Electronic Supplementary Information

Two-Dimensional SnS₂ Nanosheets Exfoliated from Inorganic-Organic Hybrid toward Enhanced Photocatalytic Cr(VI) Reduction

Yongping Liu^{a,b}, Xihong Mi^a, Jixiang Wang^a, Ming Li^a, Dayong Fan^{a*}, Huidan Lu^{a,b,*} and Xiaobo Chen^{b*}.

^a Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.

^b Department of Chemistry, University of Missouri – Kansas City, Kansas City, Missouri 64110, United States

*Corresponding author

E-mail: dyfan@glut.edu.cn (Dayong Fan),

lhuidangl@163.com (Huidan Lu),

chenxiaobo@umkc.edu (Xiaobo Chen)

Figure S1-S5.

Fig. S1. SEM images of the SnS₂/n-propylamine hybrid at different magnifications (a, b, c, d).

Fig. S2. Photographs for the comparison of exfoliation efficiency in various acids.

Fig. S2 show the comparison of exfoliation efficiency of bulk SnS₂/n-propylamine composite in 3 M of acetic acid, sulfuric acid, hydrochloric acid and nitric acid, for 1 h respectively. When the bulk SnS₂/n-propylamine composite was ultrasonicated in acetic acid and sulfuric acid, the milk white color indicates the lower exfoliation efficiency of the bulk SnS₂/n-propylamine composite. The two yellow bottles display that the hydrochloric acid and nitric acid can exfoliate the bulk SnS₂/n-propylamine composite very well, however, the dark yellow color presents the higher exfoliation efficiency of the bulk SnS₂/n-propylamine composite in nitric acid than that in acetic acid. Therefore, the nitric acid was found to be an ideal solvent for the exfoliation of the bulk SnS₂/n-propylamine composite into 2D ultrathin nanomaterial. Exfoliation of the bulk SnS₂/n-propylamine composite in nitric acid could completely destroy and remove the mesophase n-propylamine during the process of sonication and attain to the higher exfoliation efficiency with a good exfoliation state. As observed, most of the proton acid can exfoliate SnS₂/n-propylamine composite, among which nitric acid shows the highest efficiency. The synthetic few-layers SnS₂ nanosheets were well dispersed in ethanol solution (ethanol/water = 1:1) showing the Tyndall effect.

Fig. S3. SEM image of WO_3/n -propylamine hybrid precursors (a), TEM images (b) of few-layers WO_3 nanosheets by the same n-propylamine intercalated - exfoliated method.

Fig. S4. XRD patterns of bulk SnS_2/n -propylamine.

Fig. S5. The TG curve of the bulk SnS_2/n -propylamine composite.

The TG curve of bulk SnS_2/n -propylamine composite (Fig. S5) shows four steps of weight loss: (1) a 3.52 wt.% weight loss before 200 °C could be caused by the loss of adsorbed water and possibly free n-propylamine adsorbed on the surface of the bulk SnS_2/n -propylamine composite (step A); (2) Step B indicates a weight loss of 22.56 wt.% over 200-250 °C as a result of the decomposition of n-propylamine intercalated in the lamellar structure of bulk SnS_2 ; (3) Step C starts from 450 °C and presents a weight loss of 34.70 wt.% due to the transformation of SnS_2 into the SnS; (4) Step D goes up to 670.7 °C and displays the weight loss is about 39.58 wt.% because of the fractional decomposition and melting of SnS.

Fig. S6. (a) Photocatalytic degradation of methyl orange (MO) solution (10 mg/L, 100 mL) under visible light irradiation with a 300 W Xe lamp (Perfect Light, PLS-SEX300, a cutoff filter of 420 nm) with 10 mg as-prepared samples: (1) bulk SnS_2/n -propylamine, (2) bulk SnS_2 , (3) few-layers SnS_2 nanosheets and (b) kinetic linear simulation curves.

Photocatalysts	Amount of catalyst	C ₀ , _{Cr} (VI)	(C ₀ -C _t)/C ₀ (t=60 min)	The calculated rate constant of per gram catalyst	light source (Xe lamp)	References
SnS ₂ quantum dots	0.5 g	50 mg/L	0.58	0.0294 min ⁻¹ g ⁻¹	300 W (λ > 420 nm)	JR. Tu et al. / Materials Letters 185 (2016) 303
Ultrathin SnS ₂ nanosheets	0.5 g	50 mg/L	0.48	0.0218 min ⁻¹ g ⁻¹	350 W (λ > 420 nm)	R. Wei et al. /Acta Materialia 66 (2014) 163
SnS ₂ nanocrystals	0.3 g	50 mg/L	0.90	0.1313 min ⁻¹ g ⁻¹	250W Xe lamp (λ > 420 nm)	Y. C. Zhang et al. /Environ. Sci. Technol. 2011, 45, 9324
2D SnS ₂ nanosheets	0.1 g	50 mg/L	0.53	0.1436 min ⁻¹ g ⁻¹	300 W (λ > 420 nm)	This work

Table S1 Summary of photocatalysis activities of Cr(VI) reduction using SnS_2 with various morphologies as photocatalysts in literatures.

Fig. S7. The calculated rate constant of per gram catalyst (suppose all degradation curves follow a pseudo-first-order model) vs. SnS_2 with various morphology reported in literatures.

References:

- [1] Y. C. Zhang et al. Environ. Sci. Technol. 2011, 45, 9324-9331
- [2] J.-R. Tu et al. Materials Letters 2016, 185, 303-306
- [3] R. Wei et al. Acta Materialia 2014, 66, 163-171