Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Electronic supporting information for

Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media

Daniil A. Lukyanov, Liya D. Funt, Alexander S. Konev,* Alexey V. Povolotskiy, Anatoly A. Vereshchagin, Oleg V. Levin and Alexander F. Khlebnikov

Figure SI2. Calibration curve for titanyl oxalate photometric analysis (absorbance at 400 nm).

Figure SI4. UV-Vis absorption spectra of IIa-d in water (c 0.1 mM).

Figure SI5. UV-Vis absorption spectra of IIIa-d in water (c 0.1 mM).

Figure SI6. UV-Vis absorption spectra of IIa (c 0.1 mM) with titanyl oxalate additive (1 equiv.) in water.

Figure SI8. Increase of the absorbance of the titanyl oxalate H₂O₂ complex upon photocatalytic reduction of O₂ with oxalate photocatalyzed by compound I.

Figure SI9. Increase of the absorbance of the titanyl oxalate H₂O₂ complex upon photocatalytic reduction of O₂ with oxalate photocatalyzed by compound **IIa**.

Figure SI10. Control experiments for H_2O_2 generation: without the catalyst (blue line), without irradiation (green line) and irradiation under argon (red line) compared to H_2O_2 generation upon irradiation of the reaction mixture purged with O_2 with 420 nm LED in the presence of **Ha** (black line).

Figure SI12. Cyclic voltammogram of IIa (c 1.0 mM in 0.1 M DMF solution of LiClO₄) in -1.5 – 0 V potential range.

Figure SI14. Emission spectrum in the near IR range (no emission of the singlet oxygen).

Figure SI16. Stern-Volmer plot for fluorescence intensity of compound IIa (water, c 0.1 mM) at variable concentrations of oxalate ions.

Figure SI18. Dependence of fluorescence kinetics of compound IIa on the concentration of oxygen.

Computational Details

All calculations were performed by using the Gaussian 16 suite of quantum chemical programsⁱ at Resource center "Computer center of Saint Petersburg State University". Geometry optimizations of molecules were performed with the B3LYP density functional methodⁱⁱ and 6-31+G(d,p) basis set with PCM solvation model for water. Stationary points on the respective potential-energy surfaces were characterized at the same level of theory by evaluating the corresponding Hessian indices.

Table SI1. Absolute Energies (au) and Cartesian Coordinates of the stationary point for IIa.

E = -1073.536870, H (0K) = -1073.163207, H (298K) = -1073.141757, G (298K) = -1073.214487au. Number of imaginary frequency = 0

C	2.6316420	4.0257350	-1.2111210	C	-3.1874310	0.5156370	-0.8251850
C	2.1888090	2.7385590	-1.4162940	C	-5.4302070	-0.5417620	0.4638040
C	1.2827110	2.1535210	-0.4883820	Н	-4.1523460	-2.1721500	1.0388560
C	0.8340800	2.9027690	0.6491020	C	-4.3976950	1.2111420	-0.8425900
C	1.3099560	4.2237910	0.8295960	Н	-2.3319530	0.9202110	-1.3560170
C	2.1899940	4.7683470	-0.0845950	C	-5.5233900	0.6852970	-0.2007740
Н	1.0811790	0.2402370	-1.5175440	Н	-6.2974370	-0.9559190	0.9691850
Н	3.3230880	4.4803680	-1.9125000	Н	-4.4629930	2.1584720	-1.3692030
Н	2.5209160	2.1628480	-2.2740110	Н	-6.4647000	1.2260470	-0.2193540
C	0.7994470	0.8477980	-0.6665520	C	1.8440510	-2.2758100	0.0636780
C	-0.0702580	2.2691910	1.5437560	C	2.5917110	-3.0875630	-0.8097310
Н	0.9760950	4.7971590	1.6882360	C	2.5289720	-1.5581490	1.0618910
Н	2.5523120	5.7816300	0.0563700	C	3.9793230	-3.1836420	-0.6842910
C	-0.4883090	0.9892510	1.3189910	Н	2.0818080	-3.6354260	-1.5967390
Н	-0.4293490	2.7918040	2.4230300	C	3.9181960	-1.6467480	1.1792170
Н	-1.1542870	0.4490490	1.9764910	Н	1.9739560	-0.9465370	1.7668220
C	-0.4783350	-3.2854180	-0.2483100	C	4.6491780	-2.4602310	0.3079100
C	0.3733180	-2.2090830	-0.0618270	Н	4.5374140	-3.8163450	-1.3683400
C	-0.4866490	-1.0643150	0.0095050	Н	4.4269210	-1.0870570	1.9586780
C	-1.8141470	-1.4627910	-0.1307800	Н	5.7287850	-2.5300950	0.4013380
Н	-0.2563200	-4.3380330	-0.3348890	N	-0.0524730	0.2910460	0.2065430
C	-3.0810770	-0.7155340	-0.1523190	N	-1.7680320	-2.8268030	-0.2744470
C	-4.2190850	-1.2350080	0.4938880	Н	-2.5783790	-3.4058770	-0.4465980

Figure SI20. Calculated UV-Vis spectrum of IIa.

Excitation energies and oscillator strengths for two lowest electronically excited singlet states (TD DFT, B3LYP/6-31+g(d,p), water /PCM)

Excited State 1: 2.5638 eV, 483.60 nm, f=0.0271, HOMO -> LUMO 99.6%

Excited State 2: 3.2606 eV, 380.25 nm, f=0.0535, HOMO-1 -> LUMO 97.4%

¹ Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

² (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Becke, A. D. Phys. Rev. A **1988**, 38, 3098–3100. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.