Supporting Information

Living Polymerization of Acrylamides catalysed by N-Heterocyclic

Olefin-Based Lewis Pairs

Huaiyu Wang, Qianyi Wang, Jianghua He^{*} and Yuetao Zhang^{*}

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.

^{*} Corresponding author. E-mails: <u>hjh2015@jlu.edu.cn</u>; ytzhang2009@jlu.edu.cn

Table of Contents

1. Stoichiometric NMR reaction of NHO with AlPh ₃ ·OEt ₂	S3
2. Stoichiometric reactions of NHO4/MeAl(BHT) ₂ with DMAA	S6
3. Control experiments of DMAA polymerization	S6
4. DEAA polymerization by NHO based LPs	S7
5. Plots of M_n and \mathcal{P} for PDMAA vs [DMAA] ₀ /[NHO4] ₀ /ratio	S7
6. MALDI-TOF MS spectra of low-MW PDMAA by NHO4/Al(C ₆ F ₅) ₃	S8
7. MALDI-TOF MS spectra of low-MW PDMAA by NHO4/AlMe3	S9
8. Chain extension experiments for DMAA Polymerization	S10
9. Random and block copolymerization	S11

1. Stoichiometric NMR reaction of NHO with AlPh₃·OEt₂

General procedure for NMR reaction of NHO with AlPh₃·OEt₂: A Teflon-valve-sealed J. Young-type NMR tube was charged with NHO (0.02 mmol) and 0.3 mL of C_6D_6 . A solution of AlPh₃·OEt₂ (6.6 mg, 0.02 mmol, 0.3 mL C_6D_6) was added to this tube via pipette at ambient temperature, and the mixture was allowed to react for 15 min before analysis by NMR.

a) Stoichiometric NMR reaction of NHO4 with $AlPh_3 \cdot OEt_2$

Figure S1. Overlay of ¹H NMR spectra for **NHO4**, AlPh₃·OEt₂ and reaction of **NHO4** with AlPh₃·OEt₂ (500 MHz, Benzene- d_6)

b) Stoichiometric NMR reaction of NHO1 with AlPh₃·OEt₂

Figure S2. ¹H NMR spectrum for reaction of NHO1 with AlPh₃·OEt₂ (500 MHz, Benzene-*d*₆)

c) Stoichiometric NMR reaction of NHO2 with AlPh₃·OEt₂

Figure S3. ¹H NMR spectra for reaction of NHO2 with AlPh₃·OEt₂ (500 MHz, Benzene-d₆)

d) Stoichiometric NMR reaction of NHO3 with $AlPh_3 \cdot OEt_2$

Figure S4. Overlay of ¹H NMR spectra for **NHO3**, AlPh₃·OEt₂ and reaction of **NHO3** with AlPh₃·OEt₂ (500 MHz, Benzene- d_6)

2. Stoichiometric reactions of NHO4/MeAl(BHT)₂ with DMAA

In an argon-filled glovebox, a Teflon-valve-sealed J. Young-type NMR tube was charged with 5.8 mg (0.02 mmol) of **NHO4** and 0.3 mL of C_6D_6 . A 0.3 mL C_6D_6 solution of MeAl(BHT)₂·DMAA (11.6 mg, 0.02 mmol) was slowly added to this tube via pipet at room temperature. The mixture was allowed to react for 15 min at room temperature before the NMR spectra were recorded, which showed the clean formation of the zwitterion as two isomers in a 7:5 ratio.

Figure S5. ¹H NMR spectrum obtained for the stoichiometric reaction of **NHO4**/MeAl(BHT)₂ with DMAA

3. Control experiments of DMAA polymerization

Entry	LA	M:LA	Time	$\operatorname{conv.}(\%)^b$
1	ⁱ Bu ₃ Al	800:2	1min	68.0
			5min	100
2	$AlPh_3 \cdot OEt_2$	800:2	30s	0

Table S1. Results of the polymerization of DMAA by LA alone^a

Tohini 0	
1h 90.6	
5h 100	

^{*a*}Condition: carried out at RT in 4.5 mL of toluene; for a 800DMAA/2LA ratio, $[DMAA]_0 = 0.94$ M and $[LA]_0 = 2.34$ mM. ^{*b*}Monomer conversions measured by ¹H NMR.

