Electronic Supplementary Information (ESI) for

Nanostructured nickel/carbon matrix as efficient oxygen evolution reaction electrocatalyst for rechargeable zinc-air batteries

Chengqiang Cui,^{a,1} Xiaoming Ge,^{b,1} Tao An,^b Bing Li,^b Delvin Wuu,^b Nguk Neng Tham,^b Kai

Zhang,^a Yunbo He,^{*a} and Zhaolin Liu^{*b}

^a School of Electromechanical Engineering, Guangdong University of Technology, No. 100

Waihuan Xi Road, Guangzhou 510006, China. Email: heyunbo@gdut.edu.cn

^b Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science,

Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Republic of Singapore. Email: <u>zl-liu@imre.a-star.edu.sg</u>

1: These authors contributed equally.

Figure S1. Scanning electron microscopy (SEM) surface morphology images of 10 BN GDL carbon paper at different magnifications.

Figure S2. SEM surface morphology images of Ni/2MI precursor grown on 10 BN GDL carbon paper at the magnification of $\times 2000$ (a) and $\times 5000$ (b).

Figure S3. (a) X-ray diffraction (XRD) pattern of Ni/2-methylimidazolate (Ni/2MI) grown on 10 BN GDL carbon paper. (b) Powder diffraction file (PDF) No. 36-1686 which is 2methylimidazole. (c) PDF No. 75-1621 which is graphite. Note that no Ni species is observed in (a) because of the detection limit of XRD.

Figure S4. (a) EDX spectrum and (b) EDX mapping of a Ni/C oxygen evolution electrode.

Figure S5. (a) XRD pattern of Ni/C oxygen evolution electrode (OEE). (b) PDF No. 75-1621 which is graphite. Note that no Ni species is observed because of the detection limit of XRD.

Figure S6. TGA/DSC profiles of Ni/C powders and carbon powders scrapped from the surface of Ni/C OEE and blank GDL carbon paper, respectively. TGA/DSC profiles show that the Ni/C OEE has 3.37 wt.% of solid ashes, comprising 2.22 wt.% of NiO and 1.15 wt.% of intrinsic ashes of blank GDL. The 2.22 wt.% NiO is equivalent to 0.36 at.% of Ni species in the scrapped Ni/C powders (*cf.* 1 at.% Ni given by EDX, Figure 1a). It is conceivable for a lower Ni loading recorded by TGA/DSC than that by EDX, because carbon black powers on GDL carbon paper were scrapped off together with Ni/C catalysts during the sample collection.

Figure S7. SEM surface morphology images of Ni/C OEE under magnification of $\times 10,000$ (a) and $\times 50,000$ (b).

Figure S8. EDX line-profiling across the surface of Ni/C OEE. The spectrum (bottom) corresponds to the yellow line in the SEM image (top). The result indicates some Ni-rich regions around 0.2 μm, 0.9 μm and 3.8 μm in size.

Figure S9. Nitrogen adsorption/desorption isotherms of powders scrapped from 10 BN GDL carbon paper and Ni/C OEE. The result shows 214% improvement of the BET surface area of 10 BN GDL carbon paper after the growth of Ni/C on its surfaces, demonstrating the porous nature of the Ni/2MI complex-derived carbon support.

Figure S10. XPS spectra of Ni/2MI on GDL carbon paper and Ni/C oxygen evolution electrode: (a) survey scans, (b) Ni 2p, (c) C 1s, (d) O 1s and (e) N 1s.

Figure S11. Fitted high-resolution XPS spectra of Ni/2MI on GDL carbon paper: (a) Ni 2p, (b) C 1s, (c) N 1s and (d) O 1s.

Figure S12. Disk (4OH⁻ \rightarrow 2H₂O + O₂ + 4e⁻) and ring (2H₂O + O₂ + 4e⁻ \rightarrow 4OH⁻) currents of RRDE loaded with 0.1 mg cm⁻² scrapped Ni/C. The electrolyte is N₂-saturated 0.1 M KOH. The rotating rate of RRDE is 1600 rpm. The sweeping rate is 10 mV s⁻¹. The collection efficiency of RRDE obtained from $E_{\text{ring}} = 1.60$ V to 1.75 V is (39.2 ± 1.8) %, close to manufacturer's data of 37% (www.pineinst.com).

Figure S13. Impedance spectra of Ir/C and Ni/C RDE under a rotating rate of 400 rpm. The working electrode is polarized at 1.61 V. Ni/C catalysts are scrapped from a Ni/C OEE. The electrolyte is O₂-saturated 0.1 M KOH solution.

Figure S14. Cyclic voltammogram of blank GDL in O₂-saturated 0.1 M KOH solution.

Figure S15. Impedance spectra of Ni/C OEE which is subjected to cyclic voltammetric degradation tests from 1.04 V to 1.88 V. The electrolyte is O_2 -saturated 0.1 M KOH solution.

Figure S16. Cyclic voltammograms of Ni/C OEE in O₂-saturated 0.1 M KOH solution.

Figure S17. Impedance spectra of Ir/C OEE which is subjected to cyclic voltammetric degradation tests from 1.04 V to 1.88 V. The electrolyte is O₂-saturated 0.1 M KOH solution.

Figure S18. Cyclic voltammograms of Ir/C OEE in O₂-saturated 0.1 M KOH solution.

Figure S19. Fitted carbon G band Raman spectra of blank GDL carbon paper (a), Ni/2MI on GDL carbon paper (b), Ni/C OEE (c) and Ni/C OEE after electro-oxidation (d): experimental (black open dot), envelope (red line), main peak (blue line), shoulder peak (green line), and background (gray line). The fitting procedure is based on Gaussian peaks (Origin Pro 8 Peak Analyzer package). The electro-oxidation was conducted by 3 cyclic voltammetric scans from 0.96 V to 1.76 V with a sweeping rate of 0.5 mV s⁻¹.

Figure S20. Fitted carbon D band Raman spectra of blank GDL carbon paper (a), Ni/2MI on GDL carbon paper (b), Ni/C OEE (c) and Ni/C OEE after electro-oxidation (d): experimental (black open dot), fitted peak (blue line), and background (gray line). The fitting procedure is based on Gaussian peaks (OriginPro 8 Peak Analyzer package). The electro-oxidation was conducted by 3 cyclic voltammetric scans from 0.96 V to 1.76 V with a sweeping rate of 0.5 mV s⁻¹.

		G band		D band	51.1/	D band/
					D band/	G band
	Center of	Center of	Should/main	Peak	G band	
	main peak	shoulder	peak area	center	peak area	main peak
	(1)	······································		(1)	- matia	height
	(cm ⁻¹)	peak (cm ⁻¹)	ratio	(cm ⁻¹)	ratio	ratio
Blank	1575 5	1612.5	0.20	12424	0.02	0.02
GDL	15/5.5	1612.5	0.30	1343.4	0.92	0.92
Ni/2MI on	1560 0	1602.2	0.54	1241.1	0.05	0.85
GDL	1308.8	1003.2	0.34	1341.1	0.95	0.85
Ni/C OEE	1568.5	1604.0	0.49	1341.9	0.88	0.73
Ni/C OEE						
after	1575 5	1612 7	0.35	1345 7	0.82	0.76
electro-	1373.3	1012.7	0.55	1575.7	0.02	0.70
oxidation						

Table S1. Fitted carbon G band of Raman spectra of blank GDL carbon paper, Ni/2MI on GDLcarbon paper, Ni/C OEE, and Ni/C OEE after electro-oxidation.