# **Supporting Information**

## for

Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons via one-step carbothermal reduction enables visible-light-driven photocatalytic H<sub>2</sub> production

Hai–Bo Huang,<sup>a,b</sup> Kai Yu,<sup>b</sup> Jun–Tao Wang, <sup>b</sup> Jun–Ru Zhou,<sup>b</sup> Hong–Fang Li,<sup>a</sup> Jian Lü,<sup>a,b,\*</sup> and Rong Cao<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.

<sup>b</sup> Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.

\*Corresponding authors. E-mail: jian\_lu\_fafu@163.com (J.L.); rcao@fjirsm.ac.cn (R.C.).

Number of pages: 8

Number of tables: 3

Number of figures: 6

#### **Table Caption**

**Table S1** Elemental analysis and ICP results of the PBCs and ZnS/ZnO@C800–n (n = 0.5/1/2/3). **Table S2** Band gap energy ( $E_g$ ), specific surface area ( $S_{BET}$ ) and H<sub>2</sub> production rate activity of ZnS/ZnO@C800–n (n = 0.5/1/2/3).

**Table S3** Time-resolved fluorescence decay parameters of ZnS/ZnO@C800-n (n = 0.5/1/2/3).

#### **Figure Caption**

Fig. S1. (a) Thermogravimetric analysis (TGA) of  $ZnSO_4 \cdot 7H_2O$  precursor; and (b) powder X–ray diffraction (PXRD) patterns of ZnS/ZnO@CT-1 (T = 600/700/900) composite materials.

Fig. S2. (a) N<sub>2</sub> adsorption/desorption isotherms; and (b) pore–size distribution of the PBCs support and ZnS/ZnO@C800–n (n = 0.5/2/3).

Fig. S3. High-resolution XPS spectra of ZnS/ZnO@C800-n (n = 0.5/2/3) for (a) C 1s; (b) Zn 2p; (c) O 1s; and (d) S 2p.

Fig. S4. Photoluminescence (PL) spectra (Excitation spectrum) of ZnS/ZnO@C800-n (n = 0.5/1/2/3).

**Fig. S5.** (a) PXRD patterns; (b) UV–vis DRS spectra (Inset: the K–M plots); (c) Mott–Schottky plots; and (d) room–temperature ESR spectra of ZnO and ZnO–Ov.

Fig. S6. (a) UV-vis DRS spectra (Inset: the K-M plots); (b) Mott-Schottky plots of ZnS.

### Characterizations

Powder X-ray diffraction (PXRD) patterns were collected by using a Rigaku Miniflex 600 X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda = 0.154$  nm). Scanning electron microscopy (SEM) images were photographed by using a JSM6700–F with a working voltage of 10 kV. Transmission electron microscopy (TEM) and high resolution TEM (HR-TEM) images were recorded by using an FEIT 20 working at 200 kV. The inter-planer distances and the inverse Fast Fourier Transform (FFT) were calculated using the Digital Micrograph software. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher ESCALAB 250Xi spectrometer with Al Ka Xray source (15 kV, 10 mA). In order to compensate effects related to charge shifts C 1s peak at 284.6 eV was used as internal standard. Diffuse reflectance spectra (DRS) were recorded on a Shimadzu UV-vis spectrophotometer (UV-2550) with BaSO<sub>4</sub> as the background. The photoluminescence (PL) spectra and time-resolved fluorescence emission spectrum were collected on a FLS 980 fluorescence spectrometer at room temperature. Elemental analyses (C, H, O and S) were performed on a CE-440 elemental analyzer. Zn was determined using a Jobin Yvon Ultima2 inductively coupled plasma (ICP) atomic emission spectrometer. Thermogravimetric analyses (TGA) were performed under N<sub>2</sub> atmosphere with a heating rate of 10 °C min<sup>-1</sup> by using a SDT Q600 thermogravimetric analyzer. N<sub>2</sub> adsorption-desorption isotherms were obtained on a Micromeritics ASAP 2460 instrument and used for Brunauer-Emmett-Teller (BET) surface area and pore size distribution (PSD) calculations. Electron spin resonance (ESR) spectra were recorded on a Bruker E500 spectrometer.

