70.83 (C-4), 70.46 (C-4'), $69.08(\mathrm{C}-6), 67.01\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 64.45(\mathrm{C}-6 '), 55.78\left(\mathrm{C}-2^{\prime}\right), 55.59(\mathrm{C}-2), 42.21$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), \quad 41.45 \quad\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), \quad 33.30 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \quad \mathrm{m} / \mathrm{z} \quad$ (ESI) calculated for $\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{~F}_{6} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1128.23, found 1118.24.

3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (15)

Disaccharide $14(2.08 \mathrm{~g}, 1.89 \mathrm{mmol})$ and thiourea ($0.72 \mathrm{~g}, 9.46 \mathrm{mmol}, 5$ equiv) were dissolved in a $1: 1$ mixture of pyridine/EtOH (190 mL). The solution was stirred at $70^{\circ} \mathrm{C}$ for 18 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.3$), then co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 300 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60 \mathrm{~mL}$ each $)$, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 7:13 \rightarrow 1:1) gave disaccharide acceptor $15(1.01 \mathrm{~g}, 52 \%)$ as a pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} 7.95-7.84(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.53-7.44\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}, 4 \times \mathrm{Bz}\right), 7.41-$ $7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{N}-\mathrm{H}, 8 \times \mathrm{Bz}), 5.81(\mathrm{dd}, J=10.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.69(\mathrm{dd}, J=10.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ '), 5.52 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.39$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.86 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.76 (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.36(\mathrm{dd}, J=9.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $4.24(\mathrm{dd}, J=11.3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.13$ (dd, $J=10.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.04-3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.95(\mathrm{ddd}, J=$
9.7, 4.1, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.84 - 3.74 (m, 1H, H-6a'), 3.71 - 3.57 (m, 6H, H-5', H-6b, H-6b', $\left.\mathrm{OCHHCH} 2, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.11-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} $166.80,166.70,166.04,165.82(4 \times C O P h), 157.62\left(\mathrm{~d}, J=37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.51(\mathrm{~d}, J=$ $\left.37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.06,133.84,133.75,133.67(4 \times \mathrm{Bz}), 129.89(2 \times \mathrm{Bz}), 129.85(2 \times$ $\mathrm{Bz}), 129.83(2 \times \mathrm{Bz}), 129.81(2 \times \mathrm{Bz}), 128.66(2 \times \mathrm{Bz}), 128.54(2 \times \mathrm{Bz}), 128.52(2 \times \mathrm{Bz}), 128.49$ $(2 \times \mathrm{Bz}), 128.47,128.34,128.27,128.12\left(4 \times 4^{\circ} \mathrm{Bz}\right), 115.67\left(\mathrm{q}, J=289.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.47$ ($\mathrm{q}, J=287.6 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}$), $100.91\left(\mathrm{C}-1\right.$ '), $100.55(\mathrm{C}-1), 74.80(\mathrm{C}-5 '), 72.98(\mathrm{C}-5), 72.65\left(\mathrm{C}-3^{\prime}\right)$, 72.09 (C-3), $69.53\left(\mathrm{C}-4{ }^{\prime}\right), 69.00(\mathrm{C}-4), 67.99(\mathrm{C}-6), 66.25\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.05\left(\mathrm{C}-6{ }^{\prime}\right), 55.14(\mathrm{C}-2)$, $54.65(\mathrm{C}-2 '), 41.42\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 31.98\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / z$ (ESI) calculated for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{~F} 6 \mathrm{Cl}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1042.26, found 1042.26.
p-Tolyl 3,4-di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- β-1-thio-D-glucopyranoside (16)

Known ${ }^{6}$ phthalimido-protected thioglycoside 16 was synthesized as described previously. ${ }^{7}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 7.92-7.85(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{Bz}, 1 \times$ Phth $), 7.74-7.67$ (m, 5H, 2 $\times \mathrm{Bz}, 3 \times$ Phth $), 7.49(\mathrm{tt}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.41(\mathrm{tt}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.37$ $-7.32(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{SAr}, 2 \times \mathrm{Bz}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{SAr}), 6.25(\mathrm{dd}$, $J=10.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.81(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.54$ (dd, $J=10.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $4.55(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.42$ (d, $J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 4.14$ (ddd, 1H, H-5), 4.08 $\left(\mathrm{d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, Chloroform-d) $\delta_{\mathrm{C}} 166.92$ $\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 165.60,165.20(2 \times \mathrm{OCOPh}), 138.92\left(1 \times 4^{\circ} \mathrm{SAr}\right), 134.32,134.21(2 \times$ Phth $)$, $134.06(2 \times \mathrm{SAr}), 133.56,133.29(2 \times \mathrm{Bz}), 129.80(2 \times \mathrm{Bz}), 129.72(2 \times \mathrm{SAr}), 129.71(2 \times \mathrm{Bz})$, $128.56\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.44(2 \times \mathrm{Bz}), 128.27(2 \times \mathrm{Bz}), 126.84\left(1 \times 4^{\circ} \mathrm{SAr}\right), 123.67(2 \times$ Phth $)$, 83.44 (C-1), 75.81 (C-5), $71.85(\mathrm{C}-3), 69.44(\mathrm{C}-4), 64.00(\mathrm{C}-6), 53.76(\mathrm{C}-2), 40.68\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$, $21.21\left(\mathrm{ArCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{NO}_{9} \mathrm{NaSCl}[\mathrm{M}+\mathrm{Na}]^{+} 722.12$, found 722.13.

3,4-di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl bromide (17)

Known ${ }^{6}$ thioglycoside 16 ($423 \mathrm{mg}, 0.604 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}) . \mathrm{Br}_{2}$ (36 $\mu \mathrm{L}, 0.703 \mathrm{mmol}, 1.15$ equiv.) was added. The reaction was stirred at RT under Ar in the dark for 1.5 h (TLC in $2: 8 \mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.3$). The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ then washed with 20% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic layers were dried and concentrated, giving crude glycosyl bromide 17 (438 mg , quant.) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ_{H} 7.89 (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.83$ (bs, $2 \mathrm{H}, 2 \times \mathrm{Phth}$), $7.77-7.69(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{Bz}, 2 \times$ Phth), $7.51(\mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.44(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.39-7.34(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 6.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.22(\mathrm{dd}, J=10.4,9.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.69$ (dd, $J=10.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.86$ (dd, $J=10.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.46
(dd, $J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.41$ (dd, $J=12.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.22$ (ddd, $J=10.2$, 4.6, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.16\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right)$.

3,4-Di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($\mathbf{1} \rightarrow \mathbf{6}$)-chloropropyl $\quad \mathbf{3 , 4}$-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (18)

Disaccharide acceptor $15(310 \mathrm{mg}, 0.302 \mathrm{mmol})$ and glycosyl bromide $17(397 \mathrm{mg}, 0.604 \mathrm{mmol}$, 2 equiv; 438 mg crude) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ containing freshly activated powdered $4 \AA \mathrm{MS}(0.90 \mathrm{~g})$. The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h. $\operatorname{AgOTf}(210 \mathrm{mg}, 0.817 \mathrm{mmol}, 2.7$ equiv.) in dry toluene (1.8 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.5$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2$ $\times 90 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} /$ pentanes, $3: 7 \rightarrow$ 4:6) gave trisaccharide $\mathbf{1 8}(435 \mathrm{mg}, 90 \%)$ as a white/pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.01$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.92(\mathrm{dt}, J=8.4,1.3 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times$ $\mathrm{Bz}), 7.85-7.78(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ Phth $), 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ Phth $)$, $7.58(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.55-7.41(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.38-7.29(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.19-$ 7.13 (m, 2H, $2 \times \mathrm{Bz}$), 7.09 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}\right), 6.32$ (dd, $\left.J=10.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 "\right), 5.97$ (dd, $J=10.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.65$ (dd, $J=10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 5.64$ (dd, $J=10.5,9.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.53$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 5.40(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.19(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 4.85 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.67 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.64 (dd, $J=10.8,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}$), 4.37 (dd, $\left.J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime \prime}\right), 4.32-4.23$ (m, 3H, H-2, H-2', H-6b"), 4.17 4.10 (m, 2H, H-5, H-5"), 4.08 (dt, $J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH}_{2}$), $4.03-3.86$ (m, 5H, H-5', H-6a, H-6a', $\mathrm{COCH}_{2} \mathrm{Cl}$), 3.84 (dd, $J=12.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.79 (dd, $J=12.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6 b), 3.70 (ddd, $J=13.0,8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2$), 3.62 (dd, $J=7.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$), 2.11 (ddq, $J=13.7,10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}$), 1.96 (dddd, $J=14.6,11.7$, $7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform-d) $\delta_{\mathrm{C}} 167.92$ ($2 \times$ COPhth), $167.03\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.39,166.36,166.08,165.60,165.32$, $165.15(6 \times \mathrm{COPh}), 157.63(\mathrm{~d}, J=$ $\left.37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.41\left(\mathrm{~d}, J=37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.45(2 \times \mathrm{Phth}), 133.94,133.70$, 133.63, 133.57, 133.54, $133.36(6 \times \mathrm{Bz}), 131.25\left(2 \times 4^{\circ} \mathrm{Phth}\right), 130.06(2 \times \mathrm{Bz}), 129.89(2 \times \mathrm{Bz})$, $129.85(2 \times \mathrm{Bz}), 129.84(2 \times \mathrm{Bz}), 129.81(2 \times \mathrm{Bz}), 129.78(2 \times \mathrm{Bz}), 128.77(2 \times \mathrm{Bz}), 128.61(1 \times$ $\left.4^{\circ} \mathrm{Bz}\right), 128.53(2 \times \mathrm{Bz}), 128.50\left(2 \times \mathrm{Bz}, 2 \times 4^{\circ} \mathrm{Bz}\right), 128.49(4 \times \mathrm{Bz}), 128.47(2 \times \mathrm{Bz}), 128.42(2$ $\times \mathrm{Bz}), 128.41,128.36\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.24(2 \times \mathrm{Bz}), 123.69(2 \times \mathrm{Phth}), 115.68(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1$ $\times \mathrm{CF}_{3}$), $115.62\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 101.62(\mathrm{C}-1 '), 100.54(\mathrm{C}-1), 99.43\left(\mathrm{C}-1{ }^{\prime}\right), 73.81(\mathrm{C}-$ $\left.5^{\prime}\right), 73.03$ (C-5), 72.42 (C-5"), 72.38 (C-3'), 72.01 (C-3), 70.38 (C-3"), 70.23 (C-4), 70.16 (C-6'), 70.14 (C-6), 69.79 (C-4', C-4'), $66.31\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 64.01(\mathrm{C}-6 "), 55.06(\mathrm{C}-2), 54.96\left(\mathrm{C}-2{ }^{\prime}\right), 54.94$
(C-2"), $41.55\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 40.64\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 32.04\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{77} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{~F}_{6} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1617.36, found 1617.35.

3,4-Di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl \quad 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (19)

Trisaccharide 18 ($424 \mathrm{mg}, 0.265 \mathrm{mmol}$) and thiourea ($101 \mathrm{mg}, 1.33 \mathrm{mmol}$, 5 equiv) were dissolved in a $1: 1$ mixture of pyridine/EtOH (28 mL). The solution was stirred at $70^{\circ} \mathrm{C}$ for 18 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.2$), then co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 70 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(70$ $\mathrm{mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 4:6) gave trisaccharide acceptor 19 ($225 \mathrm{mg}, 56 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 7.96(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.92(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.87(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.82(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.76(\mathrm{dd}, J=8.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), 7.70 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Phth}), 7.66(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{Bz}), 7.63(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Phth}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.55-7.45(\mathrm{~m}, 6 \mathrm{H}$, $6 \times \mathrm{Bz}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Bz}), 7.37-7.30(\mathrm{~m}, 9 \mathrm{H}, 9 \times \mathrm{Bz}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz})$, $7.03\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}\right), 6.32\left(\mathrm{dd}, J=10.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3{ }^{\prime}\right), 5.80(\mathrm{dd}, J=10.7,9.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 5.58$ (dd, $J=10.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 5.55$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 "), 5.43-5.32$ (m, $3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-4 \mathrm{'}, \mathrm{H}-4 \mathrm{C}), 4.87$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.67 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.53 (dd, $J=$ $10.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}$), $4.26-4.17$ (m, 2H, H-2, H-2'), 4.14 - 4.08 (m, 2H, H-5, H-6a'), 3.97 (dd, $J=11.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a} "), 3.93-3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH}_{2}\right), 3.87-3.77$ (m, 5H, H5', H-5", H-6b, H-6b', H-6b'), $3.69-3.64$ (m, 3H, OCHHCH $\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Cl}$), $2.18-2.12$ (m, 1H, $\mathrm{CH}_{2} \mathrm{CHHCH}_{2}$), $2.07-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} 166.46, 166.42, 166.40, 165.90, 165.64, $165.07(6 \times \mathrm{COPh}), 157.60(\mathrm{~d}, J=37.5 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{COCF}_{3}\right), 157.39\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.14(2 \times \mathrm{Phth}), 133.89,133.79,133.58,133.51$, $133.49,133.34(6 \times \mathrm{Bz}), 131.49\left(2 \times 4^{\circ}\right.$ Phth $), 129.98(2 \times \mathrm{Bz}), 129.96(2 \times \mathrm{Bz}), 129.85(2 \times$ $\mathrm{Bz}), 129.78(4 \times \mathrm{Bz}), 129.71(2 \times \mathrm{Bz}), 128.68(2 \times \mathrm{Bz}), 128.57\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.50(2 \times \mathrm{Bz})$, $128.49\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.45(2 \times \mathrm{Bz})$, $128.42\left(2 \times \mathrm{Bz}, 1 \times 4^{\circ} \mathrm{Bz}\right), 128.42\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.39(2 \times$ $\left.\mathrm{Bz}, 1 \times 4^{\circ} \mathrm{Bz}\right), 128.30(2 \times \mathrm{Bz}), 123.53(2 \times$ Phth $), 115.66\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.58(\mathrm{q}$, $J=288.3 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}$), 101.67 (C-1'), 100.56 (C-1), 98.28 (C-1"), 74.35 (C-5"), 73.36 (C-5. C$\left.5^{\prime}\right), 72.40$ (C-3'), 72.20 (C-3), 70.44 (C-3"), 70.13 (C-4"), 70.03 (C-4), 70.01 (C-6), 69.27 (C-4'), 68.36 (C-6"), $66.46(\mathrm{C}-6), 61.06\left(\mathrm{OCH} 2 \mathrm{CH}_{2}\right), 55.20(\mathrm{C}-2), 54.93\left(\mathrm{C}-2^{\prime}\right), 54.76\left(\mathrm{C}-2{ }^{\prime \prime}\right), 41.58$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 32.12\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{75} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{23} \mathrm{~F}_{6} \mathrm{Cl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1541.39, found 1541.38 .

