Supporting Information for

Synthesis of Monodisperse Aromatic Azo Oligomers toward a New

Insight into the Isomerization of π -Conjugated Azo systems

Meng Liu,[†]a Lu Yin,[†]a Laibing Wang,^{*a,b} Tengfei Miao,^a Xiaoxiao Cheng,^a Yong Wang,^{*a} Wei Zhang,^{*a} and Xiulin Zhu^{a,c}

Scheme 1. Synthetic routes of aromatic Azo derivatives (FAZOn, n =1, 2, 3 and 4).

Fig. S1. FT-IR spectra of FAZOn (n = 1, 2, 3 and 4).

Entry	M _{n,GPC} (g/mol)	<i>M_{n,th}</i> (g/mol)
FAZO1	990	806.65
FAZO2	1640	1222.97
FAZO3	2370	1639.29
FAZO4	3050	2055.61

Table S1. Summary of Azo-oligomers FAZOn (n = 1, 2, 3 and 4).

The first-order rate constant k_{eS} of *trans*-to-*cis* photoisomerization was determined by the Formula S1^{1,2}:

$$Ln[(A_{\infty}-A_{t})/(A_{\infty}-A_{0})] = -k_{eS}t$$
 Formula S1

Where A_{∞} , A_t , and A_0 are absorbance corresponded to the π - π * transition of *trans* isomers at infinite time, time t and time zero with irradiation of different wavelength light (404 nm, and 435 nm) at room temperature, respectively.

The first-order rate constant k_{HS} of *cis*-to-*trans* recovery was determined by the Formula S2^{1,2}:

$$Ln[(A_{\infty}-A_{t})/(A_{\infty}-A_{0})] = -k_{HS}t$$
 Formula S2

Where A_{∞} , A_t , and A_0 are absorbance corresponded to the π - π * transition of trans isomers of azobenzene at infinite time, time t and time zero with irradiation of 546 nm light at room temperature.

Fig. S2 First-order kinetics for the photoisomerization of of FAZO1 (a and b), FAZO2 (c and d), FAZO3 (e and f) and FAZO4 (g and h) in DCE under different times with 404 nm, 435 nm and 546 nm light.

Fig S3. The graphical representation for molecular orbitals of FAZOn (n = 1, 2, 3, 4, 5, and 6).

Orbital Excitations	Character	Calcd/nm	f^a	
FAZO1				
HOMO→LUMO	$\pi \rightarrow \pi^*$	345	1.7154	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	225	0.3852	
FAZO2				
HOMO→LUMO	$\pi \rightarrow \pi^*$	378	3.0726	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	228	0.1127	
FAZO3				
HOMO→LUMO	$\pi \rightarrow \pi^*$	394	4.3887	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	312	0.2968	
FAZO4				
HOMO→LUMO	$\pi \rightarrow \pi^*$	403	5.7174	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	333	0.4128	
FAZO5				
HOMO→LUMO	$\pi \rightarrow \pi^*$	408	7.0233	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	349	0.5506	
FAZO6				
HOMO→LUMO	$\pi \rightarrow \pi^*$	412	8.3205	
HOMO→LUMO+2	$\pi \rightarrow \pi^*$	361	0.6688	

Table S2 Main Calculated Optical Transitions for FAZOn (n = 1, 2, 3, 4, 5, and 6)

- T. García, L. Larios-López, R. J. Rodríguez-González, G. Martínez-Ponce, C. Solano and D. Navarro-Rodríguez, *Polymer*, 2012, 53, 2049-2061.
- X. Jiang, J. Lu, F. Zhou, Z. Zhang, X. Pan, W. Zhang, Y. Wang, N. Zhou and X. Zhu, *Polym. Chem.*, 2016, 7, 2645-2651