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Figure S1. Scanning electron microscopy (SEM) surface morphology images of 10 BN GDL

carbon paper at different magnifications.



Figure S2. SEM surface morphology images of Ni/2MI precursor grown on 10 BN GDL carbon

paper at the magnification of 2000 (a) and x5000 (b).
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Figure S3. (a) X-ray diffraction (XRD) pattern of Ni/2-methylimidazolate (Ni/2MI) grown on 10
BN GDL carbon paper. (b) Powder diffraction file (PDF) No. 36-1686 which is 2-
methylimidazole. (c) PDF No. 75-1621 which is graphite. Note that no Ni species is observed in

(a) because of the detection limit of XRD.



Figure S4. (a) EDX spectrum and (b) EDX mapping of a Ni/C oxygen evolution electrode.
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Figure S5. (a) XRD pattern of Ni/C oxygen evolution electrode (OEE). (b) PDF No. 75-1621

which is graphite. Note that no Ni species is observed because of the detection limit of XRD.
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Figure S6. TGA/DSC profiles of Ni/C powders and carbon powders scrapped from the surface
of Ni/C OEE and blank GDL carbon paper, respectively. TGA/DSC profiles show that the Ni/C
OEE has 3.37 wt.% of solid ashes, comprising 2.22 wt.% of NiO and 1.15 wt.% of intrinsic ashes
of blank GDL. The 2.22 wt.% NiO is equivalent to 0.36 at.% of Ni species in the scrapped Ni/C
powders (cf. 1 at.% Ni given by EDX, Figure 1a). It is conceivable for a lower Ni loading recorded
by TGA/DSC than that by EDX, because carbon black powers on GDL carbon paper were

scrapped off together with Ni/C catalysts during the sample collection.



Figure S7. SEM surface morphology images of Ni/C OEE under magnification of x10,000 (a)

and x50,000 (b).
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Figure S8. EDX line-profiling across the surface of Ni/C OEE. The spectrum (bottom)
corresponds to the yellow line in the SEM image (top). The result indicates some Ni-rich regions

around 0.2 pm, 0.9 ym and 3.8 um in size.
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Figure S9. Nitrogen adsorption/desorption isotherms of powders scrapped from 10 BN GDL
carbon paper and Ni/C OEE. The result shows 214% improvement of the BET surface area of 10

BN GDL carbon paper after the growth of Ni/C on its surfaces, demonstrating the porous nature

of the N1/2MI complex-derived carbon support.
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Figure S10. XPS spectra of Ni/2MI on GDL carbon paper and Ni/C oxygen evolution electrode:

(a) survey scans, (b) Ni2p, (c) C 1s, (d) O 1s and (e) N 1s.
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Figure S11. Fitted high-resolution XPS spectra of Ni/2MI on GDL carbon paper: (a) Ni 2p, (b) C

Is, (¢) N Isand (d) O Is.
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Figure S12. Disk (4OH- — 2H,0 + O, + 4e") and ring (2H,0 + O, + 4¢- — 40OH") currents of
RRDE loaded with 0.1 mg cm scrapped Ni/C. The electrolyte is N-saturated 0.1 M KOH. The
rotating rate of RRDE is 1600 rpm. The sweeping rate is 10 mV s!. The collection efficiency of
RRDE obtained from Eyjp, = 1.60 V to 1.75 V 1s (39.2 £ 1.8) %, close to manufacturer’s data of

37% (www.pineinst.com).
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Figure S13. Impedance spectra of Ir/C and Ni/C RDE under a rotating rate of 400 rpm. The

working electrode is polarized at 1.61 V. Ni/C catalysts are scrapped from a Ni/C OEE. The

electrolyte is O,-saturated 0.1 M KOH solution.
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Figure S14. Cyclic voltammogram of blank GDL in O,-saturated 0.1 M KOH solution.
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Figure S15. Impedance spectra of Ni/C OEE which is subjected to cyclic voltammetric

degradation tests from 1.04 V to 1.88 V. The electrolyte is O,-saturated 0.1 M KOH solution.
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Figure S16. Cyclic voltammograms of Ni/C OEE in O,-saturated 0.1 M KOH solution.
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Figure S17. Impedance spectra of Ir/C OEE which is subjected to cyclic voltammetric degradation

tests from 1.04 V to 1.88 V. The electrolyte is O,-saturated 0.1 M KOH solution.
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Figure S18. Cyclic voltammograms of It/C OEE in O,-saturated 0.1 M KOH solution.
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Figure S19. Fitted carbon G band Raman spectra of blank GDL carbon paper (a), Ni/2MI on

GDL carbon paper (b), Ni/C OEE (c) and Ni/C OEE after electro-oxidation (d): experimental

(black open dot), envelope (red line), main peak (blue line), shoulder peak (green line), and

background (gray line). The fitting procedure is based on Gaussian peaks (Origin Pro 8 Peak

Analyzer package). The electro-oxidation was conducted by 3 cyclic voltammetric scans from 0.96

V to 1.76 V with a sweeping rate of 0.5 mV s
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Figure S20. Fitted carbon D band Raman spectra of blank GDL carbon paper (a), Ni/2MI on
GDL carbon paper (b), Ni/C OEE (c) and Ni/C OEE after electro-oxidation (d): experimental
(black open dot), fitted peak (blue line), and background (gray line). The fitting procedure is based
on Gaussian peaks (OriginPro 8 Peak Analyzer package). The electro-oxidation was conducted by

3 cyclic voltammetric scans from 0.96 V to 1.76 V with a sweeping rate of 0.5 mV s,
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Table S1. Fitted carbon G band of Raman spectra of blank GDL carbon paper, Ni/2MI on GDL

carbon paper, Ni/C OEE, and Ni/C OEE after electro-oxidation.

G band D band D band/
D band/
G band
Center of  Center of  Should/main Peak G band
main peak
main peak  shoulder peak area center peak area
height
(cmh) peak (cm™) ratio (ecm) ratio
ratio
Blank
1575.5 1612.5 0.30 1343.4 0.92 0.92
GDL
Ni/2MI on
1568.8 1603.2 0.54 1341.1 0.95 0.85
GDL
Ni/C OEE 1568.5 1604.0 0.49 1341.9 0.88 0.73
Ni/C OEE
after
1575.5 1612.7 0.35 1345.7 0.82 0.76
electro-
oxidation
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