Supplementary Information for:

Chondroitin-analogue decorated magnetic nanoparticle via click

reaction for selective adsorption of low-density lipoprotein

Kai Cheng^a, Yichen Li^a, Huijuan Cai^a, Xinyuan Xu^a, Weifeng Zhao^{a,b},

Dongyue Zhang^{*a,b}, Changsheng Zhao^{a,b}, Jianshu Li^{*a,b}

a College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.

b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065,

China.

E-mail: jianshu_li@scu.edu.cn; Tel: +86 28 85466755

Figure S1. ¹H NMR spectra of synthesized saccharide monomer MAG.

Figure S2. ¹H NMR spectra of CS-analogue polymers PM₂S₁ (A), PM₁S₁ (B) and PM₁S₂ (C).

Figure S3. TEM images of Fe₃O₄-MAG (A), Fe₃O₄-PM₂S₁ (B), Fe₃O₄-PM₁S₂ (C) and Fe₃O₄-PSS (D).

Figure S4. DLS histogram of Fe₃O₄-C=CH (A), Fe₃O₄-MAG (B), Fe₃O₄-PM₂S₁ (C), Fe₃O₄-PM₁S₁ (D), Fe₃O₄-PM₁S₂ (E) and Fe₃O₄-PSS (F).

Table S1. Elemental an	alysis (EA)	data of CS-anal	ogue polymers	synthesized via ATRP
------------------------	-------------	-----------------	---------------	----------------------

sample	N_{test} (%) ^a	N _{theo} (%) ^b	C (%)	Н (%)	S _{test} (%) ^a	S_{theo} (%) ^b
PMAG	4.925	5.668	38.712	5.620	0.075	
PM_2S_1	3.960	3.999	38.211	6.571	4.012	4.571
PM_1S_1	3.144	3.091	39.614	7.221	6.896	7.061
PM_1S_2	2.126	2.123	39.378	5.253	9.216	9.706
PSS	0.039		37.389	4.923	14.869	15.520

^a measured by EA. ^b N_{theo} and S_{theo} meant theoretical values of N and S content, calculated as follows: $N_{theo}(\%) = \frac{14x}{247x + 206y} \times 100\%, S_{theo}(\%) = \frac{32y}{247x + 206y} \times 100\%, 14, 32, 247 \text{ and } 206 \text{ represented the}$

molecular weight of N, S, MAG and SS, respectively.

Figure S5. Langmuir adsorption isotherm and Freundlich adsorption isotherm of BSA for MNPs decorated with PM_1S_1 . The initial BSA concentration in solution was set as 500, 750 and 1000 μ g/mL.

Figure S6. LDL adsorption amounts of Fe₃O₄-PM₁S₁ in different BSA concentration.

Table S2. The parameters of Langmuir isotherms and Freundlich isotherm for BSA adsorption by Fe_3O_4 -PM₁S₁.

Langmuir	q _{max} (mg/g)	$K_{\rm L}$	$r_{\rm L}^2$	Freundlich	n	K _F	r_F^2
isotherms				isotherm			
	19.598	1.09	0.992		5.780	3.096	0.969