Supplementary materials

Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(I) complexes: strong solvation-induced emission enhancement

Alexander V. Artem'ev,*^{a,b} Marsel Z. Shafikov,^{c,d} Alexander Schinabeck,^c Olga V. Antonova,^a Alexey S. Berezin,^{a,b} Irina Yu. Bagryanskaya,^{b,e} Pavel E. Plusnin,^{a,b} and Hartmut Yersin*^c

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

^b Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation

^c Universität Regensburg, Institut für Physikalische Chemie, Universitätsstr. 31, 93053 Regensburg, Germany

^d Ural Federal University, Mira 19, Ekaterinburg 620002, Russian Federation

^e N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

*Corresponding authors: chemisufarm@yandex.ru (Alexander V. Artem'ev), hartmut.yersin@ur.de (Hartmut Yersin)

Table of Contents

Pages

- S2–4 §1. X-Ray crystallography
- S5 §2. Thermogravimetric data
- S5–S7 §3. FT-IR spectra
- S7–S9 §4. NMR spectra
- S10 §5. Photophysical data
- S11–S16 §6. Computational details

§1. X-Ray crystallography

The X-ray data and the details of the refinement for $1 \cdot \text{CHCl}_3$ and 2 are summarized in Table S1. The data were collected on a Bruker Kappa Apex II CCD diffractometer using ϕ, ω -scans of narrow (0.5°) frames with MoK α radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The structures were solved by direct method and refined by a full matrix least-squares anisotropic-isotropic (for H atoms) procedure using *SHELXL-2014*/7 program set.^[1] Absorption corrections were applied using the empirical multiscan method with the *SADABS* program.^[2] The positions of the hydrogen atoms were calculated with the riding model.

	1.℃HCl ₃	2
CCDC	1529534	1529535
Chemical formula	$C_{48}H_{37}Ag_2N_{11}P_3S_2CI_3$	$C_{46}H_{36}AgN_{10}P_{3}S$
M _r	1247.01	961.69
Crystal system, space group	Monoclinic, P2 ₁ /n	Orthorhombic, P2 ₁ 2 ₁ 2 ₁
Temperature (K)	296	200
a, b, c (Å)	13.3901(4), 16.8437(4), 22.8930(7)	10.8909(2), 15.2773(4), 26.0826(6)
α, β, γ (°)	90, 90.552(1), 90	90, 90, 90
V (ų)	5163.0(3)	4339.72(17)
μ (mm ⁻¹)	1.13	0.67
Crystal size (mm)	$0.60 \times 0.30 \times 0.10$	$0.50 \times 0.30 \times 0.10$
T _{min} , T _{max}	0.634, 0.746	0.684, 0.746
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	67667, 11862, 8461	55914, 11712, 10296
<i>R</i> _{int}	0.055	0.045
(sin θ/λ) _{max} (Å ⁻¹)	0.650	0.704
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.140, 1.04	0.031, 0.069, 1.01
No. of reflections	11862	11712
No. of parameters	687	550
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.13, -0.89	0.64, -0.58

Table S1. Crystal data and structure refinement for 1. CHCl₃ and 2.

^[1] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.

^[2] SADABS, v. 2008-1, Bruker AXS, Madison, WI, USA, 2008.

Figure S1. Experimental and simulated X-ray powder patterns for 1. CHCl₃.

Figure S2. Experimental and simulated X-ray powder patterns for 2.

Figure S3. Molecular structure of **2** determined by X-ray diffraction analysis. Selected distances (Å): Ag1–P1 2.4950(5), Ag1–P2 2.5076(5), Ag1–P3 2.5185(5), Ag1–S1 2.6160(5).

Figure S4. XRPD monitoring of the reversible $1 \cdot CHCl_3 \leftrightarrow 1$ process: (*i*) simulated XRDP pattern for $1 \cdot CHCl_3$; (*ii*) experimental XRDP pattern for $1 \cdot CHCl_3$; (*iii*) XRDP pattern for the parent complex 1, obtained by heating of $1 \cdot CHCl_3$; (*iv*) XRDP pattern for the $1 \cdot CHCl_3$, obtained after exposing of the parent complex 1 in CHCl₃ vapours (room temperature, a closed vial contacting ~ 0.2–0.3 mL chloroform).

§2. Thermogravimetric data

Figure S5. TGA&DTG curves for **1** as well as $1 \cdot CHCl_3$ and $1 \cdot 0.66CH_2Cl_2$ in the temperature range of 25–500 °C.

§3. FT-IR spectra

Figure S6. FT-IR spectra of **1** as well as $1 \cdot CHCl_3$ and $1 \cdot 0.66CH_2Cl_2$, in the range of 400–2300 cm⁻¹.