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-di-O-

benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (20)

Trisaccharide acceptor $\mathbf{1 9}(165 \mathrm{mg}, 0.108 \mathrm{mmol})$ and glycosyl bromide $\mathbf{1 3}(236 \mathrm{mg}, 0.217 \mathrm{mmol}$, 2 equiv; 237 mg crude) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) containing freshly activated powdered $4 \AA$ MS (300 mg). The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for $1 \mathrm{~h} . \operatorname{AgOTf}(75 \mathrm{mg}, 0.292 \mathrm{mmol}, 2.7$ equiv.) in dry toluene (0.6 mL) was added, and the reaction was stirred for 2 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.4$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 25 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} /$ hexanes, $3: 7 \rightarrow 4: 6$) gave pentasaccharide 20 ($216 \mathrm{mg}, 79 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.41$ (d, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.11-7.95(\mathrm{~m}, 19 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 18 \times$ $\mathrm{Bz}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Phth}), 7.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ Phth), $7.63-7.60(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.58-7.37(\mathrm{~m}, 17 \mathrm{H}, 16 \times \mathrm{Bz}, 1 \times \mathrm{Phth}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}$, $6 \times \mathrm{Bz}), 7.20(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.17(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.13-7.10$ $(\mathrm{m}, 3 \mathrm{H}, 2 \times \mathrm{Bz}, 1 \times$ Phth $), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.55(\mathrm{dd}, J=11.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $3^{\prime \prime}$), $6.32(\mathrm{dd}, J=10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.04(\mathrm{dd}, J=10.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.90(\mathrm{dd}, J$ $=10.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.77-5.67(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-3, \mathrm{H}-4 ", 1 \times \mathrm{H}-4), 5.55(\mathrm{dd}, J=10.1$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.39-5.34(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-1,1 \times \mathrm{H}-4), 5.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 "), 5.10$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1)$, 4.83 (dd, $J=11.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 4.79-4.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}, 2 \times \mathrm{H}-5\right), 4.69-4.62(\mathrm{~m}, 3 \mathrm{H}, 1$ $\times \mathrm{H}-1,2 \times \mathrm{H}-2), 4.57(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.31(\mathrm{dd}, J=12.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a})$, $4.25(\mathrm{dd}, J=12.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.21(\mathrm{dd}, J=9.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.17(\mathrm{dd}, J=$ $12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 4.13-4.09\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{a} ", 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH}_{2}\right), 3.96$ (ddd, $J=$ $10.1,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 3.92(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 3.87(\mathrm{dd}, J=12.9,9.6$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.81(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCHHCl}), 3.69(\mathrm{td}, J=10.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH} H \mathrm{CH}_{2}$), $3.65-3.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-6 \mathrm{~b} ", 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{COCHHCl}\right), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H}$, $1 \times \mathrm{H}-6 \mathrm{~b}), 2.15-2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH} 2\right), 1.96-1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 169.18,167.98\left(2 \times\right.$ COPhth), $167.28\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.84,166.82$, $166.59,166.54,166.46,165.72,165.57,165.36,165.15,164.94(10 \times C O P h), 158.38(\mathrm{~d}, J=$ $\left.38.5 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.02\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.96\left(\mathrm{~d}, J=37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right)$, $157.59\left(\mathrm{~d}, J=37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.92(2 \times$ Phth $), 133.91,133.87,133.83,133.77,133.73$, $133.53,133.40(7 \times \mathrm{Bz}), 133.35(2 \times \mathrm{Bz}), 133.20(1 \times \mathrm{Bz}), 130.69,130.48\left(2 \times 4^{\circ}\right.$ Phth $), 130.22$
$(2 \times \mathrm{Bz}), 130.21(2 \times \mathrm{Bz}), 130.16(2 \times \mathrm{Bz}), 130.07(2 \times \mathrm{Bz}), 129.90(6 \times \mathrm{Bz}), 129.83(2 \times \mathrm{Bz})$, $129.80(2 \times \mathrm{Bz}), 129.70(2 \times \mathrm{Bz})$, $129.08(2 \times \mathrm{Bz}), 129.05\left(4^{\circ} \mathrm{Bz}\right), 128.93(2 \times \mathrm{Bz}), 128.87$, $128.86,128.84,128.84\left(4 \times 4^{\circ} \mathrm{Bz}\right), 128.69(2 \times \mathrm{Bz}), 128.65\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.64(2 \times \mathrm{Bz}), 128.62$ $\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.57(2 \times \mathrm{Bz}), 128.43\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.40(2 \times \mathrm{Bz}), 128.38(2 \times \mathrm{Bz}), 128.35(2 \times$ $\mathrm{Bz}), 128.30(2 \times \mathrm{Bz}), 128.23(2 \times \mathrm{Bz})$, 128.22, $128.13\left(2 \times 4^{\circ} \mathrm{Bz}\right)$, 124.36, $123.48(2 \times$ Phth $)$, $115.96\left(\mathrm{q}, J=288.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.59\left(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.36(\mathrm{q}, J=288.4 \mathrm{~Hz}, 1$ $\left.\times \mathrm{CF}_{3}\right), 115.04\left(\mathrm{q}, J=287.1 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 104.09,101.65,100.72(3 \times \mathrm{C}-1), 100.50(\mathrm{C}-1 \mathrm{l})$, $100.42(1 \times \mathrm{C}-1), 74.65(1 \times \mathrm{C}-5), 73.90,73.55(\mathrm{C}-6$ ", $1 \times \mathrm{C}-6), 73.50(\mathrm{C}-5$ " $), 72.59(1 \times \mathrm{C}-6)$, $72.53(1 \times \mathrm{C}-3,1 \times \mathrm{C}-5), 72.51(1 \times \mathrm{C}-5), 72.28(2 \times \mathrm{C}-3,1 \times \mathrm{C}-5,1 \times \mathrm{C}-6), 71.74(1 \times \mathrm{C}-4)$, 71.70 (C-4"), 71.56, $69.91(2 \times \mathrm{C}-4), 69.87(1 \times \mathrm{C}-3), 69.64(1 \times \mathrm{C}-4), 69.43$ (C-3"), 66.45 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.67(1 \times \mathrm{C}-6), 58.01,55.44(2 \times \mathrm{C}-2), 55.29(\mathrm{C}-2 "), 54.70,54.43(2 \times \mathrm{C}-2), 41.61$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 40.54 \quad\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 32.12 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (MALDI) calculated for $\mathrm{C}_{121} \mathrm{H}_{101} \mathrm{~N}_{5} \mathrm{O}_{38} \mathrm{~F}_{12} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$2552.52, found 2552.13.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)chloropropyl 2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (21)

Pentasaccharide 20 ($206 \mathrm{mg}, 0.081 \mathrm{mmol}$) was dissolved in a $2: 4: 1$ mixture of 0.5 M NaOH ($16.2 \mathrm{~mL}, 8.1 \mathrm{mmol}, 100$ equiv.), THF (32.4 mL), and $\mathrm{MeOH}(8.1 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 3 h . The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($20 \mathrm{~mL}, 211.6 \mathrm{mmol}, 2612$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(20 \mathrm{~mL}$, $247.3 \mathrm{mmol}, 3052$ equiv.). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 2 h , then left to attain RT for 16 h (TLC in $17: 3 \mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.5$). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(60$ $\mathrm{mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 19: 1 \rightarrow 8: 2$) gave pentasaccharide $21(101 \mathrm{mg}, 75 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone- d_{6}) $\delta_{\mathrm{H}} 7.94-7.90(\mathrm{~m}, 4 \mathrm{H}, 4 \times$ Phth $), 7.56(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{N}-\mathrm{H}), 7.31(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.15(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 5.85(\mathrm{dd}, J=10.7$, $\left.8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 5.43$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 "\right), 5.35$ (dd, $J=10.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3$), 5.26 $(\mathrm{dd}, J=10.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.22-5.17(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-3), 5.04(\mathrm{dd}, J=10.2,8.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 4.98(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.92(\mathrm{dd}, J=10.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.84$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.72-4.65(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times$ $\mathrm{H}-4), 4.40(\mathrm{td}, J=10.5,9.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.31(\mathrm{dd}, J=10.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 4.28-$
$4.20(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-2, \mathrm{H}-5 \mathrm{C}), 4.17(\mathrm{q}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.13-4.05(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times$ H-6a), $4.03-3.97$ (m, 4H, $2 \times \mathrm{H}-2,1 \times \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$ "), $3.95-3.85$ (m, 5H, $1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$ ", $2 \times$ $\mathrm{H}-6 \mathrm{~b}, \mathrm{OC} H \mathrm{HCH}_{2}$), $3.84-3.80(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}), 3.74(\mathrm{dd}, J=11.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-6 \mathrm{a}), 3.68$ (ddd, $J=12.4,7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{CH}_{2}$), $3.67-3.62\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{Cl}\right)$, 3.59 (dd, $J=11.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.11,2.09,2.06,2.05(4 \mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{Ac}), 2.03-2.01$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 1.99,1.98,1.96,1.96,1.95(5 \mathrm{~s}, 15 \mathrm{H}, 5 \times \mathrm{Ac}), 1.96-1.93(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHHCH} 2,1 \times \mathrm{Ac}\right), 1.92,1.89,1.84,1.84,1.83(5 \mathrm{~s}, 15 \mathrm{H}, 5 \times \mathrm{Ac}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta_{\mathrm{C}} 171.18,170.93,170.71\left(3 \times \mathrm{COCH}_{3}\right), 170.65\left(2 \times \mathrm{COCH}_{3}\right), 170.54(2 \times$ $\left.\mathrm{COCH}_{3}\right), 170.49,170.45,170.41,170.33,170.23,170.12,170.10,170.06\left(8 \times \mathrm{COCH}_{3}\right), 135.88$ $(2 \times$ Phth $), 132.27\left(2 \times 4^{\circ}\right.$ Phth $), 124.27(2 \times$ Phth $), 103.99,102.36,101.85,101.14(4 \times \mathrm{C}-1)$, 100.04 (C-1"), $74.66(1 \times \mathrm{C}-3), 74.54(1 \times \mathrm{C}-5), 74.32,73.87(2 \times \mathrm{C}-3), 73.61\left(\mathrm{C}-5{ }^{\prime \prime}\right), 73.22(1 \times$ C-5), 73.15 ($1 \times \mathrm{C}-3$), $72.69(1 \times \mathrm{C}-5), 72.00(1 \times \mathrm{C}-5, \mathrm{C}-6$ " $), 71.82(1 \times \mathrm{C}-6), 71.57$ (C-4"), $71.45(1 \times \mathrm{C}-4), 71.26\left(\mathrm{C}-3{ }^{\prime \prime}\right), 71.21(1 \times \mathrm{C}-4), 70.90(1 \times \mathrm{C}-6), 70.50,69.96(2 \times \mathrm{C}-4), 66.90$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.58,63.03(2 \times \mathrm{C}-6), 56.21\left(\mathrm{C}-2{ }^{\prime \prime}\right), 54.97,54.84,54.70,52.88(4 \times \mathrm{C}-2), 42.63$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 33.31\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.29,23.25,23.16,23.09\left(4 \times \mathrm{NCOCH}_{3}\right), 21.05,20.99,20.98$, 20.90, $20.73\left(5 \times \mathrm{OCOCH}_{3}\right), 20.71\left(2 \times \mathrm{OCOCH}_{3}\right), 20.67\left(2 \times \mathrm{OCOCH}_{3}\right), 20.55,20.46(2 \times$ $\left.\mathrm{OCOCH}_{3}\right) . \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated for $\mathrm{C}_{71} \mathrm{H}_{98} \mathrm{~N}_{6} \mathrm{O}_{38} \mathrm{Cl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1677.56$, found 1677.56.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-(1 \rightarrow 6)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)azidopropyl 2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (22)

Pentasaccharide 21 ($97.0 \mathrm{mg}, 0.058 \mathrm{mmol}$) and NaN_{3} ($114 \mathrm{mg}, 1.75 \mathrm{mmol}$, 30 equiv.) were dissolved in dry DMF (5.8 mL). The reaction was stirred at $80^{\circ} \mathrm{C}$ for 24 h (TLC in 17:3 $\mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.5$). The solution was diluted with EtOAc $(90 \mathrm{~mL})$ then washed with $\mathrm{H}_{2} \mathrm{O}$ $(90 \mathrm{~mL})$. The aqueous layer was re-extracted with EtOAc $(2 \times 45 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 19: 1 \rightarrow 8: 2$) gave azidopropyl glycoside 22 ($74.4 \mathrm{mg}, 76 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone $-d_{6}$) $\delta_{\mathrm{H}} 7.99-7.88(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Phth}), 7.54(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.31(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{H}), 7.14(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 5.85(\mathrm{dd}, J=10.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 "), 5.43$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{\prime}), 5.34$ (dd, $J=10.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.26$ (dd, $J=10.5,9.4 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.22-5.18(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-3), 5.05(\mathrm{dd}, J=10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 4.98$ $(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.93(\mathrm{dd}, J=10.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.84(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-4), 4.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.72-4.66(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times \mathrm{H}-4), 4.39(\mathrm{td}, J=9.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.31$ (dd, $\left.J=10.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{2}^{\prime}\right), 4.28-4.20\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-2, \mathrm{H}-5{ }^{\prime}\right)$,
$4.17(\mathrm{q}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.11(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.07(\mathrm{ddd}, J=10.4$, 8.2, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5$), $4.03-3.97(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2,1 \times \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$ "), 3.94 (dd, $J=10.4,1.9$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.91-3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right.$ ", $\left.2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}_{2}\right), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-$ $5,1 \times \mathrm{H}-6 \mathrm{a}), 3.75(\mathrm{dd}, J=11.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.65(\mathrm{dd}, J=12.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b})$, 3.62 (ddd, $J=12.7,7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.58(\mathrm{dd}, J=11.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.40$ ($\mathrm{td}, J=6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 2.11, $2.09,2.07,2.05,1.99,1.98,1.96\left(7 \mathrm{~s}, 21 \mathrm{H}, 7 \times \mathrm{CH}_{3}\right), 1.95$ (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 1.94, 1.92, 1.89, 1.84, 1.84, $1.83\left(6 \mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta_{\mathrm{C}} 171.18,170.94,170.73,170.67,170.67(5 \times$ $\left.\mathrm{COCH}_{3}\right), 170.57\left(2 \times \mathrm{COCH}_{3}\right), 170.51,170.48,170.44,170.33,170.21,170.15,170.12,170.00$ $\left(8 \times \mathrm{COCH}_{3}\right), 135.91(2 \times$ Phth $), 132.31\left(2 \times 4^{\circ}\right.$ Phth $), 124.59,124.33(2 \times$ Phth $), 103.98$, 102.36, 101.64, 101.18 ($4 \times \mathrm{C}-1$), 100.04 (C-1"), 74.67 ($1 \times \mathrm{C}-3$), $74.54(1 \times \mathrm{C}-5), 74.38,73.92$ ($2 \times \mathrm{C}-3$), $73.64(\mathrm{C}-5$ "), $73.23(1 \times \mathrm{C}-5), 73.20(1 \times \mathrm{C}-3), 72.75(1 \times \mathrm{C}-5), 72.05(1 \times \mathrm{C}-5), 71.95$ (C-6"), $71.76(1 \times \mathrm{C}-6), 71.56(\mathrm{C}-4$ "), $71.46(1 \times \mathrm{C}-4), 71.30(\mathrm{C}-3$ " $), 71.22(1 \times \mathrm{C}-4), 70.83(1 \times$ $\mathrm{C}-6), 70.52,69.97(2 \times \mathrm{C}-4), 66.90\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.62,63.05(2 \times \mathrm{C}-6), 56.22\left(\mathrm{C}-2{ }^{\prime \prime}\right), 55.00$, 54.84, 54.72, $52.91(4 \times \mathrm{C}-2), 49.00\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, $29.59\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.29,23.26,23.18,23.09$ $\left(4 \times \mathrm{NCOCH}_{3}\right), 21.06\left(1 \times \mathrm{OCOCH}_{3}\right), 20.99\left(2 \times \mathrm{OCOCH}_{3}\right), 20.90,20.74\left(2 \times \mathrm{OCOCH}_{3}\right), 20.72$ $\left(2 \times \mathrm{OCOCH}_{3}\right), 20.67\left(2 \times \mathrm{OCOCH}_{3}\right), 20.53,20.46\left(2 \times \mathrm{OCOCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{71} \mathrm{H}_{98} \mathrm{~N}_{9} \mathrm{O}_{38}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1684.60, found 1684.60.

