Novel nickel-cobalt phosphite with face-sharing octahedra derived electrocatalyst for efficient water splitting

Jian Wu, ^{*a} Lingling Lin,^a Francois Jacques Morvan ^a, Juan Du^{* a} and Weibin Fan^{*b}

^aKey Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and

Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China

^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,

Taiyuan, 030001, P. R. China

*Corresponding author's email: E-mail: jwu@nimte.ac.cn

Keywords: Cobalt-nickel microporous materials, Ni₂P, theoretical calculation, water splitting.

Figure S1. XRD pattern of Co₃Ni₇PO and Co₇Ni₃PO (a); Ni₂P@Co₃Ni₇PO and Ni₂P@Co₇Ni₃PO (b).

Figure S2. (a) SEM images of CoNiPO. (b) The EDS spectrum of CoNiPO. (c) Elemental mapping images of CoNiPO with yellow for Co, blue for Ni, gray for O and red for P, respectively. The EDS spectrum of Co_3Ni_7PO (d) and Co_7Ni_3PO (e).

Figure S3. (a) SEM images of Ni₂P@CoNiPO. (b) The EDS spectrum of Ni₂P@CoNiPO. (c) Elemental mapping images of Ni₂P@CoNiPO with yellow for Co, blue for Ni, gray for O and red for P, respectively.

Figure S4. Polarization LSV curves of Co₃Ni₇PO and Co₇Ni₃PO.

Figure S5. Polarization LSV curves of Ni₂P@Co₃Ni₇PO and Ni₂P@Co₇Ni₃PO.

Figure S6. (a) Polarization LSV curves and (d) Time-dependent current density curve of OER at 10 mA cm⁻² using CoNiPO//Ni₂P@CoNiPO as catalyst.

Figure S7. OER mechanism using a two-site model. After four electron-proton electrochemical steps labeled as $\Delta G(1-4)$, there is an additional pure chemical step $\Delta G5$.⁴

Electrocatalysts	Overpotetial(mV)	Tafel slope	Electrolyte	Reference.
	$j = 10 \text{mA/cm}^{-2}$	(mV dec ⁻¹)	(pH)	
NiCoPO	320	84	0.1 M KOH	This work
NiPO	370	121	0.1 M KOH	This work
CoPO	400	139	0.1 M KOH	This work
NiOOH	360	111	0.1 M KOH	1
ү-СоООН	300	~	0.1 M KOH	2
α -Ni(OH) ₂ spheres	331	42	0.1 M KOH	3
β -Ni(OH) ₂ nanoplates	444	111	0.1 M KOH	3
LiNiO ₂	500	68	0.1 M KOH	4
NiCo-LDH	290	~	0.1 M KOH	5
Ni-Co binary oxide	325	39	0.1 M KOH	6
Ni-Co oxide nanosheets	340	51	0.1 M KOH	7

Table S1. Comparison of the OER activity for several recently reported active non-metal based electrocatalysts in alkaline solution.

Electrocatalysts	Overpotetial (mV)	Tafel slope	Electrolyte	Reference.
	$j = 10 \text{mA/cm}^{-2}$	(mV dec ⁻¹)	(pH)	
Ni ₂ P@NiCoPO	180	47	0.1 M KOH	This work
Ni ₂ P@NiPO	400	109	0.1 M KOH	This work
Ni ₂ P nanoparticles	130	84	0.1 M KOH	8
Ni ₂ P nanorods	131	106	0.1 M KOH	9
N ₂ P/GC	120	87	0.1 M KOH	10
N ₂ P/Ni foam	120	60	0.1 M KOH	11
N ₂ P/Carbon	115	54	0.1 M KOH	12
Ni ₂ P NPs/Ti	138	60	0.1 M KOH	13
Ni ₁₂ P ₅ nanopartcles	175	63	0.1 M KOH	14
Ni ₅ P ₄ -Ni ₂ P nanosheet	140	79.1	0.1 M KOH	15

Table S2. Comparison of the HER activity for several recently reported nickel phosphides based electrocatalysts in acid solution.

Reference

- Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Advanced Energy Materials 2015, 5 (10), 1500091.
- Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; Cheng, W.; Hu, F.; Jiang, Y.et al.
 Angew Chem Int Ed 2015, 54 (30), 8722.
- (3) Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J Am Chem Soc 2014, 136 (19), 7077.
- (4) Wu, J.; Wang, G.; Du, J.; Liu, J. P.; Wang, J.; Fan, W. ChemCatChem **2018**, *10* (12), 2551.
- (5) Jiang, J.; Zhang, A.; Li, L.; Ai, L. *Journal of Power Sources* **2015**, *278*, 445.
- (6) Zhao, Z.; Wu, H.; He, H.; Xu, X.; Jin, Y. Advanced Functional Materials 2014, 24 (29), 4698.
- (7) Miner, E. M.; Dincă, M. *Nature Energy* **2016**, *1* (12).
- Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.;
 Schaak, R. E. *Journal of the American Chemical Society* 2013, *135* (25), 9267.
- (9) Wang, X.; Kolen'ko, Y. V.; Liu, L. *Chem Commun* **2015**, *51* (31), 6738.
- (10) Li, J.; Yan, M.; Zhou, X.; Huang, Z.-Q.; Xia, Z.; Chang, C.-R.; Ma, Y.; Qu, Y. Advanced Functional Materials 2016, 26 (37), 6785.
- (11) Shi, Y.; Xu, Y.; Zhuo, S.; Zhang, J.; Zhang, B. ACS Appl Mater Interfaces 2015, 7 (4), 2376.
- (12) Bai, Y.; Zhang, H.; Li, X.; Liu, L.; Xu, H.; Qiu, H.; Wang, Y. Nanoscale 2015, 7 (4), 1446.
- (13) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. Nanoscale 2014, 6 (19), 11031.
- (14) Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. ACS Nano 2014, 8 (8), 8121.
- (15) Wang, X.; Kolen'ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. *Angew Chem Int Ed Engl* 2015, 54
 (28), 8188.