Supplementary Information

Controllable Synthesis of Si/Ge Composites with Synergistic Effect for Enhanced Li Storage Performance

Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

E-mail: ningl@mail.ustc.edu.cn.

Figure S1. SEM image of (a) commercial Si; (b) commercial GeO₂.

Figure S2. (a) XRD patterns (b) Raman spectrums of SG-8 and SG-4.

Supplementary calculations. Theoretical specific capacity of Si/Ge composites is calculated according to the following formula. The compositions of lithiation phase are $Li_{22}Si_5$ and $Li_{22}Ge_5$, respectively. As the capacity calculation: Specific capacity (mA h g⁻¹) = 96500*n/(3.6*M) n is the charge carried by the lithium ion, M is the molar mass.

For SG-8, n=22/5=4.4, M=8/9*28+1/9*72=32.89 g/mol.

Specific capacity (mA h g⁻¹) = 96500*4.4/(3.6*32.89) = 3586.0 mA h g⁻¹

For SG-4, n=22/5=4.4, M=4/5*28+1/5*72=37.4 g/mol.

Specific capacity (mA h g⁻¹) = 96500*4.4/(3.6*37.4)= 3153.6 mA h g⁻¹

For SG-2, n=22/5=4.4, M=2/3*28+1/3*72=42.7 g/mol.

Specific capacity (mA h g⁻¹) = 96500*4.4/(3.6*42.7)= 2762.2 mA h g⁻¹

Figure S3. Nyquist plots of Si/Ge composites with different ratios measured in the frequency range from 0.01 Hz to 100 kHz.

Figure S4. SEM images of SG-1 after 150 cycles (a) before immersion (b) after immersion in the DMC.

Figure S5. (a) Galvanostatic charge-discharge profile and (b) cycling property and Coulombic efficiency of the LiCoO₂ half cell at 1 C.

Table S1. The comparison of cycling stability between our work and previous representative

reports is exhibited in the below table.

Materials	Reversible capacity	Current density	reference
	$(mAh g^{-1})$		
SG-4	1761 mAh g ⁻¹ after 150 cycles	0.6 A g ⁻¹	this work
3D-NP SiGe	1158 mAh g ⁻¹ after 150 cycles	1 A g ⁻¹	1
Si/Cu/Ge NW	1500 mAh g ⁻¹ after 100 cycles	0.4 A g ⁻¹	2

SiGe@C	560 mAh g ⁻¹ after 400 cycles	0.8 A g ⁻¹	3
Si _{0.67} Ge _{0.33}	1360 mAh g ⁻¹ after 250 cycles	0.2 C	4
Ge _{0.5} Si _{0.5}	1300 mAh g ⁻¹ after 100 cycles	0.5 C	5
Si-Ge core-shell nanowires	974.5 mAh g ⁻¹ after 50 cycles	0.2 C	6

REFERENCES

1, Yang, Y.; Liu, S.; Bian, X.; Feng, J.; An, Y.; Yuan, C., Morphology- and Porosity-Tunable Synthesis of 3D Nanoporous SiGe Alloy as a High Performance Lithium-Ion Battery Anode. ACS Nano 2018, 12, 2900–2908.

2, Zhang, Q.; Chen, H.; Luo, L.; Zhao, B.; Luo, H.; Han, X.; Wang, J.; Wang, C.; Yang, Y.; Zhu, T.; Liu, M., Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci, 2018, 11(3): 669-681.

3, Zhang, Y.; Du, N.; Xiao, C.; Wu, S.; Chen, Y.; Lin, Y.; Jiang, J.; He, Y.; Yang, D., Simple synthesis of SiGe@C porous microparticles as high-rate anode materials for lithium-ion batteries. RSC Adv., 2017, 7, 33837–33842.

4, Stokes, K.; Geaney, H.; Flynn, G.; Sheehan, M.; Kennedy, T.; Ryan, K., Direct Synthesis of Alloyed Si1–xGex Nanowires for Performance-Tunable Lithium Ion Battery Anodes. ACS Nano 2017, 11, 10088–10096.

5, Duveau, D.; Fraisse, B.; Cunin, F.; Monconduit, L., Synergistic Effects of Ge and Si on the Performances and Mechanism of the Ge_xSi_{1-x} Electrodes for Li Ion Batteries. Chem. Mater. 2015, 27, 3226–3233.

6, Song, T.; Cheng, H.; Town, K.; Park, H.; Black, R.; Lee, S.; Park, W.; Huang, Y.; Rogers, J.; Nazar, L.; Paik, U., Electrochemical Properties of Si-Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Adv. Funct. Mater. 2014, 24, 1458–1464.