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3,4 -di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (23)

Disaccharide acceptor $\mathbf{1 5}(1.00 \mathrm{~g}, 0.98 \mathrm{mmol})$ and glycosyl bromide $\mathbf{1 3}(1.59 \mathrm{~g}, 1.46 \mathrm{mmol}, 1.5$ equiv; 1.77 g crude) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ containing freshly activated powdered $4 \AA \mathrm{MS}(2.5 \mathrm{~g})$. The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h. AgOTf ($0.50 \mathrm{mg}, 1.95 \mathrm{mmol}, 2$ equiv.) in dry toluene (3 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 3:7 acetone/pentanes, $\mathrm{R}_{\mathrm{f}}=0.2$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 80 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (acetone/pentanes, 3:7 $\rightarrow 7: 13$) gave tetrasaccharide 23 ($1.52 \mathrm{~g}, 77 \%$) as a pale yellow amorphous solid, and recovered acceptor 15 $(0.11 \mathrm{~g}, 11 \%)$. Analytical Data for 23: ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta_{\mathrm{H}} 8.12(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}$), 8.05 (ddd, $J=10.4,8.4,1.3 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{Bz}$), $8.02-7.98(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz})$, $7.99-7.93(\mathrm{~m}, 9 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 8 \times \mathrm{Bz}), 7.60-7.44(\mathrm{~m}, 10 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 9 \times \mathrm{Bz}), 7.45-7.28(\mathrm{~m}$,
$14 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 13 \times \mathrm{Bz}), 7.25(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 5.95(\mathrm{t}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.92(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.84(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.79(\mathrm{dd}, J=$ $10.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.70(\mathrm{dd}, J=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.65(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-4), 5.35(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.20(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $1 \times \mathrm{H}-1), 4.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.70-4.47(\mathrm{~m}$, $7 \mathrm{H}, 1 \times \mathrm{H}-1,4 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.42(\mathrm{dd}, J=12.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.18-4.05(\mathrm{~m}, 5 \mathrm{H}, 1$ $\left.\times \mathrm{H}-5,2 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}_{2}\right), 3.99-3.83(\mathrm{~m}, 5 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}$, $\left.\mathrm{COCH}_{2} \mathrm{Cl}\right), 3.82-3.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{CH}_{2}\right), 3.66-3.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 2.04$ $\left(\mathrm{dt}, J=20.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}\right.$, Chloroform-d) $\delta_{\mathrm{C}} 167.02$ $\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.81,166.70,166.52,166.48,166.41,166.29,165.21,165.08(8 \times \mathrm{COPh}), 158.33$ $\left(\mathrm{d}, J=38.0 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.31\left(\mathrm{~d}, J=38.5 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.17(\mathrm{~d}, J=37.8 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{COCF}_{3}\right), 157.91\left(\mathrm{~d}, J=37.3 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 133.98(1 \times \mathrm{Bz}), 133.84(2 \times \mathrm{Bz}), 133.75,133.69$ $(2 \times \mathrm{Bz}), 133.43(2 \times \mathrm{Bz}), 133.38(1 \times \mathrm{Bz}), 130.14(2 \times \mathrm{Bz}), 130.08(2 \times \mathrm{Bz}), 130.00(2 \times \mathrm{Bz})$, $129.92(2 \times \mathrm{Bz}), 129.85(6 \times \mathrm{Bz}), 129.69(2 \times \mathrm{Bz}), 128.89(2 \times \mathrm{Bz}), 128.81\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.72$ $(2 \times \mathrm{Bz}), 128.68\left(4 \times 4^{\circ} \mathrm{Bz}\right), 128.64(2 \times \mathrm{Bz}), 128.41(4 \times \mathrm{Bz}), 128.38(4 \times \mathrm{Bz}), 128.35(2 \times \mathrm{Bz})$, $128.19,128.05\left(2 \times 4^{\circ} \mathrm{Bz}\right), 115.56\left(\mathrm{q}, J=287.9 \mathrm{~Hz}, 2 \times \mathrm{CF}_{3}\right), 115.40\left(\mathrm{q}, J=287.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right)$, $115.16\left(\mathrm{q}, J=287.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 103.78,103.31,101.77,99.96(4 \times \mathrm{C}-1), 73.93,73.30(2 \times \mathrm{C}-$ 5), $73.24(1 \times \mathrm{C}-6), 73.01(1 \times \mathrm{C}-5), 72.61,72.45(2 \times \mathrm{C}-3), 72.22(1 \times \mathrm{C}-6), 71.77(1 \times \mathrm{C}-3)$, $71.37,71.33,71.21,70.23(4 \times \mathrm{C}-4), 68.81(1 \times \mathrm{C}-3), 66.53\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 64.17(1 \times \mathrm{C}-6), 55.35$, 55.16, 54.52, $53.76(4 \times \mathrm{C}-2), 41.47\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 40.69\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 31.95\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{93} \mathrm{H}_{84} \mathrm{~N}_{5} \mathrm{O}_{30} \mathrm{~F}_{12} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$2048.44, found 2048.43.

3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl $\quad 3,4$-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (24)

Tetrasaccharide $23(1.22 \mathrm{~g}, 0.60 \mathrm{mmol})$ and thiourea ($230 \mathrm{mg}, 3.02 \mathrm{mmol}$, 5 equiv) were dissolved in a $1: 1$ mixture pyridine/EtOH (60 mL). The solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h (TLC in $1: 1 \mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.6$), then co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 150 \mathrm{~mL})$ then sat. aq. NaHCO_{3} $(150 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 4:6 \rightarrow 9:11) gave tetrasaccharide acceptor $24(0.72 \mathrm{~g}, 62 \%)$ as a white/pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $8.00-7.88(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{N}-$ $\mathrm{H}, 14 \times \mathrm{Bz}), 7.53(\mathrm{q}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{Bz}), 7.50-7.40(\mathrm{~m}, 7 \mathrm{H}, 7 \times \mathrm{Bz}), 7.41-7.34(\mathrm{~m}, 7 \mathrm{H}, 1$ $\times \mathrm{N}-\mathrm{H}, 6 \times \mathrm{Bz}), 7.33-7.26(\mathrm{~m}, 7 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 6 \times \mathrm{Bz}), 7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 5.94(\mathrm{t}, J$
$=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.88(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.81-5.71(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-3), 5.67$ ($\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4$), $5.53(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.40(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4)$, $5.26(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-1), 4.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.64-4.55(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-2), 4.51(\mathrm{t}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.46(\mathrm{q}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.42-4.33(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.24$ $-4.19(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.12-3.98(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH} 2), 3.89-3.82(\mathrm{~m}, 2 \mathrm{H},, 1 \times \mathrm{H}-$ 6a, $1 \times \mathrm{H}-6 \mathrm{~b}), 3.79-3.68\left(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}_{2}\right), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-$ 5), $3.60(\mathrm{dd}, J=12.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.55\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.11-2.01(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}$), $2.02-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} $166.94,166.66,166.53,166.30(4 \times \mathrm{COPh}), 166.20(2 \times \mathrm{COPh}), 166.16,165.33(2 \times \mathrm{COPh})$, $158.17\left(\mathrm{~d}, J=38.1 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.15\left(\mathrm{~d}, J=38.2 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.10(\mathrm{~d}, J=37.7 \mathrm{~Hz}$, $\left.1 \times \mathrm{COCF}_{3}\right), 157.87\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.04,133.86,133.82,133.80,133.71$, 133.56, 133.42, $133.41(8 \times \mathrm{Bz})$, $130.11(2 \times \mathrm{Bz}), 130.00(2 \times \mathrm{Bz})$, $129.97(2 \times \mathrm{Bz}), 129.91(4 \times$ $\mathrm{Bz}), 129.84(2 \times \mathrm{Bz}), 129.80(4 \times \mathrm{Bz}), 128.73(2 \times \mathrm{Bz}), 128.70,128.70\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.67(4 \times$ $\mathrm{Bz}), 128.65\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.63(2 \times \mathrm{Bz}), 128.55\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.43(2 \times \mathrm{Bz}), 128.41(4 \times \mathrm{Bz})$, $128.38(2 \times \mathrm{Bz}), 128.24\left(2 \times 4^{\circ} \mathrm{Bz}\right), 115.61\left(\mathrm{q}, J=288.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.54(\mathrm{q}, J=287.8 \mathrm{~Hz}$, $\left.1 \times \mathrm{CF}_{3}\right), 115.41\left(\mathrm{q}, J=287.5 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.26\left(\mathrm{q}, J=287.6 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 103.15,102.73$, $101.70,100.17(4 \times \mathrm{C}-1), 75.05,73.97,73.22,72.76(4 \times \mathrm{C}-5), 72.39(1 \times \mathrm{C}-3,1 \times \mathrm{C}-6), 72.29$, $72.00(1 \times \mathrm{C}-3), 71.51(1 \times \mathrm{C}-3,1 \times \mathrm{C}-6), 71.21(1 \times \mathrm{C}-4,1 \times \mathrm{C}-6), 70.76,69.76,69.32(3 \times \mathrm{C}-$ 4), $66.64\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.27(1 \times \mathrm{C}-6), 55.37,55.36,54.66,54.64(4 \times \mathrm{C}-2), 41.50\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$, $32.02\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . m / z$ (MALDI) calculated for $\mathrm{C}_{91} \mathrm{H}_{79} \mathrm{~N}_{4} \mathrm{O}_{29} \mathrm{~F}_{12} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+}$1977.42, found 1977.65.

3,4-Di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 \rightarrow 6)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3 ,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (25)

Tetrasaccharide acceptor $24(0.59 \mathrm{~g}, 0.30 \mathrm{mmol})$ and glycosyl bromide $17(0.59 \mathrm{~g}, 0.90 \mathrm{mmol}, 3$ equiv.) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS $(0.90 \mathrm{~g})$. The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . $\mathrm{AgOTf}(105 \mathrm{mg}$, $0.409 \mathrm{mmol}, 4$ equiv.) in dry toluene (0.6 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.4$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 75 \mathrm{~mL})$. The aqueous
layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 7:13 \rightarrow 9:11) gave pentasaccharide $25(0.68 \mathrm{~g}, 89 \%)$ as a pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.49(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.20(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.16-8.11(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.08-8.03(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 2 \times \mathrm{Bz}), 8.03$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.00-7.92(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{Bz}), 7.83-7.78(\mathrm{~m}, 3 \mathrm{H}, 3 \times$ Phth $), 7.67-$ $7.64(\mathrm{~m}, 1 \mathrm{H}, 1 \times$ Phth $), 7.60-7.53(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Bz}), 7.51-7.39(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{Bz}), 7.38-7.26$ $(\mathrm{m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.18-7.13(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Bz}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.34(\mathrm{dd}, J=$ $\left.10.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 6.25(\mathrm{dd}, J=10.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.01(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-3), 5.86(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.76-5.63\left(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-3, \mathrm{H}-4^{\mathrm{IV}}, 2 \times \mathrm{H}-4\right), 5.33(\mathrm{t}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.15\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}\right), 5.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 5.00$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.92(\mathrm{q}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-$ 1), $4.80-4.67(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-5), 4.66-4.55\left(\mathrm{~m}, 6 \mathrm{H}, 1 \times \mathrm{H}-1, \mathrm{H}-2^{\mathrm{IV}}, 3 \times \mathrm{H}-2,1 \times \mathrm{H}-5\right)$, $4.37\left(\mathrm{dd}, J=12.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{IV}}\right.$), $4.25(\mathrm{dd}, J=12.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.21-4.09$ $\left(\mathrm{m}, 3 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH}_{2}\right), 4.06\left(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}\right), 4.04-4.00(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\mathrm{IV}}\right), 3.90(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCHHCl}), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHHCH} 2, \mathrm{COCHHCl})$, $3.75(\mathrm{t}, J=13.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-66), 3.71-3.59\left(\mathrm{~m}, 5 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, $3.38(\mathrm{dd}, J=13.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.23(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.21-2.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}$), $2.11-2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} 168.80, $167.37(2 \times$ COPhth $), 167.15\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.71,166.60,166.55,166.53,166.44$, $166.17,165.81,165.65,164.96,164.94(10 \times C O P h), 158.52\left(\mathrm{~d}, J=38.1 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right)$, $158.43\left(\mathrm{~d}, J=38.4 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.27\left(\mathrm{~d}, J=37.9 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.01(\mathrm{~d}, J=37.6 \mathrm{~Hz}$, $\left.1 \times \mathrm{COCF}_{3}\right), 135.12,135.00(2 \times$ Phth $), 133.83(2 \times \mathrm{Bz}), 133.78,133.65(2 \times \mathrm{Bz}), 133.54(2 \times$ $\mathrm{Bz}), 133.37(3 \times \mathrm{Bz}), 133.20(1 \times \mathrm{Bz})$, 130.69, $130.50\left(2 \times 4^{\circ}\right.$ Phth $), 130.22(2 \times \mathrm{Bz}), 130.11(2$ $\times \mathrm{Bz})$, $129.94(2 \times \mathrm{Bz}), 129.92(4 \times \mathrm{Bz}), 129.90(4 \times \mathrm{Bz}), 129.89(2 \times \mathrm{Bz}), 129.69(2 \times \mathrm{Bz})$, $129.31(2 \times \mathrm{Bz}), 129.30\left(4^{\circ} \mathrm{Bz}\right), 128.98\left(2 \times \mathrm{Bz}, 4^{\circ} \mathrm{Bz}\right), 128.80\left(2 \times 4^{\circ} \mathrm{Bz}\right)$, $128.73(2 \times \mathrm{Bz})$, $128.71(2 \times \mathrm{Bz}), 128.69(2 \times \mathrm{Bz}), 128.67\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.59(2 \times \mathrm{Bz}), 128.56\left(1 \times 4^{\circ} \mathrm{Bz}\right)$, $128.37\left(4 \times \mathrm{Bz}, 1 \times 4^{\circ} \mathrm{Bz}\right), 128.32(4 \times \mathrm{Bz}), 128.26\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.22(2 \times \mathrm{Bz}), 128.19,128.09$ $\left(2 \times 4^{\circ} \mathrm{Bz}\right), 124.04,123.68(2 \times$ Phth $), 115.82\left(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.70(\mathrm{q}, J=287.1$ $\mathrm{Hz}, 1 \times \mathrm{CF}_{3}$), $115.58\left(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.01\left(\mathrm{q}, J=287.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 103.95$, 103.34, $101.50(3 \times \mathrm{C}-1), 100.94\left(\mathrm{C}-1^{\mathrm{IV}}\right), 100.14(1 \times \mathrm{C}-1), 74.33(1 \times \mathrm{C}-6), 74.00(1 \times \mathrm{C}-5)$, $73.68(1 \times \mathrm{C}-6), 73.62(1 \times \mathrm{C}-5), 73.57(1 \times \mathrm{C}-6), 73.09\left(\mathrm{C}-5^{\mathrm{IV}}\right), 72.75(1 \times \mathrm{C}-3), 72.52(1 \times \mathrm{C}-$ 5), $72.37(1 \times \mathrm{C}-6), 72.36(1 \times \mathrm{C}-3), 72.17(1 \times \mathrm{C}-5), 72.05(1 \times \mathrm{C}-4), 71.98(1 \times \mathrm{C}-3), 71.74$, $71.54(2 \times \mathrm{C}-4), 71.32(1 \times \mathrm{C}-3), 70.22(1 \times \mathrm{C}-4), 69.97\left(\mathrm{C}-4^{\mathrm{IV}}\right), 69.78\left(\mathrm{C}-3^{\mathrm{IV}}\right), 66.81$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 64.14\left(\mathrm{C}-6^{\mathrm{IV}}\right), 55.36,55.28,55.09(3 \times \mathrm{C}-2), 54.65\left(\mathrm{C}-2^{\mathrm{IV}}\right), 54.42(1 \times \mathrm{C}-2), 41.70$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, $40.60 \quad\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 32.34 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z} \quad$ (MALDI) calculated for $\mathrm{C}_{121} \mathrm{H}_{101} \mathrm{~N}_{5} \mathrm{O}_{38} \mathrm{~F}_{12} \mathrm{NaCl}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$2552.52, found 2552.41.