Figure S7. FT-IR spectrum of 1.

Figure S8. FT-IR spectrum of 1. CHCl₃.

Figure S9. FT-IR spectrum of $1.0.66CH_2CI_2$.

§4. NMR spectra

Figure S10. ¹H NMR spectrum of **1** (CDCl₃).

Figure S11. ${}^{31}P{}^{1}H$ NMR spectrum of **1** (CDCl₃).

Figure S12. ¹H NMR spectrum of **1**·CHCl₃ (CDCl₃).

Figure S13. ³¹P{¹H} NMR spectrum of $1 \cdot CHCl_3$ (CDCl₃).

Figure S14. ¹H NMR spectrum of $1.0.66CH_2Cl_2$ (CDCl₃).

Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of $1 \cdot 0.66CH_2Cl_2$ (CDCl₃).

§5. Photophysical data

Figure S17. Photographs of the powder **1**·CH₂Cl₂ under ambient light (*left*) and UV-light (*right*).

Figure S18. Emission spectra of the powder $1 \cdot CHCl_3$ recorded at 300 and 77 K (λ_{ex} = 350 nm), and excitation spectrum recorded at 300 K (λ_{det} = 380 nm).

Figure S19. Temperature dependence of the emission lifetimes for the **1** (λ_{ex} = 350 nm and λ_{det} = 470 nm).

§6. Computational details

The DFT (density functional theory) computations of **1** have been performed using Gaussian 09 D01 program.^[3] Calculations have been carried out utilizing the def2-SVP^{[4],[5]} basis set combined with the M064^[6] functional for geometry optimizations and with the M062X^[6] functional for calculations of time-dependent wavefunctions (TD-DFT), all under gas phase conditions. The geometry of the **1** was optimized for the ground state (S₀) and the lowest triplet state (T₁) electronic configurations.

Table S2. Excited state properties of 1 obtained from TD-DFT calculations (M062X/def2-SVP) carried out
for the geometry of the lowest excited triplet state (T ₁).

E, eV	f	Transition (coefficient)	Character
2.90	(triplet)	HOMO→LUMO (0.65)	(M _{Ag1} +L _{thcy1})L _{py1} CT
3.46	(triplet)	HOMO-1 \rightarrow LUMO (0.53) HOMO-4 \rightarrow LUMO (0.24) HOMO \rightarrow LUMO+1 (-0.19) HOMO-2 \rightarrow LUMO (0.12) HOMO-5 \rightarrow LUMO (0.12)	L _{thcy1} L _{py1} CT

^[3] M. J. Frisch et al. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

^[4] F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057–1065.

^[5] F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.

^[6] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

3.49	(triplet)	HOMO→LUMO+1 (0.50) HOMO→LUMO+4 (0.20) HOMO→LUMO+3 (-0.16) HOMO-1→LUMO (0.15) HOMO-5→LUMO+1 (0.13) HOMO-4→LUMO+1 (0.12)	(M _{Ag1} +L _{thcy})L _{py} CT
3.53	(triplet)	HOMO→LUMO+3 (0.48) HOMO→LUMO+1 (0.24) HOMO→LUMO+4 (-0.22) HOMO→LUMO+2 (0.19) HOMO→LUMO+5 (0.18)	(M _{Ag1} +L _{thcy1})L _{py} CT
3.56	(triplet)	HOMO-1 \rightarrow LUMO (0.41) HOMO-4 \rightarrow LUMO (-0.34) HOMO-2 \rightarrow LUMO (-0.18) HOMO-5 \rightarrow LUMO (-0.16) HOMO-7 \rightarrow LUMO (0.15)	(M _{Ag2} +L _{thcy1})L _{py1} CT
3.02	0.0165	HOMO→LUMO (0.67)	(M _{Ag1} +L _{thcy1})L _{py1} CT
3.51	0.0004	HOMO–1→LUMO (0.68)	L _{thcy1} L _{py1} CT
3.63	0.0396	HOMO→LUMO+3 (0.48) HOMO→LUMO+1 (-0.30) HOMO→LUMO+4 (-0.29) HOMO→LUMO+5 (0.20)	(M _{Ag1} +L _{thcy1})L _{py} CT
3.71	0.0238	HOMO→LUMO+1 (0.59) HOMO→LUMO+3 (0.30) HOMO→LUMO+2 (0.10)	(M _{Ag1} +L _{thcy1})L _{py} CT
3.79	0.0124	HOMO→LUMO+2 (0.66)	(M _{Ag1} +L _{thcy1})L _{py} CT
a) thcy1 – b) py1 – p c) py2 – p d) py – nc	 thiocyanate anion coordin pyridine ring coordinated to pyridine ring coordinated to ot coordinated pyridine rings 	ated to Ag1 Ag1 Ag2 S.	