4. DEAA polymerization by NHO based LPs

Entry	LB	LA	M:LB:LA	Time	Conv. ^b (%)	M_n^c (kg·mol ⁻¹)	${\cal D}^{\rm c}\left(M_w\!/M_n\right)$	$I^{*d}(\%)$
1	NHO1	MeAl(BHT) ₂	800:1:2	10 h	34.1	n.d.		
2	NHO2	MeAl(BHT) ₂	800:1:2	10 h	30.4	n.d.		
3	NHO3	MeAl(BHT) ₂	800:1:2	10 h	17.9	n.d.		
4	NHO4	MeAl(BHT) ₂	800:1:2	10 h	21.7	n.d.		
5	NHO1	$AlPh_3 \cdot OEt_2$	800:1:2	30 s	100	85.1	1.09	119
6	NHO2	$AlPh_3 \cdot OEt_2$	800:1:2	30 s	100	99.4	1.10	102
7	NHO3	$AlPh_3 \cdot OEt_2$	800:1:2	30 s	100	87.3	1.11	116
8	NHO4	$AlPh_3 \cdot OEt_2$	800:1:2	30 s	100	90	1.12	113

Table S2. Results of the polymerization of DEAA by NHO based LPs^a

^{*a*}Condition: carried out at RT in 4.5 mL of toluene; for a 800DEAA/1LB/2LA ratio, $[DEAA]_0 = 0.94$ M and $[LA]_0 = 2[LB]_0 = 2.34$ mM. ^{*b*}Monomer conversions measured by ¹H NMR. ^{*c*} M_n and *D* determined by GPC relative to PMMA standards in DMF. ^{*d*}Initiation efficiency (I^*)% = $M_n(calcd)/M_n(exptl)\times100$, where $M_n(calcd) = [MW(DMAA)]([DMAA]_0/[I]_0)(conversion) + MW$ of chain end groups.

5. Plots of M_n and *Đ* for PDMAA vs [DMAA]₀/[NHO4]₀/ratio

Figure S7. MALDI-TOF mass spectrum of the low-MW PDMAA sample produced by $NHO4/Al(C_6F_5)_3$ in toluene at RT.

Figure S8. Plot of m/z values from Figure S7 vs the number of DMAA repeat units (*n*).

7. MALDI-TOF MS spectra of low-MW PDMAA by NHO4/AlMe3

Figure S9. MALDI-TOF mass spectrum of the low-MW PDMAA sample produced by $NHO4/AlMe_3$ in toluene at RT

Figure S10. Plot of m/z values from Figure S9 vs the number of DMAA repeat units (*n*).

8. Chain extension experiments for DMAA Polymerization

Entry	M1/M2/M3	$\operatorname{Conv.}^{b}(\%)$	$M_{\rm n}^{\ c}({\rm kg}{\cdot}{ m mol}^{-1})$	D^c	
1	400DMAA	100	63.9	1.08	
2	400/400DMAA	100	114	1.14	
3	400/400/400DMAA	100	183	1.13	

Table S3. Chain-extension polymerization of DMAA by NHO4/AlPh₃ system^a

^{*a*} Condition: the first run was carried out with a 400/2/1 DMAA/AlPh₃/**NHO4** ratio ([DMAA]₀ = 0.94 M, [AlPh₃]₀ = 2[**NHO4**]₀ = 4.68 mM) in 4.50 ml toluene at room temperature. ^{*b*} Monomer conversions measured by ¹H NMR. ^{*c*} M_n and D determined by GPC relative to PMMA standards in DMF.

Figure S11. The GPC traces of PDMAA samples obtained from chain extension experiments in toluene at RT.

9. Random and block copolymerization

Table S4. Copol	ymerization	of DMAA	and DEAA	by NHO4/AlPh ₃	system '
					~

Entry	M1/M2/M3	$\operatorname{Conv.}^{b}(\%)$	$M_n^c(\mathrm{kg}\cdot\mathrm{mol}^{-1})$	D^c
1^d	400 DMAA ran 400 DEAA	DMAA:100	103	1.09
	+00DMAA-1un-+00DEAA	DEAA: 100		
2	400DMAA- <i>b</i> -400DEAA	DMAA:100	100	1.13
		DEAA: 100	100	
3	400DMAA- <i>b</i> -400DEAA- <i>b</i> -400DMAA	DMAA:100	171	1 1 4
		DEAA: 100		1.14
4	400DEAA- <i>b</i> -400DMAA	DMAA:100	100	1.01
		DEAA: 100		1.21
5		DMAA:100	155	1.1.4
	400DEAA-0-400DMAA-0-400DEAA	DEAA: 100	155	1.14

^{*a*} Carried out in 4.50 ml toluene at room temperature, where $[DMAA]_0 = [DEAA]_0 = 0.94$ M and AlPh₃ was used. ^{*b*}Monomer conversions (conv.) measured by ¹H NMR. ^{*c*} M_n and D determined by GPC relative to PMMA standards in DMF. ^{*d*}DMAA and DEAA was added at the same time.

Figure S12. The GPC traces of PDMAA samples obtained from random copolymerization of DMAA and DEAA in toluene at RT.