3,4-Di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl- $(1 \rightarrow 6)$-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (26)

Pentasaccharide 25 ($0.79 \mathrm{~g}, 0.31 \mathrm{mmol}$) and thiourea ($120 \mathrm{mg}, 1.58 \mathrm{mmol}$, 5 equiv) were dissolved in a $1: 1$ mixture pyridine $/ \mathrm{EtOH}(30 \mathrm{~mL})$. The solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h (TLC in $1: 1 \mathrm{EtOAc} /$ pentanes, $\mathrm{R}_{\mathrm{f}}=0.6$), then co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 75 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(75$ $\mathrm{mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/hexanes, 4:6 \rightarrow 1:1) gave pentasaccharide acceptor $26(0.44 \mathrm{~g}, 57 \%)$ as a white/pale yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.42(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $1 \times \mathrm{N}-\mathrm{H}), 8.15(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.09(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.07(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.05-8.00(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Bz}), 8.01-7.92(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.93(\mathrm{dd}, J=$ $8.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.82-7.74$ (m, 3H, $3 \times \mathrm{Phth}$), $7.60-7.52(\mathrm{~m}, 7 \mathrm{H}, 7 \times \mathrm{Bz}), 7.49-7.37$ $(\mathrm{m}, 14 \mathrm{H}, 13 \times \mathrm{Bz}, 1 \times \mathrm{Phth}), 7.35-7.28(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.21$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H})$, 6.37 (dd, $\left.J=10.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 6.18(\mathrm{dd}, J=10.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.99(\mathrm{t}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.87(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.76-5.69(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-3,1 \times \mathrm{H}-4), 5.57$ (dd, $J=10.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.41-5.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}, 1 \times \mathrm{H}-4\right), 5.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{\mathrm{IV}}\right), 5.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 5.04(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.86(\mathrm{q}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.77-4.53(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-1,3 \times \mathrm{H}-2,3 \times \mathrm{H}-5)$, $4.51\left(\mathrm{dd}, J=10.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{IV}}\right), 4.26-4.15(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-5,2 \times \mathrm{H}-6 \mathrm{a}), 4.13-4.03(\mathrm{~m}$, $2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH} 2), 3.83-3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\mathrm{IV}}, \mathrm{OCH}_{2} \mathrm{OCH}_{2}\right), 3.77-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{IV}}\right.$, $1 \times \mathrm{H}-6 \mathrm{a}), 3.65-3.53\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.41(\mathrm{dd}, J=12.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-$ 6 b), 3.29 (dd, $J=11.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.14-2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 2.06-1.99$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} H \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 168.61,167.53(2 \times$ COPhth $)$, $167.09,166.59,166.53,166.52,166.42,166.25,166.10,165.73,165.46,164.89(10 \times \mathrm{COPh})$, $158.72\left(\mathrm{~d}, J=38.1 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.41\left(\mathrm{~d}, J=38.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.29(\mathrm{~d}, J=37.8 \mathrm{~Hz}$, $\left.1 \times \mathrm{COCF}_{3}\right), 158.01\left(\mathrm{~d}, J=37.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 134.93(2 \times \mathrm{Phth}), 133.87,133.81,133.76(3 \times$ $\mathrm{Bz}), 133.68(2 \times \mathrm{Bz}), 133.52(2 \times \mathrm{Bz}), 133.38$, 133.28, $133.20(3 \times \mathrm{Bz}), 130.84,130.52\left(2 \times 4^{\circ}\right.$ Phth $)$, $130.17(2 \times \mathrm{Bz}), 130.14(2 \times \mathrm{Bz}), 130.09(2 \times \mathrm{Bz}), 130.04(2 \times \mathrm{Bz}), 129.99(2 \times \mathrm{Bz})$, $129.93(2 \times \mathrm{Bz})$, $129.91(2 \times \mathrm{Bz}), 129.87(2 \times \mathrm{Bz}), 129.81(2 \times \mathrm{Bz}), 129.48(2 \times \mathrm{Bz})$, 129.01, $128.97\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.94(2 \times \mathrm{Bz}), 128.86(2 \times \mathrm{Bz}), 128.79\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.73\left(2 \times 4^{\circ} \mathrm{Bz}\right)$, $128.72\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.69(2 \times \mathrm{Bz}), 128.62(2 \times \mathrm{Bz}), 128.59\left(2 \times \mathrm{Bz}, 1 \times 4^{\circ} \mathrm{Bz}\right), 128.42\left(1 \times 4^{\circ}\right.$ $\mathrm{Bz}), 128.40(2 \times \mathrm{Bz}), 128.39(2 \times \mathrm{Bz}), 128.33\left(2 \times \mathrm{Bz}, 1 \times 4^{\circ} \mathrm{Bz}\right), 128.32(2 \times \mathrm{Bz}), 128.30(2 \times$ $\mathrm{Bz}), 128.11\left(1 \times 4^{\circ} \mathrm{Bz}\right), 123.94,123.48(2 \times$ Phth $), 115.76\left(\mathrm{q}, J=287.7 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.67(\mathrm{q}$, $\left.J=287.1 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.59\left(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.02\left(\mathrm{q}, J=287.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right)$, 104.20, 103.43, 101.61, $100.11(4 \times \mathrm{C}-1), 100.09\left(\mathrm{C}-1^{\mathrm{IV}}\right), 75.12\left(\mathrm{C}-5^{\mathrm{IV}}\right), 74.64(1 \times \mathrm{C}-5), 74.25$, $73.71(2 \times \mathrm{C}-6), 73.64(1 \times \mathrm{C}-5), 72.74(1 \times \mathrm{C}-3), 72.67(1 \times \mathrm{C}-5), 72.41(1 \times \mathrm{C}-6), 72.37(1 \times$
$\mathrm{C}-3), 72.23(1 \times \mathrm{C}-5), 71.89,71.67(2 \times \mathrm{C}-4), 71.62(1 \times \mathrm{C}-4,1 \times \mathrm{C}-6), 71.52,71.50(2 \times \mathrm{C}-3)$, $70.36\left(\mathrm{C}-4^{\mathrm{IV}}\right), 70.03\left(\mathrm{C}-3^{\mathrm{IV}}\right), 69.83(1 \times \mathrm{C}-4), 66.73\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.63\left(\mathrm{C}-6^{\mathrm{IV}}\right), 55.22,55.10(2$ $\times \mathrm{C}-2), 55.03\left(\mathrm{C}-2^{\mathrm{IV}}\right), 54.56,54.39(2 \times \mathrm{C}-2), 41.66\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 32.24\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (MALDI) calculated for $\mathrm{C}_{119} \mathrm{H}_{100} \mathrm{~N}_{5} \mathrm{O}_{37} \mathrm{~F}_{12} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 2476.55$, found 2476.11.

3,4-Di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl($\mathbf{1 \rightarrow 6}$)-chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (27)

Pentasaccharide acceptor $26(430 \mathrm{mg}, 0.175 \mathrm{mmol})$ and glycosyl bromide $13(381 \mathrm{mg}, 0.350$ $\mathrm{mmol}, 2$ equiv; 388 mg crude) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS (520 mg). The mixture was cooled to $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . AgOTf ($121 \mathrm{mg}, 0.471 \mathrm{mmol}, 2.7$ equiv.) in dry toluene (1.0 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=$ 0.3), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 45 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (acetone/hexanes, 7:13 \rightarrow 9:11) gave a crude mixture containing heptasaccharide 27 and pentasaccharide acceptor 26. The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$. Pyridine $(28.4 \mu \mathrm{~L}, 0.351 \mathrm{mmol})$ was added, followed by chloroacetyl chloride ($13.7 \mu \mathrm{~L}, 0.176 \mathrm{mmol}$). The reaction was stirred at RT for 30 min . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layers were reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (acetone/pentanes, 32:68 \rightarrow 1:1) gave heptasaccharide $27(284 \mathrm{mg}$, 47%) as a pale yellow amorphous solid, and chloroacetylated pentasaccharide 25 ($68 \mathrm{mg}, 15 \%$) as a pale yellow amorphous solid. Analytical Data for 27: ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.47(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.26-8.23(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ $\mathrm{Bz}), 8.21(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.18-8.12(\mathrm{~m}, 5 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 4 \times \mathrm{Bz}), 8.10-8.08(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.06-8.00(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.97(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.95-7.87(\mathrm{~m}$, $12 \mathrm{H}, 12 \times \mathrm{Bz}$), $7.74-7.70(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{Bz}, 2 \times$ Phth $), 7.66-7.23(\mathrm{~m}, 37 \mathrm{H}, 36 \times \mathrm{Bz}, 1 \times$ Phth $)$, $7.21-7.16(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.03(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H})$, $7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{Bz}, 1 \times$ Phth $), 6.51\left(\mathrm{dd}, J=11.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 6.25-6.21(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{H}-3), 6.07(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.99(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.94(\mathrm{t}, J=$
$10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.68-5.64(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.61(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.53(\mathrm{t}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.48-5.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}, 3 \times \mathrm{H}-4\right), 5.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1)$, $5.15(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.07\left(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}, 1 \times \mathrm{H}-1\right), 4.93-4.80(\mathrm{~m}, 4 \mathrm{H}, 2$ $\times \mathrm{H}-1,1 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.79-4.67\left(\mathrm{~m}, 5 \mathrm{H}, 1 \times \mathrm{H}-1, \mathrm{H}-2^{\mathrm{IV}}, 1 \times \mathrm{H}-2,2 \times \mathrm{H}-5\right), 4.64-4.52(\mathrm{~m}$, $5 \mathrm{H}, 1 \times \mathrm{H}-1,3 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.30-4.24(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}), 4.21-4.10\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5^{\mathrm{IV}}, \mathrm{H}-\right.$ $6 \mathrm{a}^{\mathrm{IV}}, 1 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}$) $, 3.98(\mathrm{dd}, \mathrm{J}=13.00,11.25 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.95-3.85$ $(\mathrm{m}, 4 \mathrm{H}, 1 \times \mathrm{H}-2,2 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}), 3.83-3.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, \mathrm{OCHHCH}, \mathrm{COCHHCl}\right), 3.69$ $-3.60\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{Cl}\right), 3.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.53(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{COCHHCl}), 3.50-3.46(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.44-3.37(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{~b}), 3.32-3.28(\mathrm{~m}$, $1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.14-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH} 2\right), 2.05-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} 168.64, $168.38\left(2 \times\right.$ COPhth), $167.25\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.85,166.84$, $166.53,166.50,166.38,166.26,166.18,165.95,165.85,165.72,165.60,165.16,165.04,164.88$ $(14 \times C O P h), 158.75\left(\mathrm{~d}, J=38.2 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.52\left(\mathrm{~d}, J=37.7 \mathrm{H}, 1 \times \mathrm{COCF}_{3}\right), 158.48$ $\left(\mathrm{d}, J=38.4 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.11\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.06(\mathrm{~d}, J=37.8 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{COCF}_{3}\right), 157.60\left(\mathrm{~d}, J=37.4 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 135.11,134.92(2 \times$ Phth $), 133.99,133.89,133.87$, 133.75, 133.63, 133.62, 133.56, 133.43, $133.28(9 \times \mathrm{Bz}), 133.24(2 \times \mathrm{Bz}), 133.15(1 \times \mathrm{Bz})$, $133.12(2 \times \mathrm{Bz}), 130.56(2 \times \mathrm{Bz}), 130.32(2 \times \mathrm{Bz}), 130.31(2 \times \mathrm{Bz}), 130.30(2 \times \mathrm{Bz}), 130.19(2 \times$ $\mathrm{Bz}), 130.05(2 \times \mathrm{Bz}), 129.96(2 \times \mathrm{Bz}), 129.87(4 \times \mathrm{Bz}), 129.84(2 \times \mathrm{Bz}), 129.75(2 \times \mathrm{Bz}), 129.70$ $(2 \times \mathrm{Bz}), 129.67(2 \times \mathrm{Bz}), 129.59(2 \times \mathrm{Bz}), 129.03\left(1 \times 4^{\circ} \mathrm{Bz}\right), 129.00\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.99(2 \times$ $\mathrm{Bz}), 128.96(2 \times \mathrm{Bz}), 128.95$, 128.91, 128.88, 128.78, $128.77\left(5 \times 4^{\circ} \mathrm{Bz}\right), 128.72(2 \times \mathrm{Bz})$, 128.70, $128.66\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.62(2 \times \mathrm{Bz}), 128.58\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.57(2 \times \mathrm{Bz}), 128.49(2 \times$ $\mathrm{Bz}), 128.44\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.40(2 \times \mathrm{Bz}), 128.38(2 \times \mathrm{Bz}), 128.35(6 \times \mathrm{Bz}), 128.26(4 \times \mathrm{Bz})$, $128.23(2 \times \mathrm{Bz}), 128.14\left(1 \times 4^{\circ} \mathrm{Bz}\right), 124.33$, $123.52(2 \times \mathrm{Phth}), 115.78(\mathrm{q}, J=287.6 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CF}_{3}\right), 115.71\left(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.40\left(\mathrm{q}, J=288.5 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.20(\mathrm{q}, J=286.9$ $\left.\mathrm{Hz}, 1 \times \mathrm{CF}_{3}\right), 115.19\left(\mathrm{q}, J=287.0 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 103.92,103.26,102.65,101.38(4 \times \mathrm{C}-1)$, $100.80\left(\mathrm{C}-1^{\mathrm{IV}}\right), 100.43,100.20(2 \times \mathrm{C}-1), 74.32\left(\mathrm{C}-5^{\mathrm{IV}}\right), 74.00,73.67,73.43,72.97,72.88,72.75$, $72.67,72.49,72.49,72.47,72.42,72.34,72.15,72.09,71.87,71.48,71.27,70.88,70.28$ (C-4 $\left.{ }^{\mathrm{IV}}\right)$, 69.97, 69.54, $69.30\left(\mathrm{C}-3^{\mathrm{IV}}\right), 66.76\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.67\left(\mathrm{C}-6^{\mathrm{IV}}\right), 57.88,55.44,55.30(3 \times \mathrm{C}-2)$, $55.18\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.08,54.95,54.83(3 \times \mathrm{C}-2), 41.67\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 40.52\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 32.30$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (MALDI) calculated for $\mathrm{C}_{165} \mathrm{H}_{137} \mathrm{~N}_{7} \mathrm{O}_{52} \mathrm{~F}_{18} \mathrm{Cl}_{2} \mathrm{Na}$ [M+Na] 3482.73, found 3482.12.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl $\quad 2$-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (28)

Heptasaccharide 27 ($271 \mathrm{mg}, 0.078 \mathrm{mmol}$) was dissolved in a 2:4:1 mixture of $0.5 \mathrm{M} \mathrm{NaOH}(22$ $\mathrm{mL}, 11.0 \mathrm{mmol}, 140$ equiv.), THF (44 mL), and $\mathrm{MeOH}(11 \mathrm{~mL})$. The reaction was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 3 h . The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($25 \mathrm{~mL}, 309.1 \mathrm{mmol}, 3968$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(25 \mathrm{~mL}$, $264.5 \mathrm{mmol}, 3395$ equiv.). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 2 h , then left to attain RT for 16 h (TLC in $8: 2 \mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.3$). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CHCl}_{3}(120 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(60$ $\mathrm{mL})$. The aqueous layers were re-extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 19: 1 \rightarrow 9: 1$) gave heptasaccharide $28(60 \mathrm{mg}, 34 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone- d_{6}) $\delta_{\mathrm{H}} 8.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}, 1 \times$ Phth $), 7.98-7.91(\mathrm{~m}, 3 \mathrm{H}, 3 \times$ Phth), $7.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.85(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.51(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.47(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 5.92(\mathrm{dd}$, $\left.J=10.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 5.48-5.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}, 1 \times \mathrm{H}-3\right), 5.41-5.33(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{H}-3)$, $5.28-5.16(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-3), 5.13(\mathrm{dd}, J=10.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.05-4.91(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}, 4 \times \mathrm{H}-4\right), 4.81-4.72(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{H}-1,1 \times \mathrm{H}-5), 4.70-4.61(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times \mathrm{H}-$ $4,1 \times \mathrm{H}-5), 4.55(\mathrm{td}, J=10.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.49-4.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\mathrm{IV}}, 2 \times \mathrm{H}-2, \mathrm{H}-5^{\mathrm{IV}}\right)$, $4.35(\mathrm{dt}, J=10.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.25(\mathrm{q}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.20(\mathrm{dd}, J=12.5,4.7$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.14-4.04\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{H}-2,2 \times \mathrm{H}-5, \mathrm{H}^{2}-6 \mathrm{a}^{\mathrm{IV}}\right), 4.01-3.92(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}$, $1 \times \mathrm{H}-6 \mathrm{~b}), 3.91-3.78\left(\mathrm{~m}, 6 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, 1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}_{2}, \mathrm{OCHHCH}_{2}\right)$, $3.75-3.66\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}, 2 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.59-3.52(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{~b}), 3.48$ (dd, $J=$ $12.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.20,2.15,2.12(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{Ac}), 2.11(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ac}), 2.07(\mathrm{~s}, 3 \mathrm{H}$, $1 \times \mathrm{Ac}), 2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 2.03,2.02(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ac}), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right)$, $1.98,1.98,1.97,1.96,1.95,1.95,1.92,1.89,1.87,1.86,1.86,1.82,1.77(13 \mathrm{~s}, 39 \mathrm{H}, 13 \times \mathrm{Ac})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone $-d_{6}$) $\delta_{\mathrm{C}} 171.62,171.43,171.21,171.08,170.98,170.78,170.72$, $170.69,170.68,170.64,170.61,170.60,170.54,170.45,170.34,170.33,170.19,170.12,170.08$, $169.84,169.54\left(21 \times \mathrm{COCH}_{3}\right), 169.31,169.04(2 \times$ COPhth $), 136.30,136.05(2 \times$ Phth $), 132.17$, $132.06\left(2 \times 4^{\circ}\right.$ Phth $), 124.85,124.22(2 \times$ Phth $), 104.73,104.32,104.19,103.06,101.25,100.74$ $(6 \times \mathrm{C}-1), 100.69\left(\mathrm{C}-1^{\mathrm{IV}}\right), 75.31,75.14(2 \times \mathrm{C}-3), 74.70(1 \times \mathrm{C}-5), 73.89(1 \times \mathrm{C}-3), 73.70(\mathrm{C}-$ $\left.5^{\mathrm{IV}}\right), 73.55(1 \times \mathrm{C}-4), 73.43,73.42(2 \times \mathrm{C}-3), 73.39(2 \times \mathrm{C}-5), 73.27\left(\mathrm{C}-\mathrm{C}^{\mathrm{IV}}\right), 73.13,73.01(2 \times \mathrm{C}-$ 6), $72.79(1 \times \mathrm{C}-3), 72.42(1 \times \mathrm{C}-6), 72.27(1 \times \mathrm{C}-4), 72.23,72.20(2 \times \mathrm{C}-5), 72.15,71.97(2 \times$ $\mathrm{C}-4), 71.51(1 \times \mathrm{C}-5), 71.12(1 \times \mathrm{C}-4), 70.93\left(\mathrm{C}-3^{\mathrm{IV}}\right), 70.59\left(\mathrm{C}-4^{\mathrm{IV}}\right), 69.80(1 \times \mathrm{C}-4), 66.73$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 65.43(1 \times \mathrm{C}-6), 62.66(1 \times \mathrm{C}-6), 56.61\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.75,55.30,55.21,54.91,54.74$, $52.06(6 \times \mathrm{C}-2), 42.91\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 33.19\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.51,23.32,23.20,23.18\left(4 \times \mathrm{NCOCH}_{3}\right)$, $22.98\left(2 \times \mathrm{NCOCH}_{3}\right), 21.27,21.07,21.02\left(3 \times \mathrm{OCOCH}_{3}\right), 20.89\left(2 \times \mathrm{OCOCH}_{3}\right), 20.73(3 \times$ $\left.\mathrm{OCOCH}_{3}\right), 20.70\left(2 \times \mathrm{OCOCH}_{3}\right), 20.64\left(3 \times \mathrm{OCOCH}_{3}\right), 20.60,20.47\left(2 \times \mathrm{OCOCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{95} \mathrm{H}_{129} \mathrm{~N}_{7} \mathrm{O}_{52} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 2234.73$, found 2234.72.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-azidopropyl $\quad 2$-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (29)

