Supporting Information

Tin Nanoparticles Embedded in N-Doped Microporous Carbon Matrix Deriving from ZIF-8 as Anode for Ultralong-life and Ultrahigh-rate Lithium-Ion Batteries

Qingqing Han,^a Ting Jin,^a Yang Li,^a Yuchang Si,^{*b} Haixia Li,^{*a} Yijing Wang^a and Lifang Jiao^{*a}

^aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),

College of Chemistry, Nankai University, Tianjin 300071, China.

E-mail: jiaolf@nankai.edu.cn.

^bLogistics University of People's Armed Police Force

Fig. S1. XRD patterns of nitrogen-doped microporous carbon matrix (N-MCM) before and after treated with HCl.

Fig. S2. SEM images of (a) ZIF-8, (b) nitrogen-doped microporous carbon matrix (N-MCM) and (c) Sn@N-MCM obtained at 600 °C.

Fig. S3. Pore size distribution curves of (a) N-MCM and (b) Sn@N-MCM.

Fig. S4. TGA curve of Sn@N-MCM in air with a heating rate of 5 °C min⁻¹.

The decline of the curve below 100 °C can be attributed to the loss of moisture in the sample. The fast weight loss occurred between 350 °C and 550 °C, which is ascribed to the carbon combustion (C + $O_2 \rightarrow CO_2$ (gas)). The Sn content was calculated following equation (1):

$$Sn (wt\%) = 100 \times \frac{\text{molecular weight of Sn}}{\text{molecular weight of SnO}_2} \times \frac{\text{final weight}}{\text{initial weight}}$$
(1)

Fig. S5. XPS spectra of Sn@N-MCM (a) Full spectrum and (b) high resolution C 1s spectrum.

Fig. S6. Cyclic voltammetry curves of Sn@N-MCM scanned at a rate of 0.1 mV s⁻¹.

Fig. S7. (a) Nyquist plots of Sn@N-MCM and N-MCM electrodes and the corresponding simulated curves based on the equivalent circuit (inset). (b) Real parts of the impedance (Z) versus the reciprocal square root of the angular frequency (ω) in the low frequency region of the above Sn@N-MCM and N-MCM.

In this equivalent circuit, charge-transfer resistance (R_{ct}) is related to ability of charges transferring at electrode/electrolyte interfaces. Warburg impedance (Z_w) is associated with Li⁺ ions diffusion in the Sn@N-MCM. In addition, R_s stands for the solution resistance and constant-phase element (CPE) represents the double-layer capacitance.

The slope in equation (2) is Warburg factor (σ), which is an important parameter to calculate Li⁺ diffusion coefficient (D_{Li}) using the equation (3):

$$Z' = R_D + R_L + \sigma \omega^{-1/2}$$
⁽²⁾

$$D_{Li} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(3)

Where R is the gas constant, T is the absolute temperature, A is the surface area of electrode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the concentration of lithium ions.

Fig. S8. SEM images of Sn@N-MCM electrode after 100 cycles at different magnifications.

Table S1. The content ratio of three N species in Sn@N-MCM.

•

N types	pyridinic N	pyrrolic N	graphitic N
Persentages	41.60%	43.84%	14.56%

Table S2. Impedence parameters fitted from the equivalent circuit.

Samples	$R_s(\Omega)$	$R_{ct}(\Omega)$	σ	
Sn@N-MCM	1.71	86.29	27.57	
N-MCM	1.11	161.20	39.60	

 Table S3. Comparison of the as-prepared Sn@N-MCM with previously reported Sn-based anodes for LIBs.