| Table S1                |       |       |       |        |         |  |  |  |  |  |
|-------------------------|-------|-------|-------|--------|---------|--|--|--|--|--|
| Composite photocatalyst | C (%) | O (%) | S (%) | Zn (%) | ZnS:ZnO |  |  |  |  |  |
|                         | S3    |       |       |        |         |  |  |  |  |  |

**T** 11 04

| PBCs<br>ZnS/ZnO@C800-0.5<br>ZnS/ZnO@C800-1<br>ZnS/ZnO@C800-2<br>ZnS/ZnO@C800-3                                                | 5                                                     | 67.7<br>53.4<br>39.2<br>26.3<br>18.2<br>Table | N.A.<br>8.33<br>10.2<br>12.6<br>14.1            | N.A.<br>1.85<br>2.75<br>3.85<br>4.40         | N.A.<br>7.55<br>16.9<br>31.3<br>44.3                                             | N.A.<br>1:1<br>1:2<br>1:3<br>1:4.7 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Composite photocatalyst $E_{\sigma}$ (eV) $S_{\text{BET}}$ (m <sup>2</sup> g <sup>-1</sup> ) F                                |                                                       |                                               |                                                 |                                              | H <sub>2</sub> production activity ( $\mu$ mol h <sup>-1</sup> g <sup>-1</sup> ) |                                    |  |  |  |
| ZnS/ZnO@C800–0.5                                                                                                              | 3 01                                                  | DET                                           | 1779                                            | 3 12                                         |                                                                                  |                                    |  |  |  |
| ZnS/ZnO@C800–1                                                                                                                | 2.94                                                  | 1331                                          |                                                 | 37.1                                         |                                                                                  |                                    |  |  |  |
| ZnS/ZnO@C800-2                                                                                                                | 2 98                                                  | 874.6                                         |                                                 | 18.6                                         |                                                                                  |                                    |  |  |  |
| ZnS/ZnO@C800–3                                                                                                                | 3.01                                                  | 3.01     533.1                                |                                                 | 4.68                                         |                                                                                  |                                    |  |  |  |
| Table S3         Composite photocatalyst       Lifetime $<\tau>$ (ns)       Pre–exponential factor $A\%$ $<\tau_{ave}>$ (ns)* |                                                       |                                               |                                                 |                                              |                                                                                  |                                    |  |  |  |
| ZnS/ZnO@C800-0.5                                                                                                              | $\tau_1=3.3$<br>$\tau_2=29.0$<br>$\tau_3=220.6$       |                                               |                                                 | $A_1 = 25.0$<br>$A_2 = 35.0$<br>$A_3 = 39.2$ | 198.7                                                                            |                                    |  |  |  |
| ZnS/ZnO@C800-1                                                                                                                | $\tau_1 = 1.6$<br>$\tau_2 = 15.8$<br>$\tau_3 = 138.1$ |                                               |                                                 | $A_1 = 38.2$<br>$A_2 = 28.2$<br>$A_3 = 33.4$ | 125.8                                                                            |                                    |  |  |  |
| ZnS/ZnO@C800-2                                                                                                                | $\tau_1 = 1.5$<br>$\tau_2 = 17.6$<br>$\tau_3 = 156.2$ |                                               | $A_1 = 12.33$<br>$A_2 = 25.19$<br>$A_3 = 62.48$ |                                              |                                                                                  | 140.8                              |  |  |  |
| ZnS/ZnO@C800-3                                                                                                                | $\tau_1=2.4$<br>$\tau_2=19.4$<br>$\tau_3=168.2$       |                                               |                                                 | $A_1 = 31.9$<br>$A_2 = 32.0$<br>$A_3 = 35.9$ | 149.9                                                                            |                                    |  |  |  |

\* Time-resolved fluorescence decay curves were fitted by using the three-expontial fitting method. Average lifetime  $\langle \tau_{ave} \rangle$  was determined by using the following equation:  $\langle \tau_{ave} \rangle = \sum_{i=1}^{i=n} A_i \tau_i^2 / \sum_{i=1}^{i=n} A_i \tau_i$  according to the literature [S1].

## References

(S1) M. Zhou, S. B. Wang, P. J. Yang, C. J. Huang and X. C. Wang, ACS Catal., 2018, 8 (6), 4928-4936.

# Fig. S1.



Fig. S2.







Fig. S4.



Fig. S5.