Table S3. Orbital energies and compositions of **1** resulting from Mulliken population analysis in the relaxed geometry of the lowest excited triplet state (T_1) calculated at M062X/def2-SVP level of the theory.

Orbital	Energy,	Contributions, (%)								
	(eV)	Ag1	thcy1 ^a	py1 ^c	py1' ^d	Ag2	thcy2 ^b	py2 ^e	py ^f	Р
LUMO+4	-0.45	0	0	2	17	2	0	1	71	7
LUMO+3	-0.50	8	0	0	7	-1	0	6	74	7
LUMO+2	0.54	0	0	59	4	0	0	0	30	5
LUMO+1	-0.59	1	0	2	0	0	0	9	80	7
LUMO	-1.14	4	0	1	71	-1	0	1	16	7
HOMO	-5.96	12	53	1	4	5	8	2	4	12
HOMO-1	-6.25	4	93	0	0	0	0	0	1	0
HOMO-2	-6.55	0	0	0	0	4	90	1	3	1
HOMO-3	-6.57	3	18	1	0	1	62	1	2	5
HOMO-4	-7.44	2	1	3	7	17	4	2	26	38
e) tho	y1 – thiocya	anate anion	coordinated	to Ag1						
f) the	xy2 – thiocya	anate anion	coordinated	to Ag2						
g) py1	g) py1 – pyridine ring coordinated to Ag1									
h) py1	h) py1' – second pyridine ring coordinated to Ag1									
i) py2	i) py2 – pyridine ring coordinated to Ag2									
j) py	– not coordi	nated pyridi	ne rings.							

Figure S20. Iso-surface contour plots (iso-value = 0.05) of the selected orbital of **1** in the lowest triplet state (T_1) geometry calculated at M062X/def2-SVP level of the theory.

НОМО-2

номо

HOMO-1

HOMO-3

HOMO-4

HOMO-5

НОМО-6

HOMO-7

HOMO-8

Table S4. O	ptimized	geometries c	of 1 calculated	at M062X/de	ef2-SVP level	of the theory.
-------------	----------	--------------	------------------------	-------------	---------------	----------------

Ground state (S ₀)					Lowest triplet state (T ₁)			
Ag	-1.125957000	0.466809000	1.272622000	Ag	0.934522000	-0.096574000	1.139606000	
Ag	0.887053000	-0.485936000	-1.148035000	Ag	-0.893832000	0.252474000	-1.100285000	
Р	0.457008000	-2.407519000	0.485566000	Р	-0.863582000	2.349368000	0.342549000	
Р	-2.261797000	0.737641000	-0.966675000	Р	2.432525000	-0.471012000	-0.827485000	
Р	1.987133000	1.512860000	0.098341000	Р	-1.687336000	-1.851179000	0.082504000	
S	-3.238504000	0.762758000	2.790540000	S	3.073628000	0.130064000	2.667550000	
S	2.720062000	-0.291028000	-3.049441000	S	-2.791783000	-0.134001000	-2.863339000	
С	2.732279000	-1.859267000	-3.625511000	С	-2.893812000	1.370249000	-3.585105000	
Ν	2.718722000	-2.965181000	-4.023274000	N	-2.957680000	2.425216000	-4.096672000	
Ν	-1.774212000	1.488131000	5.122375000	N	2.106657000	-1.157546000	5.005911000	

