Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Information

$Sn_2B_7O_{12}F$ with a ${}^2_{\infty}[B_{14}O_{24}]^{6-}$ layer constructed from the unprecedented

$[B_7O_{16}]^{11-}\,fundamental\,\,building\,\,block$

Zixiu Lu,^{a,b,#} Fangfang Zhang,^{a,b,#} Abudukadi Tudi,^{a,b} Zhizhong Zhang,^{a,b}

Zhihua Yang^{a,b} and Shilie Pan^{a,b,*}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments;

Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory

of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi

830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

[#]These authors contributed equally to this work.

*Corresponding author: slpan@ms.xjb.ac.cn.

Atoms	x	у	Z	U(eq)
Sn (1)	958(1)	3317(1)	9947(1)	12(1)
Sn (2)	1345(1)	5698(1)	8379(1)	13(1)
B (1)	4052(3)	6665(4)	8858(2)	10(1)
B (2)	706(3)	9788(4)	9248(2)	11(1)
B (3)	4076(3)	3799(4)	8594(2)	12(1)
B (4)	2783(3)	2632(4)	7777(2)	11(1)
B (5)	2999(3)	8727(4)	9424(2)	11(1)
B (6)	5678(4)	7194(4)	8192(2)	13(1)
B (7)	3198(4)	5043(4)	7214(2)	13(1)
O (1)	3484(2)	5249(3)	8570(1)	10(1)
O (2)	4655(2)	7684(3)	8458(1)	12(1)
O (3)	60(2)	1177(3)	9296(1)	12(1)
O (4)	1919(2)	9656(3)	9500(1)	15(1)
O (5)	3678(2)	2602(3)	8272(1)	17(1)
O (6)	122(2)	8553(3)	8975(1)	13(1)
O (7)	5928(3)	5627(3)	8148(1)	26(1)
O (8)	2958(2)	7461(3)	9082(1)	12(1)
O (9)	-916(2)	4207(3)	9727(1)	18(1)
O (10)	6503(2)	8238(2)	7962(1)	10(1)
O (11)	3259(2)	3518(3)	7324(1)	16(1)
O (12)	2357(2)	6037(2)	7441(1)	9(1)
F (1)	1533(2)	4266(2)	9206(1)	26(1)

Table S1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Sn₂B₇O₁₂F. *U*(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Selected bond leng	gths (A) and ang	gles (°) for $Sn_2B_7O_{12}F$.	
Sn(1)-F(1)	2.063(2)	B(3)-O(5)	1.335(5)
Sn(1)-O(9)	2.132(3)	B(3)-O(6)#5	1.389(4)
Sn(1)-O(9)#1	2.273(3)	B(3)-O(1)	1.395(4)
Sn(1)-O(3)	2.549(3)	B(4)-O(11)	1.432(4)
Sn(2)-O(1)	2.279(3)	B(4)-O(5)	1.456(4)
Sn(2)-F(1)	2.318(3)	B(4)-O(12)#6	1.475(4)
Sn(2)-O(10)#2	2.352(3)	B(4)-O(10)#2	1.522(4)
Sn(2)-O(12)	2.539(3)	B(5)-O(8)	1.361(4)
B(1)-O(2)	1.464(4)	B(5)-O(9)#3	1.366(4)
B(1)-O(3)#3	1.493(4)	B(5)-O(4)	1.402(4)
B(1)-O(1)	1.503(4)	B(6)-O(2)	1.339(4)
B(1)-O(8)	1.458(4)	B(6)-O(10)	1.382(4)
B(2)-O(4)	1.369(4)	B(6)-O(7)	1.383(5)
B(2)-O(6)	1.370(4)	B(7)-O(11)	1.342(4)
B(2)-O(3)#4	1.383(4)	B(7)-O(12)	1.361(4)
		B(7)-O(7)#7	1.385(4)
F(1)-Sn(1)-O(9)	87.57(10)	O(6)-B(2)-O(3)#4	120.6(3)
F(1)-Sn(1)-O(9)#1	86.00(10)	O(5)-B(3)-O(6)#5	117.3(3)
O(9)-Sn(1)-O(9)#1	73.03(10)	O(5)-B(3)-O(1)	123.3(3)
F(1)-Sn(1)-O(3)	83.40(10)	O(6)#5-B(3)-O(1)	119.4(3)
O(9)-Sn(1)-O(3)	79.41(9)	O(11)-B(4)-O(5)	112.5(3)
O(9)#1-Sn(1)-O(3)	150.82(8)	O(11)-B(4)-O(12)#6	105.5(3)
O(1)-Sn(2)-F(1)	73.19(8)	O(5)-B(4)-O(12)#6	108.1(3)
O(1)-Sn(2)-O(10)#2	80.66(8)	O(11)-B(4)-O(10)#2	112.5(3)
F(1)-Sn(2)-O(10)#2	82.64(10)	O(5)-B(4)-O(10)#2	107.6(3)
O(1)-Sn(2)-O(12)	74.97(8)	O(12)#6-B(4)-O(10)#2	110.6(3)
F(1)-Sn(2)-O(12)	141.90(8)	O(8)-B(5)-O(9)#3	123.5(3)
O(10)#2-Sn(2)-O(12)	71.99(8)	O(8)-B(5)-O(4)	122.7(3)
O(8)-B(1)-O(2)	109.3(3)	O(9)#3-B(5)-O(4)	113.7(3)
O(8)-B(1)-O(3)#3	114.2(3)	O(2)-B(6)-O(10)	120.9(3)
O(2)-B(1)-O(3)#3	108.1(3)	O(2)-B(6)-O(7)	120.3(3)
O(8)-B(1)-O(1)	104.8(3)	O(10)-B(6)-O(7)	118.8(3)
O(2)-B(1)-O(1)	111.4(3)	O(11)-B(7)-O(12)	124.4(3)
O(3)#3-B(1)-O(1)	109.1(3)	O(11)-B(7)-O(7)#7	116.9(3)
O(4)-B(2)-O(6)	120.9(3)	O(12)-B(7)-O(7)#7	118.7(3
O(4)-B(2)-O(3)#4	118.5(3)		