Heptasaccharide 28 ($55.0 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(48.0 \mathrm{mg}, 0.738 \mathrm{mmol}, 30$ equiv.) were dissolved in dry DMF (2.5 mL). The reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for 45 h (TLC in $8: 2$ $\mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.3$). The solution was diluted with EtOAc $(40 \mathrm{~mL})$ then washed with $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$. The aqueous layer was re-extracted with $\operatorname{EtOAc}(5 \times 20 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 99: 1 \rightarrow 9: 1$) gave azidopropyl glycoside 29 ($35.5 \mathrm{mg}, 64 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone $-d_{6}$) $\delta_{\mathrm{H}} 8.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}, 1 \times$ Phth $), 7.98-7.94$ (m, 3H, $3 \times$ Phth), $7.87(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.83(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.51(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{H}), 5.92(\mathrm{dd}, J=10.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.3^{\mathrm{IV}}\right), 5.46-5.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}, 1 \times \mathrm{H}-3\right), 5.41-5.33(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{H}-3), 5.27-5.17(\mathrm{~m}, 3 \mathrm{H}, 1 \times$ $\mathrm{H}-1,2 \times \mathrm{H}-3), 5.13(\mathrm{dd}, J=10.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.05-4.91\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}, 4 \times \mathrm{H}-4\right), 4.80$ $-4.72(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{H}-1,1 \times \mathrm{H}-5), 4.70-4.62(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times \mathrm{H}-4,1 \times \mathrm{H}-5), 4.55(\mathrm{td}, J=$ $10.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.50-4.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\mathrm{IV}}, 2 \times \mathrm{H}-2, \mathrm{H}-5^{\mathrm{IV}}\right), 4.35(\mathrm{dt}, J=10.3,9.0 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.25(\mathrm{q}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.19(\mathrm{dd}, J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.15-$ $4.04\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{H}-2,2 \times \mathrm{H}-5, \mathrm{H}^{2}-6 \mathrm{a}^{\mathrm{IV}}\right), 4.02-3.93(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.89-3.81(\mathrm{~m}$, $\left.5 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, \mathrm{OCHHCH} 2, \mathrm{OCHHCH} 2\right), 3.78-3.67(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}, 2 \times \mathrm{H}-$ 6b), $3.58-3.52$ (m, 2H, $2 \times \mathrm{H}-6 \mathrm{~b}), 3.48$ (dd, $J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.43$ (t, $J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 2.20, 2.15, 2.11, 2.11, 2.11, 2.07, 2.03, 2.02, 1.98, 1.98, 1.97, 1.96, 1.95, 1.95 (14 s , $39 \mathrm{H}, 13 \times \mathrm{Ac}), 1.94-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 1.91,1.89,1.87(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{Ac}), 1.86(\mathrm{~s}$, $6 \mathrm{H}, 2 \times \mathrm{Ac}), 1.81(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{Ac}), 1.81-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 1.77(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{Ac}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}) $\delta_{\mathrm{C}} 171.61,171.42,171.19,171.08,170.98,170.78,170.71$, $170.68,170.67,170.64,170.62,170.60,170.54,170.45\left(14 \times \mathrm{COCH}_{3}\right), 170.33\left(2 \times \mathrm{COCH}_{3}\right)$, $170.17,170.08,170.05,169.84,169.54\left(5 \times \mathrm{COCH}_{3}\right), 169.32,169.04(2 \times \mathrm{COPhth}), 136.31$, $136.07(2 \times$ Phth $), 132.17,132.07\left(2 \times 4^{\circ}\right.$ Phth $), 124.86,124.22(2 \times$ Phth $), 104.74,104.32$, $104.20,103.04,101.09,100.73(6 \times \mathrm{C}-1), 100.70\left(\mathrm{C}-1^{\mathrm{IV}}\right), 75.36,75.14(2 \times \mathrm{C}-3), 74.71(1 \times \mathrm{C}-$ 5), $73.88(1 \times \mathrm{C}-3), 73.70\left(\mathrm{C}-5^{\mathrm{IV}}\right), 73.57(1 \times \mathrm{C}-4), 73.45,73.42(2 \times \mathrm{C}-3), 73.40(2 \times \mathrm{C}-5)$, $73.29\left(\mathrm{C}-6^{\mathrm{IV}}\right), 73.12,73.00(2 \times \mathrm{C}-6), 72.79(1 \times \mathrm{C}-3), 72.42(1 \times \mathrm{C}-6), 72.23(1 \times \mathrm{C}-4,1 \times \mathrm{C}-5)$, $72.21(1 \times \mathrm{C}-5), 72.16,71.98(2 \times \mathrm{C}-4), 71.50(1 \times \mathrm{C}-5), 71.11(1 \times \mathrm{C}-4), 70.93\left(\mathrm{C}-3{ }^{\mathrm{IV}}\right), 70.59$ $(\mathrm{C}-4 \mathrm{IV}), 69.82(1 \times \mathrm{C}-4), 66.69\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 65.44,62.68(2 \times \mathrm{C}-6), 56.62\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.77,55.29$, 55.23, 54.92, 54.74, $52.06(6 \times \mathrm{C}-2), 49.30\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 29.26\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.43,23.30,23.20$,
23.17, 23.00, $22.98\left(6 \times \mathrm{NCOCH}_{3}\right), 21.25,21.07,21.02\left(3 \times \mathrm{OCOCH}_{3}\right), 20.89\left(2 \times \mathrm{OCOCH}_{3}\right)$, $20.73\left(2 \times \mathrm{OCOCH}_{3}\right), 20.70\left(2 \times \mathrm{OCOCH}_{3}\right), 20.68\left(1 \times \mathrm{OCOCH}_{3}\right), 20.64\left(3 \times \mathrm{OCOCH}_{3}\right), 20.60$, $20.47\left(2 \times \mathrm{OCOCH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{95} \mathrm{H}_{130} \mathrm{~N}_{10} \mathrm{O}_{52}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1121.89, found 1121.89.

3,4-Di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl($\mathbf{1 \rightarrow 6}$)-chloroethyl \quad 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (30)

Chloroethyl heptasaccharide 30 was synthesized using the same methods as chloropropyl heptasaccharide 27. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}$), $8.36-8.28(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{N}-\mathrm{H}), 8.22-8.19(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.18-8.16(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.12(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.08-8.04(\mathrm{~m}, 9 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 8 \times \mathrm{Bz}), 8.03-8.01(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.98$ $-7.88(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{Bz}), 7.78-7.70(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{Bz}, 2 \times$ Phth $), 7.66-7.22(\mathrm{~m}, 28 \mathrm{H}, 27 \times \mathrm{Bz}, 1$ \times Phth $), 7.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.15-7.11(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 2 \times \mathrm{Bz}), 7.03-6.97(\mathrm{~m}$, $3 \mathrm{H}, 2 \times \mathrm{Bz}, 1 \times$ Phth $), 6.54\left(\mathrm{dd}, J=11.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 6.28(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3)$, $6.26(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.12(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.07(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ $\times \mathrm{H}-3), 6.01(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.71(\mathrm{dd}, J=10.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.59(\mathrm{t}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.54(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.53-5.43(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-4), 5.42(\mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.39\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}\right), 5.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 5.21(\mathrm{t}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 5.08\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}\right), 4.98-$ $4.58\left(\mathrm{~m}, 13 \mathrm{H}, 3 \times \mathrm{H}-1, \mathrm{H}-2^{\mathrm{IV}}, 5 \times \mathrm{H}-2, \mathrm{H}-5^{\mathrm{IV}}, 3 \times \mathrm{H}-5\right), 4.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.34-$ $4.14(\mathrm{~m}, 5 \mathrm{H}, 1 \times \mathrm{H}-5,3 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}), 4.10-4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH}_{2}\right), 4.04-3.81(\mathrm{~m}, 6 \mathrm{H}$, $\left.2 \times \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}^{\mathrm{IV}}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{OCHHCH} 2, \mathrm{CH}_{2} \mathrm{CHHCl}\right), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{COCHHCl})$, $3.69-3.61\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{CH}_{2} \mathrm{CHHCl}\right), 3.59(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.55(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCHHCl}), 3.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.47-3.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, 2 \times\right.$ $\mathrm{H}-6 \mathrm{~b}$), 3.33 ($\mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 168.62$, $168.46(2 \times$ COPhth $), 167.20\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.86(2 \times \mathrm{COPh}), 166.53,166.50,166.30,166.23$, $166.17,165.94,165.80,165.73,165.62,165.17,165.04,164.91(12 \times C O P h), 158.84(\mathrm{~d}, J=$ $\left.38.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.67\left(\mathrm{~d}, J=38.0 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.52\left(\mathrm{~d}, J=38.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right)$, $158.30\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.19\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.60(\mathrm{~d}, J=37.6 \mathrm{~Hz}$, $1 \times \mathrm{COCF}_{3}$), 135.07, $134.95(2 \times$ Phth $), 133.97$, 133.92, 133.89, $133.74(4 \times \mathrm{Bz}), 133.66(2 \times$ $\mathrm{Bz}), 133.45,133.35(2 \times \mathrm{Bz}), 133.25(2 \times \mathrm{Bz}), 133.16(1 \times \mathrm{Bz}), 133.13(2 \times \mathrm{Bz}), 130.56\left(4^{\circ}\right.$ Phth $)$, $130.35(2 \times \mathrm{Bz}), 130.31\left(4^{\circ} \mathrm{Phth}\right), 130.21(2 \times \mathrm{Bz}), 130.19(2 \times \mathrm{Bz}), 130.09(2 \times \mathrm{Bz})$,
$130.06(2 \times \mathrm{Bz}), 129.94(2 \times \mathrm{Bz}), 129.88(2 \times \mathrm{Bz}), 129.85(2 \times \mathrm{Bz}), 129.84(4 \times \mathrm{Bz}), 129.74(4 \times$ $\mathrm{Bz}), 129.68(2 \times \mathrm{Bz}), 129.59(2 \times \mathrm{Bz}), 128.99(6 \times \mathrm{Bz})$, 128.97, 128.93, 128.90, 128.87, 128.79 $\left(5 \times 4^{\circ} \mathrm{Bz}\right), 128.74(2 \times \mathrm{Bz}), 128.72,128.68\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.64(2 \times \mathrm{Bz}), 128.62,128.57\left(2 \times 4^{\circ}\right.$ $\mathrm{Bz}), 128.56(2 \times \mathrm{Bz})$, $128.49(2 \times \mathrm{Bz}), 128.47\left(4^{\circ} \mathrm{Bz}\right)$, $128.44(2 \times \mathrm{Bz})$, $128.37\left(4^{\circ} \mathrm{Bz}\right), 128.34$ $(6 \times \mathrm{Bz}), 128.26(2 \times \mathrm{Bz}), 128.25(4 \times \mathrm{Bz}), 128.18\left(4^{\circ} \mathrm{Bz}\right), 124.29,123.55(2 \times$ Phth $), 115.79(\mathrm{q}$, $\left.J=287.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.72\left(\mathrm{q}, J=287.7 \mathrm{~Hz}, 2 \times \mathrm{CF}_{3}\right), 115.41\left(\mathrm{q}, J=288.5 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right)$, $115.22\left(\mathrm{q}, J=286.7 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.20\left(\mathrm{q}, J=286.8 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 103.98,103.36,102.81$, $101.51(4 \times \mathrm{C}-1), 100.90\left(\mathrm{C}-1^{\mathrm{IV}}\right), 100.87,100.41(2 \times \mathrm{C}-1), 74.33(1 \times \mathrm{C}-5), 74.07(1 \times \mathrm{C}-6)$, $73.75\left(\mathrm{C}-6^{\mathrm{IV}}\right), 73.70,73.49(2 \times \mathrm{C}-6), 72.99\left(\mathrm{C}-5^{\mathrm{IV}}\right), 72.89(1 \times \mathrm{C}-3,1 \times \mathrm{C}-5), 72.78(1 \times \mathrm{C}-5)$, $72.68(1 \times \mathrm{C}-3), 72.64(1 \times \mathrm{C}-4), 72.42\left(\mathrm{C}-4^{\mathrm{IV}}, 1 \times \mathrm{C}-4,2 \times \mathrm{C}-5\right), 72.29(1 \times \mathrm{C}-5), 72.21(1 \times \mathrm{C}-$ 4), $72.05(1 \times \mathrm{C}-3), 71.88,71.53(2 \times \mathrm{C}-6), 71.46(1 \times \mathrm{C}-4), 71.32,70.77(2 \times \mathrm{C}-3), 70.57$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 70.34(1 \times \mathrm{C}-4), 69.98(1 \times \mathrm{C}-3), 69.54(1 \times \mathrm{C}-4), 69.31\left(\mathrm{C}-3{ }^{\mathrm{IV}}\right), 63.69(1 \times \mathrm{C}-6)$, $57.92,55.53,55.30(3 \times \mathrm{C}-2), 55.18\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.05(1 \times \mathrm{C}-2), 54.92(2 \times \mathrm{C}-), 41.82\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, $40.52\left(\mathrm{COCH}_{2} \mathrm{Cl}\right) . m / z$ (MALDI) calculated for $\mathrm{C}_{164} \mathrm{H}_{135} \mathrm{~N}_{7} \mathrm{O}_{52} \mathrm{~F}_{18} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$3468.71, found 3468.41.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl- $(1 \rightarrow 6)$-chloroethyl $\quad 2$-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (31) \& Compound (32)

Chloroethyl heptasaccharide $30(105 \mathrm{mg}, 0.030 \mathrm{mmol})$ was dissolved in a $2: 4: 1$ mixture of 4 M $\mathrm{NaOH}(1.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 131 equiv.), THF (2.0 mL), and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 5 h . The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($4 \mathrm{~mL}, 49.5 \mathrm{mmol}, 1624$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{~mL}$, $42.3 \mathrm{mmol}, 1390$ equiv.). The reaction was stirred at RT for 16 h (TLC in 8:2 EtOAc/EtOH, $\mathrm{R}_{\mathrm{f}}=$ 0.2). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layers were re-
extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 19: 1 \rightarrow 7: 3$) gave an inseparable mixture (49.6 mg) containing peracetylated heptasaccharide $\mathbf{3 1}$ and cyclized compound $\mathbf{3 2}$ as a white solid. Analytical data for 31: m / z (MALDI) calculated for $\mathrm{C}_{94} \mathrm{H}_{126} \mathrm{~N}_{7} \mathrm{O}_{52} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+}$2242.70, found 2242.73. Analytical data for 32: m / z (MALDI) calculated for $\mathrm{C}_{94} \mathrm{H}_{125} \mathrm{~N}_{7} \mathrm{O}_{52} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 2206.72, found 2206.51.