Samples	Sn (wt%)	Rate capability	Cyclic stability	Ref.
Sn@N-MCM	28.7%	763.5 mA h g ⁻¹ at 0.5 A g ⁻¹	4 A $g^{-1}/471$ mA h $g^{-1}/2500$ th	This work
		470.0 mA h g ⁻¹ at 4 A g ⁻¹		
		225.5 mA h g ⁻¹ at 20 A g ⁻¹		
Sn@3D-NPC	31.0%	641 mA h g ⁻¹ at 0.5 A g ⁻¹	0.2 A g^-1/742 mA h g^-1 /200 th	1
		562 mA h g ⁻¹ at 1 A g ⁻¹		
		302 mA h g ⁻¹ at 5 A g ⁻¹		
Sn/C hybrid	82.3%	807 mA h g ⁻¹ at 0.4 A g ⁻¹	$1 \text{ A g}^{-1}/690 \text{ mA h g}^{-1}/150 \text{ th}$	2
		461 mA h g ⁻¹ at 2 A g ⁻¹		
yolk-shell Sn@C	70.0%	720 mA h g ⁻¹ at 0.5 A g ⁻¹	0.2 A g ⁻¹ /810 mA h g ⁻¹ /500 th	3
		580 mA h g ⁻¹ at 1 A g ⁻¹		
		350 mA h g ⁻¹ at 5 A g ⁻¹		
Sn/CNT	67.3%	831 mA h g ⁻¹ at 0.5 A g ⁻¹	0.2 A g ⁻¹ /749 mA h g ⁻¹ /100 th	4
		746 mA h g ⁻¹ at 1 A g ⁻¹		
		377 mA h g ⁻¹ at 5 A g ⁻¹		
Sn@HC	68.1%	743 mA h g ⁻¹ at 0.5 A g ⁻¹	4 A $g^{-1}/423$ mA h $g^{-1}/6000$ th	5
		450 mA h g^{-1} at 4 A g^{-1}		
		275 mA h g ⁻¹ at 20 A g ⁻¹		
Sn@NC	59.0%	1070 mA h g ⁻¹ at 0.2 A g ⁻¹	0.25 A g ⁻¹ /710 mA h g ⁻¹ /130 th	6
		623 mA h g ⁻¹ at 1 A g ⁻¹		
		500 mA h g ⁻¹ at 5 A g ⁻¹		
Sn@FLCNFs	45.9%	846 mA h g ⁻¹ at 0.2 A g ⁻¹	1 A $g^{-1}/656$ mA h $g^{-1}/300$ th	7
		656 mA h g ⁻¹ at 1 A g ⁻¹		
Sn@C	45.7%	672 mA h g ⁻¹ at 0.2 A g ⁻¹	4 A $g^{-1}/410$ mA h $g^{-1}/4000$ th	8
		205 mA h g ⁻¹ at 16 A g ⁻¹		
Sn@C	63.0%	778 mA h g ⁻¹ at 0.5 A g ⁻¹	1 A g ⁻¹ /691 mA h g ⁻¹ /500 th	9
		336 mA h g^{-1} at 8 A g^{-1}		
Sn/C	53.2%	610.8 mA h g ⁻¹ at 0.6 A g ⁻¹	3 A g ⁻¹ /537 mA h g ⁻¹ /1000 th	10
		341.6mA h g ⁻¹ at 6 A g ⁻¹		

Supplemental References

- 1 Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan, Y. Huang, W. Zhang, H. Zhang, J. Lu, F. Huo and Q. Yan, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17172-17177.
- 2 F. Cheng, W.-C. Li, J.-N. Zhu, W.-P. Zhang and A.-H. Lu, *Nano Energy*, 2016, 19, 486-494.
- 3 H. Zhang, X. Huang, O. Noonan, L. Zhou and C. Yu, Adv. Funct. Mater., 2017,

27, 1606023.

4 X. Zhou, L. Yu, X.-Y. Yu and X. W. Lou, *Adv. Energy Mater.*, 2016, 6, 1601177.

5 N. Zhang, Y. Wang, M. Jia, Y. Liu, J. Xu, L. Jiao and F. Cheng, Chem. Commun.,

2018, 54, 1205-1208.

- 6 C. Guo, Q. Yang, J. Liang, L. Wang, Y. Zhu and Y. Qian, *Mater. Lett.*, 2016, 184, 332-335.
- 7 L. Qiao, L. Qiao, X. Li, X. Sun, H. Yue and D. He, J. Mol. Sci., 2017, 52, 6969-6975.
- 8 N. Zhang, Q. Zhao, X. Han, J. Yang and J. Chen, *Nanoscale*, 2014, **6**, 2827-2832.
- 9 Y. J. Hong and Y. C. Kang, Small, 2015, 11, 2157-2163.
- X. Huang, S. Cui, J. Chang, P. B. Hallac, C. R. Fell, Y. Luo, B. Metz, J. Jiang,
 P. T. Hurley and J. Chen, *Angew. Chem., Int. Ed.*, 2015, 54, 1490-1493.