Symmetry transformations used to generate equivalent atoms:

2 x - 1/2, y - 1/2, z #1 -x, -y + 1, -z + 2#3 x + 1/2, y + 1/2, z #4 x, y + 1, z #5 x + 1/2, y - 1/2, z#6 -x + 1/2, y - 1/2, -z +#7 -x + 1, y, -z + 3/2#8 x, y - 1, z #9 x - 1/2, y + 1/2, z 3/2 #10 -x + 1/2, y + 1/2, -z + 3/2

FBB Configurations	R	Representative examples
7: $_{\infty}^{3}[<2\Delta T>+<\Delta 2T>+\Delta]$	3	$Li_3B_7O_{12}^1$
$7: {}_{\infty}{}^{3}[< 6T > {}^{B} + \Delta]$	3	$Fe_3B_7O_{13}Cl^2$
7: $\infty^{3}[<3\Delta 3T>^{B}+\Delta]$	3	$Co_3B_7O_{13}F(OH)^3$
7: $\infty^{2}[\Delta + \langle 2\Delta T \rangle + 2\Delta T]$	2	Sn ₂ B ₇ O ₁₂ F
7: $\infty^{2}[\langle T2\Delta \rangle + T\Delta + T\Delta]$	2	AgSrB7O12
7: $[\Delta \Delta + <\Delta 2T > + \Delta \Delta]$	0	$K_3PtB_7O_{11}(OH)_6(H_2O)_3^4$
7: $[T + <2\Delta 3T >^8 + T]$	0	NaBa ₃ Si ₂ B ₇ O ₁₆ (OH) ₄ ⁵
7: $[5\Delta 2T]^{2-8}$	0	NaMg2Ba7B14O28F5 ⁶

Table S3. Configurations and the degree of the polymerization (R) of the FBBs with seven boron atoms.

Units	Δho	$(\times 10^{-3}/\text{ Å}^3)$
$[BO_3]^{3-}$	12.6566	18.7793
$[{ m BO}_4]^{5-}$	0.0007	7.5117
$[SnO_3F]^{5-}$	0.0012	5.6338
$[SnO_4F]^{7-}$	0.0099	3.7559
$[B_{14}O_{24}]^{6-}$ layer	12.6573	/
$[Sn_4O_{12}F_2]^{18-} cluster$	0.0111	/

Table S4. Bonding electron density difference $(\Delta \rho)$ of different units calculated by the REDA method and the density of different groups in the unit cell.

Figure S1. EDS of the $Sn_2B_7O_{12}F$ crystal.

Figure S2. (a) $[B_7O_{17}]^{13-}$ FBB of AgSrB₇O₁₂. (b) Chain-like cluster $[B_{14}O_{31}]^{20-}$ in AgSrB₇O₁₂. (c) ${}^2_{\infty}[B_{14}O_{24}]^{6-}$ layer of AgSrB₇O₁₂.

Figure S3. PDOS of Sn₂B₇O₁₂F

References

1. A. D. Jiang, S. R. Lei, Q. Z. Huang, T. B. Chen, D. Ke, Acta Crystallogr. C, 1991, 46, 1999.

2. M. E. Mendoza-Alvarez, K. Yvon, W. Depmeier, H. Schmid, Acta Crystallogr. C, 1985, 41, 1551.

3. G. Berset, K. Yvon, W. Depmeier, R Boutellier, H. Schmid, *Ferroelectrics*, 1984, 56, 13.

4. H. Behm, Acta Crystallogr. C, 1988, 44, 1348.

5. S. Ghose, C. Wan, H. H. Ulbrich, Acta Crystallogr. B, 1976, 32, 824.

6. M. Mutailipu, M. Zhang, Y. N. Chen, X. Q. Lu, S.L. Pan, *Dalton Trans.*, 2017, 46, 4923.