3,4,6-Tri-O-acetyl-2-trifluoroacetamido-2-deoxy- α-D-glucopyranosyl chloride (33)

Known ${ }^{8}$ compound 33 was synthesized partly based on the methods by Joseph et al. ${ }^{5}$ and Horton. ${ }^{9}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 6.71$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 6.23 (d, $J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.25(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.50$ (ddd, $J=10.7,8.5,3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$), $4.35-4.27$ (m, 2H, H-5, H-6a), 4.15 (m, 1H, H-6b), 2.11, 2.07, 2.06 ($3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{Ac}$). The NMR data are in agreement with those reported in the literature. ${ }^{8}$

Chloroethyl 3,4,6-tri-O-acetyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (34)

Chloride donor $33(1.19 \mathrm{~g}, 2.84 \mathrm{mmol})$ and 2-chloroethanol ($1.9 \mathrm{~mL}, 28.3 \mathrm{mmol}$, 10 equiv.) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS $(2.4$ $\mathrm{g})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . AgOTf $(0.95 \mathrm{~g}, 3.70 \mathrm{mmol}, 1.3$ equiv.) in dry toluene (5 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 7:13 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.3$), then quenched with NEt_{3}. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 30 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 125 \mathrm{~mL})$. The aqueous layers were reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 3:7 \rightarrow 6:4) gave chloroethyl glycoside $34(0.94 \mathrm{~g}, 72 \%)$ as white crystals. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 6.77$ (d, $J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 5.33 (dd, $J=10.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.09 (dd, $J=10.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.77 (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.27 (dd, $J=12.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.16 (dd, $J=12.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), $4.11(\mathrm{dt}, J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 4.02(\mathrm{dt}, J=10.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.81-3.72(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-5, \mathrm{OCH} H \mathrm{OH}_{2}$), $3.62\left(\mathrm{dd}, J=6.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.09,2.03,2.03(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{Ac})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} 171.03,170.67,169.29\left(3 \times \mathrm{COCH}_{3}\right), 157.48(\mathrm{~d}, J=37.9$ $\mathrm{Hz}, \mathrm{COCF}_{3}$), 115.53 (d, $J=288.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 100.55 (C-1), 72.07 (C-5), 71.53 (C-3), 69.89 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 68.34(\mathrm{C}-4), 61.90(\mathrm{C}-6), 54.79(\mathrm{C}-2), 42.70\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 20.69,20.54,20.37(3 \times$ CH_{3}). m / z (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~F}_{3} \mathrm{Cl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 481.12$, found 481.12.

Chloroethyl glycoside 34 ($50 \mathrm{mg}, 0.108 \mathrm{mmol}$) was dissolved in a $2: 4: 1$ mixture of 0.5 M NaOH ($4.3 \mathrm{~mL}, 2,15 \mathrm{mmol}, 20$ equiv.), THF (8.6 mL), and $\mathrm{MeOH}(2.1 \mathrm{~mL})$. The reaction was stirred at $40-60^{\circ} \mathrm{C}$ for 2-20 h (Table 1). The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($5 \mathrm{~mL}, 61.8 \mathrm{mmol}, 572$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}$ (5 $\mathrm{mL}, 52.9 \mathrm{mmol}, 490$ equiv.). The reaction was stirred at RT for 2 h (TLC in 8:2 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=0.3,0.1$). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 7 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($8: 2 \rightarrow 1: 0 \mathrm{EtOAc} /$ pentanes) gave known ${ }^{1,2}$ chloroethyl glycoside 35 as a white amorphous solid, and bicyclic compound $\mathbf{3 6}$ as a pale yellow amorphous solid (see Table 1 for yields). Analytical data for 35: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} 5.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.31(\mathrm{dd}, J=10.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.05(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.78$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.25 (dd, $J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.13$ (dd, J $=12.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.08(\mathrm{dt}, J=11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.86(\mathrm{dt}, J=10.5,8.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$), 3.78 (dt, $J=11.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2$), 3.72 (ddd, $J=9.9,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $3.64-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.08,2.02,2.01\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OCOCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right)$. The NMR data are in agreement with those reported in the literature. ${ }^{2}$ Analytical data for 36: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} 6.31$ (dd, $J=10.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.94 (dd, $J=10.0$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.65$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.27 (dd, $J=12.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.13 (dd, J $=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.03(\mathrm{dt}, J=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.89(\mathrm{ddd}, J=10.1,4.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.73\left(\mathrm{td}, J=11.6,11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{HCH}_{2}\right), 3.63(\mathrm{dt}, J=14.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{HN}$), $3.40(\mathrm{ddd}, J=13.8,10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{~N}$), 3.22 (dd, $J=11.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NAc}), 2.05,2.00,1.95(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ_{C} $170.62,170.51,169.93,169.45\left(4 \times \mathrm{COCH}_{3}\right), 96.39(\mathrm{C}-1), 72.65(\mathrm{C}-5), 70.86(\mathrm{C}-3), 69.71$ (C4), $65.89\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.73(\mathrm{C}-2), 61.95(\mathrm{C}-6), 47.75\left(\mathrm{CH}_{2} \mathrm{~N}\right), 23.42\left(\mathrm{NCOCH}_{3}\right), 20.88,20.70$, $20.68\left(3 \times \mathrm{OCOCH}_{3}\right) . m / z(\mathrm{DART})$ calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+} 374.14$, found 374.1.

3,4-Di-O-benzoyl-6-chloroacetyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-azidoethyl \quad 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (37)

Azidoethyl pentasaccharide 37 was synthesized using similar methods to chloropropyl pentasaccharide 20. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}$), $8.36(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.12-8.04(\mathrm{~m}, 9 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}, 8 \times \mathrm{Bz}), 8.02-7.96(\mathrm{~m}, 10 \mathrm{H}$, $10 \times \mathrm{Bz}), 7.92(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Phth}), 7.67(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Phth}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.60-7.39(\mathrm{~m}, 16 \mathrm{H}, 15 \times \mathrm{Bz}, 1 \times$ Phth $), 7.38$ $-7.31(\mathrm{~m}, 7 \mathrm{H}, 7 \times \mathrm{Bz}), 7.21(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.17(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{Bz}), 7.13(\mathrm{dt}, J=7.8,1.9 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{Bz}, 1 \times$ Phth $), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.56(\mathrm{dd}$, $\left.J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 "^{\prime}\right), 6.31(\mathrm{dd}, J=10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.06(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, $1 \times \mathrm{H}-3), 5.91(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.77-5.68(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-3, \mathrm{H}-4 \mathrm{C}, 1 \times \mathrm{H}-4), 5.55$ (dd, $J=10.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.41-5.35(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-1,1 \times \mathrm{H}-4), 5.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}), 5.10(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.91(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.84\left(\mathrm{dd}, J=11.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}\right), 4.79-4.62(\mathrm{~m}, 6 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-2, \mathrm{H}-$ $\left.5^{\prime \prime}, 2 \times \mathrm{H}-5\right), 4.57(\mathrm{q}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.33(\mathrm{dd}, J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.26$ (dd, $J=13.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}$), $4.23-4.14\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{OCHHCH}_{2}\right.$), 4.12 (dd, $J=13.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a} "), 4.08$ (dd, $J=13.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}$, $1 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 3.87(\mathrm{dd}, J=12.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.82(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HCl})$, 3.73 (ddd, $J=11.6,8.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{CH}_{2}$), $3.67-3.62(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$) $), 3.59$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Cl}), 3.59-3.53\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}, \mathrm{CHHN}_{3}\right), 3.47(\mathrm{dd}, J=12.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}$), $3.32\left(\mathrm{dt}, J=13.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{~N}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} 169.17, $167.98(2 \times C O P h t h), 167.30\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 166.87,166.83,166.51,166.50,166.45$, $165.72,165.58,165.34,165.14,164.94(10 \times C O P h), 158.13\left(\mathrm{~d}, J=36.0 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right)$, $158.10\left(\mathrm{~d}, J=38.0 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.00\left(\mathrm{~d}, J=36.3 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.57(\mathrm{~d}, J=37.3 \mathrm{~Hz}$, $1 \times \mathrm{COCF}_{3}$), 135.03, $134.92(2 \times$ Phth $), 133.93,133.86,133.85,133.77,133.74,133.54,133.39$, $133.35,133.35,133.21(10 \times \mathrm{Bz}), 130.69,130.52\left(2 \times 4^{\circ} \mathrm{Phth}\right), 130.21(2 \times \mathrm{Bz}), 130.20(2 \times$ $\mathrm{Bz}), 130.16(2 \times \mathrm{Bz}), 130.08(2 \times \mathrm{Bz}), 129.93(2 \times \mathrm{Bz}), 129.90(4 \times \mathrm{Bz}), 129.83(2 \times \mathrm{Bz}), 129.81$ $(2 \times \mathrm{Bz}), 129.70(2 \times \mathrm{Bz}), 129.08(2 \times \mathrm{Bz}), 129.04\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.93(2 \times \mathrm{Bz}), 128.85,128.81$, 128.69 , $128.67\left(4 \times 4^{\circ} \mathrm{Bz}\right), 128.64(2 \times \mathrm{Bz}), 128.62\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.57(2 \times \mathrm{Bz}), 128.46(2 \times$ $\mathrm{Bz}), 128.40\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.38(4 \times \mathrm{Bz}), 128.35(2 \times \mathrm{Bz}), 128.31(2 \times \mathrm{Bz}), 128.24(2 \times \mathrm{Bz})$, $128.19,128.12\left(2 \times 4^{\circ} \mathrm{Bz}\right), 124.31,123.49(2 \times \mathrm{Phth}), 115.88\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.58$ $\left(\mathrm{q}, J=287.7 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.36\left(\mathrm{q}, J=288.5 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.06\left(\mathrm{q}, J=286.9 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right)$, 104.10, 101.70, $100.68(3 \times \mathrm{C}-1), 100.53\left(\mathrm{C}-1{ }^{\prime}\right)$, $100.27(1 \times \mathrm{C}-1), 74.65(1 \times \mathrm{C}-5), 73.88$ (C-6"), $73.56(1 \times \mathrm{C}-6), 73.48(\mathrm{C}-5$ " $), 72.65(1 \times \mathrm{C}-3), 72.52(1 \times \mathrm{C}-6), 72.50(1 \times \mathrm{C}-5), 72.40(1 \times \mathrm{C}-4)$, $72.33(1 \times \mathrm{C}-5), 72.32(1 \times \mathrm{C}-6), 72.31(1 \times \mathrm{C}-5), 72.24(1 \times \mathrm{C}-3), 71.75(\mathrm{C}-4 \mathrm{C}), 71.69,71.52(2$ $\times \mathrm{C}-4), 69.90(2 \times \mathrm{C}-3), 69.60(1 \times \mathrm{C}-4), 69.40(\mathrm{C}-3 \mathrm{l}), 68.93\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.64(1 \times \mathrm{C}-6)$,
57.91, $55.38(2 \times \mathrm{C}-2), 55.26(\mathrm{C}-2 "), 54.54,54.39(2 \times \mathrm{C}-2), 50.31\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 40.54\left(\mathrm{CH}_{2} \mathrm{Cl}\right) . \mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{120} \mathrm{H}_{103} \mathrm{~N}_{9} \mathrm{O}_{38} \mathrm{~F}_{12} \mathrm{Cl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 2540.59$, found 2540.59.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)azidoethyl 2-acetamido-3,4-di-O-acetyl-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (38)

Azidoethyl pentasaccharide $37(46.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ was dissolved in a $2: 4: 1$ mixture of 0.5 M $\mathrm{NaOH}(3.6 \mathrm{~mL}, 1.8 \mathrm{mmol}, 100$ equiv.), THF (7.2 mL), and $\mathrm{MeOH}(1.8 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 2 h . The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($4.5 \mathrm{~mL}, 55.6 \mathrm{mmol}, 3089$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(4.5 \mathrm{~mL}$, $47.6 \mathrm{mmol}, 2644$ equiv.). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 1 h , then left to attain RT for 18 h (TLC in 9:1 EtOAc/EtOH, $\mathrm{R}_{\mathrm{f}}=0.2$). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography ($\mathrm{EtOAc} / \mathrm{EtOH}, 19: 1 \rightarrow$ 17:3) gave pentasaccharide 38 ($17.1 \mathrm{mg}, 56 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta_{\mathrm{H}} 7.85-7.72$ (m, 4H, $4 \times$ Phth), 7.39 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}$), 6.84 (d, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.74(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.21(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 5.77$ (dd, $J=10.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{C}), 5.65(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.28-5.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{l}, 1 \times$ $\mathrm{H}-1,1 \times \mathrm{H}-3), 5.20(\mathrm{dd}, J=10.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.15(\mathrm{dd}, J=10.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3)$, 5.00 (dd, $J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 4.92-4.85(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{H}-4), 4.73-4.68$ (dd, $J=10.0,9.2$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1), 4.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 4.41-$ 4.31 (m, 4H, H-2", H-5", $1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}), 4.29-4.19(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.06(\mathrm{q}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.02-3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}=, \mathrm{OCHHCH}_{2}\right), 3.92(\mathrm{dd}, J=12.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times$ $\mathrm{H}-6 \mathrm{~b}$), $3.89-3.84(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-5), 3.81-3.68(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-2,2 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.67-$ $3.60\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}\right.$ ", $\mathrm{OCH} \mathrm{HCH}_{2}$), $3.58(\mathrm{dd}, J=12.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.54-$ $3.51(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.49-3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HN}_{3}\right), 3.21(\mathrm{ddd}, J=13.5,4.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH} H \mathrm{~N}_{3}$), 2.13, 2.11, 2.08, 2.07, 2.07, $2.06(6 \mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{OAc}), 2.06,2.05(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NAc})$, 2.04, 2.01, $2.00(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OAc}), 1.97(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{NAc}), 1.95(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{OAc}), 1.91(\mathrm{~s}, 3 \mathrm{H}, 1$ $\times \mathrm{NAc}), 1.90(\mathrm{~s}, 3 \mathrm{H}, 1 \times \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 171.72,171.05,170.88$, $170.78,170.64,170.45,170.36,170.32,170.30,170.18,169.94,169.84,169.78,169.72,169.66$ $\left(15 \times \mathrm{COCH}_{3}\right), 134.90(2 \times$ Phth $), 131.03\left(2 \times 4^{\circ} \mathrm{Phth}\right), 124.00,123.50(2 \times$ Phth $), 103.83$, $101.93(2 \times \mathrm{C}-1), 100.61(\mathrm{C}-1 \mathrm{l}, 1 \times \mathrm{C}-1), 99.65(1 \times \mathrm{C}-1), 73.80(1 \times \mathrm{C}-5), 73.31,73.21(2 \times \mathrm{C}-$ $3), 72.80(\mathrm{C}-5$ " $), 72.27(1 \times \mathrm{C}-5), 72.05(1 \times \mathrm{C}-3,1 \times \mathrm{C}-6), 71.46(1 \times \mathrm{C}-5), 71.33(1 \times \mathrm{C}-3)$,
$71.12(1 \times \mathrm{C}-6), 71.03(1 \times \mathrm{C}-5), 70.82,70.77(2 \times \mathrm{C}-4), 70.67(\mathrm{C}-4 "), 70.04\left(\mathrm{C}-3^{\prime \prime}\right), 69.51,69.17$ $(2 \times \mathrm{C}-4), 68.97(1 \times \mathrm{C}-6), 68.27\left(\mathrm{C}-6 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.37(1 \times \mathrm{C}-6), 55.44(1 \times \mathrm{C}-2), 55.20(\mathrm{C}-$ $\left.2^{\prime \prime}\right), 54.36,54.14,53.85(3 \times \mathrm{C}-2), 50.38\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 23.40\left(1 \times \mathrm{NCOCH}_{3}\right), 23.26\left(2 \times \mathrm{NCOCH}_{3}\right)$, $22.99\left(1 \times \mathrm{NCOCH}_{3}\right), 20.83,20.78\left(2 \times \mathrm{OCOCH}_{3}\right), 20.76\left(2 \times \mathrm{OCOCH}_{3}\right), 20.73,20.67,20.66$, 20.64, 20.57, 20.54, $20.40\left(7 \times \mathrm{OCOCH}_{3}\right) . \mathrm{m} / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{70} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{38} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 1675.54, found 1675.5.

