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Fig. S1 (a) XRD pattern, (b) FT-IR spectrum of NCN/NHCS-550. 

As shown in Fig. S1a, diffraction peak at 27.4° can be indexed as the respective 

(002) plane of g-C3N4, indicating the presence of g-C3N4 in the intermediate calcined 

at 550 °C[1]. In addition, the FT-IR spectrum further confirms the existence of 

g-C3N4 in the intermediate. As shown in Fig. S1b, the peak at 810 cm-1 is related to 

the triazine breathing vibration. All of the peaks in the 1200-1700 cm-1 region are 

derived from typical C-N heterocyclic stretches of the triazine (C6N7) ring[2]. 

Absorbance ranging from 3000 to 3400 cm-1 is associated with the N-H and O-H 

groups, suggesting the formation of g-C3N4 at 550 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S2 TGA curve of DCDA in N2 from room temperature to 1000 ℃. 

Fig. S2 shows the TGA curve of DCDA in N2 atmosphere from room temperature 

to 1000 ℃. It can be seen that DCDA suffers severe mass loss before 720 °C. With 

increasing the calcination temperature, DCDA gradually transformed to melamine, 

tris-s-triazine, and g-C3N4 in the range of 210-640 °C. Then, g-C3N4 undergoes 

thorough decomposition until 720 °C[3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S3 SEM image of PDA@SiO2 (a), NCN/NHCS-700 (b), and NCN/NHCS-900 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S4 XPS spectra of NCN/NHCS-Ts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1 The content (wt%) of C, N, and O elements in NCN/NHCS-Ts. 

 

Sample C (wt%) N (wt%) O (wt%) 

NCN/NHCS-700 63.3 32.1 4.6 

NCN/NHCS-800 72.1 23.2 4.7 

NCN/NHCS-900 84.6 9.6 5.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S5 Relationship between the specific capacitance and the current densities from 1-80 A g-1 for 

NCN/NHCS-800. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2 Summary of the recently reported N-doped carbon materials and their electrochemical 

performances in three-electrode configurations. 

Materials V Electrolytes Capacitance 

N-doped mesoporous carbon sheets [4] -1 - 0 6 M KOH 232 F g-1 at 0.5 A g-1 

Porous N-doped carbon [5] -1 - 0 6 M KOH 350.8 F g-1 at 1 A g-1 

N-rich graphene-like carbon sheets [6] -1 - 0 6 M KOH 261 F g-1 at 1 A g-1 

Super-hierarchical porous carbons [7] -1 - 0 6 M KOH 420 F g-1 at 0.5 A g-1 

N-doped hollow carbon nanospheres [8]  0 - 0.8 1 M H2SO4 240 F g-1 at 1 A g-1 

N-doped mesoporous carbon spheres [9] -1 - 0 6 M KOH 288 F g-1 at 0.1 A g-1 

N-doped carbon polyhedrons/sheets [10] -0.2 - 0.8 1 M H2SO4 495.0 F g-1 at 0.1 A g-1 

N-doped hollow carbon spheres [11] -1 - 0 6 M KOH 436.5 F g-1 at 0.5 A g-1 

this work -1.0 - 0 6 M KOH 425 F g-1 at 1 A g-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S6 (a) CV curve of carbon paper current collector at a scan rate of 5 mV s-1, (b) CV curves of 

carbon paper current collector compared with NCN/NHCS-800 at a scan rate of 5 mV s-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S7 Cycling performance of NCN/NHCS-800-SC at the current density of 10 A g-1 in 

two-electrode system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

[1] X.H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Synthesis of Monolayer-Patched 

Graphene from Glucose, Angew. Chem.-Int. Edit. 51(38) (2012) 9689-9692. 

[2] W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, G. Chen, Template-induced 

high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution, ACS 

Energy Letters 3(3) (2018) 514-519. 

[3] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. 

Carlsson, Graphitic carbon nitride materials: variation of structure and morphology 

and their use as metal-free catalysts, Journal of Materials Chemistry 18(41) (2008) 

4893-4908. 

[4] Y.N. Hou, Z.B. Zhao, Z.F. Yu, S. Zhang, S.F. Li, J. Yang, H. Zhang, C. Liu, Z.Y. 

Wang, J.S. Qiu, Microporous MOFs Engaged in the Formation of Nitrogen-Doped 

Mesoporous Carbon Nanosheets for High-Rate Supercapacitors, Chem.-Eur. J. 24(11) 

(2018) 2681-2686. 

[5] K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, 

Hierarchically porous nitrogen-doped carbon derived from the activation of 

agriculture waste by potassium hydroxide and urea for high-performance 

supercapacitors, Journal of Power Sources 378 (2018) 579-588. 

[6] W. Yang, L.Q. Hou, X.W. Xu, Z.H. Li, X.L. Ma, F. Yang, Y.F. Li, Carbon nitride 

template-directed fabrication of nitrogen-rich porous graphene-like carbon for high 

performance supercapacitors, Carbon 130 (2018) 325-332. 

[7] L. Peng, Y.R. Liang, H.W. Dong, H. Hu, X. Zhao, Y.J. Cai, Y. Xiao, Y.L. Liu, M.T. 

Zheng, Super-hierarchical porous carbons derived from mixed biomass wastes by a 

stepwise removal strategy for high-performance supercapacitors, Journal of Power 

Sources 377 (2018) 151-160. 

[8] C. Liu, J. Wang, J. Li, M. Zeng, R. Luo, J. Shen, X. Sun, W. Han, L. Wang, 

Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for 

high-performance supercapacitors, ACS applied materials & interfaces 8(11) (2016) 

7194-7204. 

[9] J.G. Wang, H.Z. Liu, H.H. Sun, W. Hua, H.W. Wang, X.R. Liu, B.Q. Wei, One-pot 

synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and 

long-cycle life supercapacitors, Carbon 127 (2018) 85-92. 

[10] L.R. Kong, Q.R. Chen, X.P. Shen, Z.Y. Xu, C. Xu, Z.Y. Ji, J. Zhu, MOF derived 

nitrogen-doped carbon polyhedrons decorated on graphitic carbon nitride sheets with 

enhanced electrochemical capacitive energy storage performance, Electrochimica 

Acta 265 (2018) 651-661. 

[11] J. Du, L. Liu, Y. Yu, Z. Hu, Y. Zhang, B. Liu, A. Chen, Tuning Confined 

Nanospace for Preparation of N‐doped Hollow Carbon Spheres for High Performance 

Supercapacitors, ChemSusChem 12(1) (2019) 303-309. 

 