3,4-Di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-azidoethyl \quad 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (39)

Azidoethyl pentasaccharide 39 was synthesized using similar methods to chloropropyl pentasaccharide 26. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta_{\mathrm{H}} 8.51(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}$), $8.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 8.16(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.13(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $1 \times \mathrm{N}-\mathrm{H}), 8.10(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 8.06-7.94(\mathrm{~m}, 16 \mathrm{H}, 16 \times \mathrm{Bz}), 7.84-7.76(\mathrm{~m}$, $3 \mathrm{H}, 3 \times$ Phth $), 7.61-7.52(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.50-7.26(\mathrm{~m}, 21 \mathrm{H}, 20 \times \mathrm{Bz}, 1 \times \mathrm{Phth}), 7.23(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.18(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}$), $7.16(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.37$ (dd, $\left.J=10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{IV}}\right), 6.19(\mathrm{dd}, J=10.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 6.01(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ $\times \mathrm{H}-3), 5.90(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.75(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-3), 5.73(\mathrm{t}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.60(\mathrm{dd}, J=10.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.41(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 5.38$ $\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{IV}}\right), 5.26\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}\right), 5.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1), 5.04$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-4), 4.91-4.83(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-1,1 \times \mathrm{H}-2), 4.84-4.66(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-1$, $2 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.67-4.54(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-2,1 \times \mathrm{H}-5), 4.51(\mathrm{dd}, J=10.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}$ $\left.\mathrm{H}-\mathrm{I}^{\mathrm{IV}}\right), 4.26-4.20(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-5,1 \times \mathrm{H}-6 \mathrm{a}), 4.14-4.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{IV}}, 1 \times \mathrm{H}-6 \mathrm{a}\right.$, OCHHCH_{2}), $3.84-3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\text {IV }}, ~ \mathrm{OCH} H \mathrm{CH}_{2}\right), 3.76-3.72(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}), 3.63-3.55$ $(\mathrm{m}, 3 \mathrm{H}, 3 \times \mathrm{H}-6 \mathrm{~b}), 3.49-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{IV}}, \mathrm{CHHN}_{3}\right), 3.36(\mathrm{dt}, J=13.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH} H \mathrm{~N}_{3}$), $3.31(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 2.65\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}-6^{\mathrm{IV}}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 168.55,167.50(2 \times$ COPhth $), 166.63,166.48,166.46,166.41,166.29,166.04$, $166.01,165.74,165.42,164.94(10 \times C O P h), 158.49\left(\mathrm{~d}, J=36.5 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.47(\mathrm{~d}, J=$ $\left.36.4 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.16\left(\mathrm{~d}, J=36.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 158.14\left(\mathrm{~d}, J=36.6 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right)$, $134.90(2 \times$ Phth $), 133.82(2 \times \mathrm{Bz}), 133.74(2 \times \mathrm{Bz}), 133.62(1 \times \mathrm{Bz}), 133.51(2 \times \mathrm{Bz}), 133.40$, 133.29, $133.19(3 \times \mathrm{Bz}), 130.86\left(4^{\circ}\right.$ Phth), $130.53\left(4^{\circ}\right.$ Phth), $130.18(2 \times \mathrm{Bz}), 130.15(2 \times \mathrm{Bz})$, $130.08(2 \times \mathrm{Bz}), 130.02(2 \times \mathrm{Bz}), 129.98(2 \times \mathrm{Bz}), 129.92(2 \times \mathrm{Bz}), 129.90(2 \times \mathrm{Bz}), 129.85(4 \times$ $\mathrm{Bz}), 129.49(2 \times \mathrm{Bz}), 128.99(2 \times \mathrm{Bz}), 128.91\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.79(2 \times \mathrm{Bz}), 128.73(2 \times \mathrm{Bz})$,
128.72, 128.66, 128.61, $128.60\left(4 \times 4^{\circ} \mathrm{Bz}\right), 128.58\left(2 \times 4^{\circ} \mathrm{Bz}\right), 128.40(4 \times \mathrm{Bz}), 128.38\left(1 \times 4^{\circ}\right.$ $\mathrm{Bz}), 128.35(2 \times \mathrm{Bz})$, $128.32(2 \times \mathrm{Bz}), 128.30(4 \times \mathrm{Bz}), 128.28(2 \times \mathrm{Bz}), 127.68,127.03\left(2 \times 4^{\circ}\right.$ $\mathrm{Bz}), 123.90,123.51(2 \times$ Phth $), 115.66\left(\mathrm{q}, J=287.1 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.64(\mathrm{q}, J=287.8 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{CF}_{3}\right), 115.61\left(\mathrm{q}, J=289.9 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 115.02\left(\mathrm{q}, J=286.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 104.15,103.49$, 101.62, $100.08(4 \times \mathrm{C}-1), 99.97\left(\mathrm{C}-1^{\mathrm{IV}}\right), 75.18\left(\mathrm{C}-5^{\mathrm{IV}}\right), 74.62(1 \times \mathrm{C}-5), 74.21(1 \times \mathrm{C}-6), 73.82$ $\left(\mathrm{C}-6^{\mathrm{IV}}\right), 73.77(1 \times \mathrm{C}-5), 72.78(1 \times \mathrm{C}-3), 72.67(1 \times \mathrm{C}-5), 72.34(1 \times \mathrm{C}-5,1 \times \mathrm{C}-6), 72.26(1 \times$ $\mathrm{C}-3), 71.86(1 \times \mathrm{C}-4), 71.60(1 \times \mathrm{C}-3), 71.49(1 \times \mathrm{C}-3,1 \times \mathrm{C}-4,1 \times \mathrm{C}-6), 71.36(1 \times \mathrm{C}-4), 70.31$ $\left(\mathrm{C}-4^{\mathrm{IV}}\right), 70.11\left(\mathrm{C}-3^{\mathrm{IV}}\right), 69.82(1 \times \mathrm{C}-4), 69.13\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.65(1 \times \mathrm{C}-6), 55.17\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.13$, $54.99(2 \times \mathrm{C}-2), \quad 54.38(2 \times \mathrm{C}-2), \quad 50.12\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right) . \mathrm{m} / \mathrm{z} \quad$ (MALDI) calculated for $\mathrm{C}_{118} \mathrm{H}_{98} \mathrm{~N}_{8} \mathrm{O}_{37} \mathrm{~F}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$2469.57, found 2469.84.

3,4-Di-O-benzoyl-6-chloroacetyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 \rightarrow 6)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-phthalimido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-3,4-Di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl- $(1 \rightarrow 6)$-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl$(1 \rightarrow 6)$-aminoethyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (40) \& 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-3,4-di-O-acetyl-2-phthalimido-2-deoxy- β -D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-2-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-acetamidoethyl $\quad 2$-acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (41)

Pentasaccharide acceptor $\mathbf{3 9}(309 \mathrm{mg}, 0.126 \mathrm{mmol})$ and glycosyl bromide $\mathbf{1 3}$ ($412 \mathrm{mg}, 0.379$ mmol, 3 equiv.) were dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ containing freshly activated powdered $4 \AA$ MS (400 mg). The mixture was stirred at $-45^{\circ} \mathrm{C}$ under Ar in the dark for 1 h . AgOTf ($130 \mathrm{mg}, 0.506 \mathrm{mmol}, 4$ equiv.) in dry toluene (1.0 mL) was added, and the reaction was stirred under the same conditions for 2 h (TLC in 4:6 acetone/pentanes, $\mathrm{R}_{\mathrm{f}}=0.2$), then quenched with NEt_{3}. The mixture was diluted with $10 \mathrm{mLCH} \mathrm{Cl}_{2}$ and filtered through celite. The solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was washed with sat. aq. $\mathrm{NaCl}(2 \times 30 \mathrm{~mL})$.

The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (acetone/pentanes, 4:6 $\rightarrow 1: 1$, then EtOAc/pentanes, 1:1) gave heptasaccharide 40 with small impurities (243 mg) as a yellow solid. A portion of $40(97 \mathrm{mg}, 0.028 \mathrm{mmol})$ was dissolved in a $2: 4: 1$ mixture of $0.5 \mathrm{M} \mathrm{NaOH}(8 \mathrm{~mL}$, $4.0 \mathrm{mmol}, 140$ equiv.), THF (16 mL), and $\mathrm{MeOH}(4 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 3 h. The solution was concentrated and dried under high vacuum. The residue was dissolved in a 1:1 mixture of pyridine ($10 \mathrm{~mL}, 105.8 \mathrm{mmol}, 3768$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL}, 123.6 \mathrm{mmol}, 4414$ equiv.). The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h , then left to attain RT for 16 h (TLC in 7:3 $\mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.3$). The solution co-concentrated with toluene. The residue was dissolved in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ then sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL}$ each). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/EtOH, 17:3 \rightarrow 1:1) gave heptasaccharide 41 (36.2 mg , 32% over three steps) as a yellow solid. Analytical Data for 40: m / z (MALDI) calculated for $\mathrm{C}_{164} \mathrm{H}_{137} \mathrm{~N}_{8} \mathrm{O}_{52} \mathrm{~F}_{18} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+}$3449.76, found 3449.86. Analytical Data for 41: ${ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone $-d_{6}$) $\delta_{\mathrm{H}} 8.13(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H})$, $8.02-7.99(\mathrm{~m}, 1 \mathrm{H}, 1 \times$ Phth $), 7.98-7.92(\mathrm{~m}, 3 \mathrm{H}, 3 \times$ Phth $), 7.90(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H})$, $7.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.52(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 7.51(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ $\times \mathrm{N}-\mathrm{H}), 7.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{N}-\mathrm{H}), 6.98\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHAc}\right), 5.92(\mathrm{dd}, J=$ $\left.10.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {IV }}\right), 5.45\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{IV}}\right), 5.45(\mathrm{dd}, J=10.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-$ 3), $5.41-5.33(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-1,2 \times \mathrm{H}-3), 5.27-5.17(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{H}-3), 5.05-4.90(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-$ $\left.4^{\mathrm{IV}}, 4 \times \mathrm{H}-4\right), 4.81-4.76(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times \mathrm{H}-4,1 \times \mathrm{H}-5), 4.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-1)$, $4.70-4.61(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-1,1 \times \mathrm{H}-4,1 \times \mathrm{H}-5), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}-5), 4.49-4.37(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{H}-2^{\mathrm{IV}}, 2 \times \mathrm{H}-2, \mathrm{H}^{5} 5^{\mathrm{IV}}, 1 \times \mathrm{H}-5\right), 4.35(\mathrm{dt}, J=10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.26(\mathrm{q}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \times \mathrm{H}-2), 4.18(\mathrm{dd}, J=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}), 4.16-4.03(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2,1 \times \mathrm{H}-5, \mathrm{H}-$ $\left.6 \mathrm{a}^{\mathrm{IV}}\right), 4.00-3.93(\mathrm{~m}, 2 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.90-3.81\left(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}-5,2 \times \mathrm{H}-6 \mathrm{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{\mathrm{IV}}\right)$, $3.79\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.76-3.71(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{a}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.69(\mathrm{dd}, J=12.5$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.58(\mathrm{dd}, J=7.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.56(\mathrm{dd}, J=7.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ \times H-6b), $3.47(\mathrm{dd}, J=12.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{H}-6 \mathrm{~b}), 3.37-3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.21,2.15,2.12$, $2.11,2.11,2.07,2.03,2.02,1.98,1.98,1.97,1.96,1.95,1.95\left(14 \mathrm{~s}, 42 \mathrm{H}, 14 \times \mathrm{CH}_{3}\right), 1.92(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right), 1.89,1.86,1.86,1.85,1.82,1.77\left(6 \mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone$\left.d_{6}\right) \delta_{\mathrm{C}} 171.62,171.48,171.47,171.07,170.94,170.71,170.67,170.66,170.64,170.62,170.59$, $170.55,170.52\left(13 \times \mathrm{COCH}_{3}\right), 170.46\left(2 \times \mathrm{COCH}_{3}\right), 170.44,170.43,170.38,170.32,170.06$, $169.88,169.58\left(7 \times \mathrm{COCH}_{3}\right), 169.28,168.97(2 \times$ COPhth $), 136.27,136.04(2 \times$ Phth $), 132.07$, $131.99\left(2 \times 4^{\circ}\right.$ Phth $), 124.85,124.17(2 \times$ Phth $), 104.65,104.25,104.10,102.98,101.10,100.67$ $(6 \times \mathrm{C}-1), 100.62(\mathrm{C}-1 \mathrm{IV}), 75.23,75.00(2 \times \mathrm{C}-3), 74.61(1 \times \mathrm{C}-5), 73.81(1 \times \mathrm{C}-3), 73.63(1 \times \mathrm{C}-$ 5), $73.49\left(\mathrm{C}-\mathrm{G}^{\mathrm{IV}}\right), 73.37,73.32(2 \times \mathrm{C}-3), 73.28(1 \times \mathrm{C}-5), 72.98,72.96,72.92(3 \times \mathrm{C}-6), 72.76(1$ $\times \mathrm{C}-3), 72.33(1 \times \mathrm{C}-6), 72.16(1 \times \mathrm{C}-5), 72.10(1 \times \mathrm{C}-4), 72.09\left(\mathrm{C}-4^{\mathrm{IV}}\right), 72.07(1 \times \mathrm{C}-5), 72.05$, $71.91(2 \times \mathrm{C}-4), 71.56\left(\mathrm{C}-5^{\mathrm{IV}}, 1 \times \mathrm{C}-5\right), 71.15(1 \times \mathrm{C}-4), 70.88\left(\mathrm{C}-3^{\mathrm{IV}}\right), 70.53,69.75(2 \times \mathrm{C}-4)$, $68.82\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 65.40,62.66(2 \times \mathrm{C}-6), 56.54\left(\mathrm{C}-2^{\mathrm{IV}}\right), 55.74,55.21,55.13,54.84,54.69$, $52.02(6 \times \mathrm{C}-2), 39.83\left(\mathrm{CH}_{2} \mathrm{~N}\right), 23.50-22.79\left(7 \times \mathrm{NCOCH}_{3}\right), 21.25-20.26\left(15 \times \mathrm{OCOCH}_{3}\right)$. m / z (ESI) calculated for $\mathrm{C}_{96} \mathrm{H}_{132} \mathrm{~N}_{8} \mathrm{O}_{53}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1122.90, found 1122.90.

2-Acetamido-2-deoxy- β-D-glucopyranosyl-(1 $\rightarrow 6$)-azidopropyl \quad 2-acetamido-2-deoxy- β-Dglucopyranoside (44)

Disaccharide 47 ($9.0 \mathrm{mg}, 0.0125 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1.0 \mathrm{~mL})$. Sodium (0.1 mg , $0.0043 \mathrm{mmol}, 0.33$ equiv.) was added. The reaction was stirred at RT for 3 h , then quenched with Dowex 50WX8 cation exchange resin (hydrogen form, 50-100 mesh). The resin was filtered and washed with MeOH . The filtrate was concentrated giving deprotected PNAG disaccharide 44 $(6.1 \mathrm{mg}, 95 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Deuterium Oxide) $\delta_{\mathrm{H}} 4.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.50\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 4.22$ (dd, $\left.J=11.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.96-3.92(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$, OCHHCH_{2}), 3.79 - 3.72 (m, 3H, H-2, H-6b, H-6b'), 3.69 - 3.63 (m, 2H, H-2', OCHHCH_{2}), $3.59-3.52$ (m, 3H, H-3, H-3', H-5), 3.48 - 3.46 (m, 2H, H-4, H-5'), 3.42 - 3.35 (m, $3 \mathrm{H}, \mathrm{H}-4 ', \mathrm{CH}_{2} \mathrm{~N}_{3}$), 2.06, $2.06\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.85\left(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Deuterium Oxide) $\delta_{\mathrm{C}} 174.46,174.40\left(2 \times \mathrm{COCH}_{3}\right), 101.37(\mathrm{C}-1), 101.02(\mathrm{C}-$ $\left.1^{\prime}\right), 75.76$ (C-5'), 74.48 (C-5), 73.65 (C-3'), 73.63 (C-3), 69.91 (C-4'), 69.83 (C-4), 68.44 (C-6), $66.88\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 60.62(\mathrm{C}-6 '), 55.46\left(\mathrm{C}-2^{\prime}\right), 55.39(\mathrm{C}-2), 47.70\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 28.01\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 22.14, $22.07\left(2 \times \mathrm{CH}_{3}\right) . m / z(\mathrm{ESI})$ calculated for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 508.22$, found 508.23.

3,4,6-Tri-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl-($1 \rightarrow 6$)-chloropropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (45)

Disaccharide 15 (56.0 mg 0.055 mmol), DMAP ($1.3 \mathrm{mg}, 0.011 \mathrm{mmol}, 0.2$ equiv.), and pyr (17.7 $\mu \mathrm{L}, 0.219 \mathrm{mmol}, 4$ equiv.) were dissolved in $\mathrm{DCM}(1.0 \mathrm{~mL}) . \mathrm{BzCl}(12.7 \mu \mathrm{~L}, 0.109 \mathrm{mmol}, 2$ equiv.) was added. The reaction was stirred at RT for 20 h (TLC in 4:6 EtOAc/pentanes, $\mathrm{R}_{\mathrm{f}}=$ $0.6)$. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ then washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL}$ each $)$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 3:7) gave disaccharide $45(53.5 \mathrm{mg}, 87 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta_{\mathrm{H}} 7.94-7.89(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.88-7.84(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Bz}$), $7.52-7.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}, 4 \times \mathrm{Bz}\right), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.38-7.29(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz})$, $7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{H}), 5.82(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 5.72 (t, $\left.J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.70-5.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.48(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.82(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.75\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.60\left(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.57(\mathrm{dd}, J=$ $12.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.40 (dd, $J=12.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 4.25 (dd, $J=11.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-6a), 4.11 (q, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.08-4.02$ (m, 2H, H-5', OCHHCH_{2}), 3.90 (ddd, $J=9.7$, $4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.67$ (ddd, $J=10.7,9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHCH} 2$), $3.64-3.59$ (m, 3H, H$\left.6 \mathrm{~b}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.13-2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH} 2\right), 2.01-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 166.72,166.56,166.08,165.77,165.01(5 \times \mathrm{COPh}), 157.68(\mathrm{~d}, J=$ $\left.37.4 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.46\left(\mathrm{~d}, J=37.8 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 133.94,133.76,133.65,133.52$,
$133.16(5 \times \mathrm{Bz}), 129.89(2 \times \mathrm{Bz}), 129.85(4 \times \mathrm{Bz}), 129.76(2 \times \mathrm{Bz}), 129.67(2 \times \mathrm{Bz}), 129.35(1 \times$ $\left.4^{\circ} \mathrm{Bz}\right), 128.65\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.51(2 \times \mathrm{Bz}), 128.46(4 \times \mathrm{Bz}), 128.42(2 \times \mathrm{Bz}), 128.35(2 \times \mathrm{Bz})$, $128.29\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.16\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.06\left(1 \times 4^{\circ} \mathrm{Bz}\right), 115.71\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right)$, $115.44\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right.$), $101.55\left(\mathrm{C}-1{ }^{\prime}\right), 100.53(\mathrm{C}-1), 73.33(\mathrm{C}-5), 72.82\left(\mathrm{C}-3 \mathrm{~B}^{\prime}\right), 72.42$ (C-5'), 71.90 (C-3), 69.16 (C-4'), 69.04 (C-4), $68.31(\mathrm{C}-6), 66.23\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.79$ (C-6'), $55.21(\mathrm{C}-2), 54.79(\mathrm{C}-2), 41.45\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 31.97\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{~F}_{6} \mathrm{Cl}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1146.29, found 1146.29.

3,4,6-Tri-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-azidopropyl 3,4-di-O-benzoyl-2-trifluoroacetamido-2-deoxy- β-D-glucopyranoside (46)

Disaccharide 45 ($50.0 \mathrm{mg}, 0.044 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(28.9 \mathrm{mg}, 0.445 \mathrm{mmol}$, 10 equiv.) were dissolved in dry DMF (4.4 mL). The reaction was stirred at $80^{\circ} \mathrm{C}$ for 24 h (TLC in $4: 6$ $\mathrm{EtOAc} /$ pentanes, $\left.\mathrm{R}_{\mathrm{f}}=0.6\right)$. The solution was diluted with $\mathrm{EtOAc}(40 \mathrm{~mL})$ then washed with $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$. The aqueous layer was re-extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/pentanes, 3:7 \rightarrow 4:6) gave azidopropyl glycoside $46(47.0 \mathrm{mg}, 93 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform-d) $\delta_{\mathrm{H}} 7.92-7.87(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Bz}), 7.86(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.83(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 7.56\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}\right), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Bz}), 7.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times \mathrm{Bz}), 7.35-7.29(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Bz}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bz}), 6.91(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.81(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.72(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.65(\mathrm{t}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 5.45(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.73$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$ '), 4.61 (q, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 4.56 (dd, $\left.J=12.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 4.39$ (dd, $J=$ $12.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$ '), 4.22 (dd, $J=11.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 4.09 (q, $J=10.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 4.03 (ddd, $J=9.5,4.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.87$ (ddd, $J=9.5$, $4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.62(\mathrm{dd}, J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.57$ (ddd, $J=9.5,7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH} \mathrm{HCH}_{2}$), $3.43-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.91-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) $\delta_{\mathrm{C}} 166.68,166.50,166.08,165.75,165.01(5 \times \mathrm{COPh}), 157.70(\mathrm{~d}, J=37.9$ $\left.\mathrm{Hz}, 1 \times \mathrm{COCF}_{3}\right), 157.45\left(\mathrm{~d}, J=37.7 \mathrm{~Hz}, 1 \times \mathrm{COCF}_{3}\right), 133.91,133.74,133.63,133.51,133.15(5$ $\times \mathrm{Bz}), 129.88(2 \times \mathrm{Bz}), 129.84(4 \times \mathrm{Bz}), 129.77(2 \times \mathrm{Bz}), 129.66(2 \times \mathrm{Bz}), 129.35\left(1 \times 4^{\circ} \mathrm{Bz}\right)$, $128.66\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.51(2 \times \mathrm{Bz}), 128.49(2 \times \mathrm{Bz}), 128.45(2 \times \mathrm{Bz}), 128.42(2 \times \mathrm{Bz}), 128.34$ $(2 \times \mathrm{Bz}), 128.30\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.18\left(1 \times 4^{\circ} \mathrm{Bz}\right), 128.03\left(1 \times 4^{\circ} \mathrm{Bz}\right), 115.73(\mathrm{q}, J=288.0 \mathrm{~Hz}, 1$ $\times \mathrm{CF}_{3}$), $115.44\left(\mathrm{q}, J=288.2 \mathrm{~Hz}, 1 \times \mathrm{CF}_{3}\right), 101.58\left(\mathrm{C}-1\right.$ '), $100.34(\mathrm{C}-1), 73.38(\mathrm{C}-5), 72.80\left(\mathrm{C}-3^{\prime}\right)$, 72.42 (C-5'), $71.84(\mathrm{C}-3), 69.15(\mathrm{C}-4 '), 69.03(\mathrm{C}-4), 68.31(\mathrm{C}-6), 66.44\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.80(\mathrm{C}-$ $\left.6^{\prime}\right), 55.25(\mathrm{C}-2), 54.77\left(\mathrm{C}-2^{\prime}\right), 47.99\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 28.82\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{~F}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1153.33, found 1153.32.

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl-($1 \rightarrow 6$)-azidopropyl acetamido-3,4-di-O-acetyl-2-deoxy- β-D-glucopyranoside (47)

$46(44.0 \mathrm{mg}, 0.039 \mathrm{mmol})$ was dissolved in a $2: 4: 1$ mixture of $0.5 \mathrm{M} \mathrm{NaOH}(3.1 \mathrm{~mL}, 1.55 \mathrm{mmol}$, 40 equiv.), THF (6.2 mL), and $\mathrm{MeOH}(1.5 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 2 h . The solution was concentrated and dried under high vacuum. The residue was dissolved in a $1: 1$ mixture of pyridine ($5 \mathrm{~mL}, 61.8 \mathrm{mmol}, 1596$ equiv.) and $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL}, 52.9 \mathrm{mmol}, 1366$ equiv.). The reaction was stirred at RT for 18 h (TLC in $19: 1 \mathrm{EtOAc} / \mathrm{EtOH}, \mathrm{R}_{\mathrm{f}}=0.3$). The solution coconcentrated with toluene. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ then washed with 1 M $\mathrm{HCl}(20 \mathrm{~mL})$ then aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 5 mL). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (EtOAc/EtOH, 99:1 \rightarrow 9:1) gave disaccharide $47(13.3 \mathrm{mg}, 48 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta_{\mathrm{H}} 5.86$ (d, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\prime}\right), 5.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-$ H), 5.22 (dd, $J=10.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.17$ (dd, $J=10.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 5.06$ (t, $J=9.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 5.00(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1 '), 4.25$ (dd, $\left.J=12.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 4.11$ (dd, $J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$ '), 4.02 3.96 (m, 2H, H-2', H-6a), $3.95-3.91$ (m, 1H, OCHHCH 2), 3.84 (dt, $J=10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.64 (m, 2H, H-5, H-5'), $3.58-3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 2), 3.46(\mathrm{dd}, J=11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b})$, $3.38\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.08,2.04,2.02,2.01,2.00(5 \mathrm{~s}, 15 \mathrm{H}, 5 \times \mathrm{OAc}), 1.95,1.94(2 \mathrm{~s}$, $6 \mathrm{H}, 2 \times \mathrm{NAc}$), $1.90-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Chloroform- d) δ_{C} 170.91, 170.86, 170.69, 170.34, 170.20, 170.00, $169.33\left(7 \times \mathrm{COCH}_{3}\right), 101.36(\mathrm{C}-1$ '), 100.69 (C1), 72.92 (C-5), 72.79 (C-3'), 72.48 (C-3), 72.04 (C-5'), 68.79 (C-4), 68.38 (C-4'), 67.84 (C-6), $65.90\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.97\left(\mathrm{C}-6^{\prime}\right), 54.52(\mathrm{C}-2), 54.25(\mathrm{C}-2 '), 48.11\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 28.90\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $23.34,23.15\left(2 \times \mathrm{NCOCH}_{3}\right), 20.78,20.75,20.69,20.66,20.61\left(5 \times \mathrm{OCOCH}_{3}\right) . m / z$ (ESI) calculated for $\quad \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{16} \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \quad 735.30$, found 735.30.

${ }^{13} \mathrm{C}-\mathrm{NMR}$
Compound 1
Deuterium Oxide
125 MHz

${ }^{1} \mathrm{H}$-NMR

Compound 2
Deuterium Oxide
600 MHz

-合 ल ल ल ल
${ }^{13}$ C-NMR
Compound 2
Deuterium Oxide 125 MHz

	1	1	1	,	1	1	,	1	1	1	,	1	1	,	1	1	,	,	1
10	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Compound 3
Deuterium Oxide 700 MHz

${ }^{13} \mathrm{C}-\mathrm{NMR}$
Compound 3
Deuterium Oxide
125 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 (ppm) } \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$-NMR
Compound 4
Deuterium Oxide
125 MHz

${ }^{13} \mathrm{C}$-NMR
Compound 7
Methanol-d ${ }_{4}$
100 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Compound 8 Chloroform-d 400 MHz

${ }^{13}$ C-NMR
Compound 8
Chloroform-d 100 MHz

	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 9
DMSO-d ${ }_{6}$
400 MHz

${ }^{1} \mathrm{H}$-NMR

Compound 10
Chloroform-d
400 MHz

		 	$\begin{aligned} & \text { o } \\ & \text { y } \\ & \stackrel{+}{\infty} \\ & 1 \end{aligned}$		$\begin{aligned} & \text { n/n} \\ & \underset{N}{N} \\ & \end{aligned}$	9\％ 8 8

${ }^{13} \mathrm{C}$－NMR
Compound 10
Chloroform－d 100 MHz

 No ¢

${ }^{1} \mathrm{H}$-NMR

Compound 11
Chloroform-d
400 MHz

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 12
Chloroform-d
400 MHz

${ }^{13} \mathrm{C}$-NMR
Compound 12
Chloroform-d
100 MHz

	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{1}$ H-NMR
Compound 13
Chloroform-d
400 MHz

${ }^{1} \mathrm{H}$-NMR

Compound 14
Acetone- d_{6}
400 MHz

	1	1	1	1	1	T	1	1	1	1	1	1	T	1	1	1	1	1	1	1
. 0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$		90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 15
Chloroform-d
400 MHz

	1	,	1	T	1	,	1	,	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$-NMR

Compound 16
Chloroform-d
400 MHz

${ }^{13} \mathrm{C}$-NMR
Compound 16
Chloroform-d 100 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 18
Chloroform-d
600 MHz

 N
${ }^{13}$ C-NMR
Compound 18
Chloroform-d
125 MHz

	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 19
Chloroform-d
600 MHz

${ }^{1} \mathrm{H}$-NMR
Compound 20
Chloroform-d
600 MHz

${ }^{13}$ C-NMR
Compound 20
Chloroform-d
125 MHz

	1	1	1	1	1	1	1	T	1	1	1	T	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 21
Acetone- d_{6}
600 MHz

1) !

	1	1	1	1	1	T	1	1	1	1	1	1	T	1	1	1	1	1	1	1
. 0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$		90	80	70	60	50	40	30	20	10

 No 刃心

	1	T	T	1	T	1	1	1	1	1	1	1	1	T	1	1	1	1	T	1
. 0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} \end{array}$	100	90	80	70	60	50	40	30	20	10

Nন

${ }^{1} \mathrm{H}$-NMR
Compound 23 Chloroform-d 600 MHz

${ }^{13}$ C-NMR
Compound 23
Chloroform-d
125 MHz

${ }^{1} \mathrm{H}$-NMR

Compound 24
Chloroform-d 600 MHz

${ }^{13}$ C-NMR
Compound 24
Chloroform-d
125 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 25
Chloroform-d
600 MHz

${ }^{13}$ C-NMR
Compound 25
Chloroform-d
125 MHz

	1	1	1	,	1	1	1	,	,	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 26
Chloroform-d
600 MHz

${ }^{13} \mathrm{C}$-NMR
Compound 26
Chloroform-d
125 MHz

	1	1	1	,	1	1	1	,	,	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$-NMR
Compound 27
Chloroform-d
125 MHz

${ }^{1} \mathrm{H}$-NMR

Compound 28
Acetone-d 6
600 MHz

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 29

Acetone- d_{6}

600 MHz

H新质 मू

	1		0 ,	1	1			F	1		T		1	1				+iNon
0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0		$1.0 \quad 0.5$

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 30
Chloroform-d
600 MHz

${ }^{13}$ C-NMR
Compound 30
Chloroform-d
125 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$
Compound 34
Chloroform-d
400 MHz

${ }^{13} \mathrm{C}$-NMR
Compound 34
Chloroform-d 100 MHz

${ }^{13} \mathrm{C}-\mathrm{NMR}$
Compound 36
Chloroform-d
100 MHz

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{13}$ C-NMR
Compound 39
Chloroform-d
125 MHz

 ભN太太

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Compound 41

Acetone-d 6

600 MHz

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Compound 44
Deuterium Oxide
600 MHz

${ }^{1} \mathrm{H}$-NMR
Compound 45
Chloroform-d 600 MHz

${ }^{1} \mathrm{H}$-NMR
Compound 46
Chloroform-d
600 MHz

References

1 WO Pat., 055925, 2006.
2 E. V. Sukhova, A. V. Dubrovskii, Y. E. Tsvetkov and N. E. Nifantiev, Russ. Chem. Bull., 2007, 56, 1655-1670.
3 M. L. Wolfrom and H. B. Bhat, Chem. Commun. (London), 1966, 146a.
4 M. L. Wolfrom and H. B. Bhat, J. Org. Chem., 1967, 32, 1821-1823.
5 A. A. Joseph, V. M. Dhurandhare, C.-W. Chang, V. P. Verma, G. P. Mishra, C.-C. Ku, C.-C. Lin and C.-C. Wang, Chem. Commun., 2015, 51, 104-106.
6 US Pat., 0004052, 2005.
7 M. Fridman, V. Belakhov, L. V. Lee, F.-S. Liang, C.-H. Wong and T. Baasov, Angew. Chem. Int. Ed., 2005, 44, 447-452.
8 A. F. G. Bongat, M. N. Kamat and A. V. Demchenko, J. Org. Chem., 2007, 72, 1480-1483.
9 D. Horton, Org. Synth., 1966, 46, 1-5.