С	-2.392917000	1.180592000	4.171408000	С	2.500895000	-0.606750000	4.045995000
Ν	0.422247000	-0.792136000	2.600988000	N	-0.500500000	0.831693000	2.513481000
Ν	-0.976415000	-0.892626000	-2.637749000	N	0.884301000	0.714615000	-2.664574000
Ν	0.167337000	2.544041000	1.826936000	N	0.292203000	-2.540964000	1.792609000
С	1.227835000	-4.034327000	0.093603000	С	-1.977669000	3.747651000	-0.084032000
Ν	1.077664000	-5.057508000	0.940013000	N	-1.688992000	4.940043000	0.442384000
С	1.871573000	-4.146916000	-1.136517000	С	-3.053129000	3.525895000	-0.943275000
Н	1.975075000	-3.292563000	-1.810733000	н	-3.236255000	2.531222000	-1.359362000
С	1.572542000	-6.235734000	0.578122000	С	-2.475736000	5.962957000	0.126329000
н	1.443200000	-7.061936000	1.289873000	н	-2.223359000	6.933773000	0.573322000
С	2.224285000	-6.457456000	-0.638959000	С	-3.569135000	5.852440000	-0.735437000
н	2.599344000	-7.454353000	-0.885702000	н	-4.170140000	6.733229000	-0.976746000
с	2.376956000	-5.389441000	-1.513747000	с	-3.860044000	4.608272000	-1.284191000
H	2.870607000	-5.487633000	-2.485364000	Н	-4.686826000	4.473949000	-1.987071000
C	0.876702000	-2.001019000	2,229336000	С	-1.211493000	1,936267000	2.057498000
c	1.617476000	-2.810805000	3.087706000	c	-2.188300000	2.539953000	2.855910000
н	1.934052000	-3.803538000	2.760961000	н	-2.723815000	3.412353000	2.467718000
C C	1 888042000	-2 338203000	4 371256000	c	-2 465604000	2 040616000	4 118749000
н	2 461416000	-2 953335000	5 071293000	н	-3 214336000	2.518202000	4 756174000
Ċ	1 408388000	-1 092553000	4 754028000	C C	-1 737553000	0 902084000	4 566835000
с ц	1.584452000	-0 691256000	5 754508000	с ц	-1 808003000	0.002004000	5 558984000
с С	0 672291000	-0.091230000	2 922/70000		-1.898993000	0.475902000	2 7/1797000
U U	0.075261000	-0.547154000	3.655479000		-0.788007000	0.545414000	5.741767000 4.072516000
	1 227850000	0.028074000	4.109951000		-0.201364000	-0.520775000	4.075510000
C N	-1.327850000	-2.878432000	0.573641000		0.793056000	3.1/22/4000	0.333163000
N	-1.787972000	-3.319567000	-0.598597000	N	1.277740000	3.414702000	-0.886543000
C	-2.132181000	-2.731082000	1.704956000		1.485388000	3.4/1900000	1.508035000
н	-1./3018/000	-2.353523000	2.648/48000	н	1.043851000	3.243399000	2.482629000
C	-3.480939000	-3.058432000	1.593433000	C	2.741435000	4.060611000	1.394347000
н	-4.144469000	-2.925121000	2.453009000	н	3.319662000	4.301941000	2.291531000
C	-3.961743000	-3.536157000	0.380513000	C	3.240693000	4.340945000	0.126988000
Н	-5.012947000	-3.807588000	0.251973000	н	4.217555000	4.813880000	-0.008180000
С	-3.070895000	-3.651191000	-0.686240000	C	2.467531000	3.997368000	-0.981900000
Н	-3.416373000	-4.021735000	-1.660635000	Н	2.836259000	4.199605000	-1.996974000
С	-4.059580000	0.907741000	-0.612362000	С	4.192619000	-0.171153000	-0.412418000
Ν	-4.585540000	-0.228844000	-0.149485000	N	4.404322000	1.103761000	-0.070506000
С	-4.782150000	2.098533000	-0.697166000	С	5.184137000	-1.151799000	-0.353196000
н	-4.324198000	3.008717000	-1.094224000	н	4.976650000	-2.183361000	-0.651405000
С	-6.102717000	2.097099000	-0.253058000	С	6.446782000	-0.776297000	0.098044000
н	-6.698473000	3.013510000	-0.293070000	н	7.250570000	-1.515098000	0.163479000
С	-6.647654000	0.919661000	0.244822000	C	6.669419000	0.547875000	0.464756000
Н	-7.674448000	0.881389000	0.616276000	н	7.642869000	0.878040000	0.834944000
С	-5.845437000	-0.222146000	0.263835000	С	5.612232000	1.452088000	0.351828000
Н	-6.243293000	-1.172619000	0.644111000	Н	5.748791000	2.505888000	0.628560000
С	-1.776257000	2.355544000	-1.713735000	С	2.324968000	-2.218165000	-1.404017000
Ν	-1.531872000	2.418967000	-3.021313000	N	2.049218000	-2.440026000	-2.687001000
С	-1.604121000	3.448133000	-0.852620000	С	2.457295000	-3.244467000	-0.461023000
Н	-1.805914000	3.339740000	0.219441000	н	2.679029000	-3.006918000	0.585238000
С	-1.107172000	3.574949000	-3.526599000	С	1.892183000	-3.699203000	-3.087475000
н	-0.912246000	3.593630000	-4.607151000	н	1.666181000	-3.849852000	-4.151328000
С	-0.905644000	4.720322000	-2.757203000	С	1.995367000	-4.793244000	-2.228662000
н	-0.549727000	5.643260000	-3.222400000	н	1.848787000	-5.808140000	-2.606717000
с	-1.163444000	4.652240000	-1.389624000	с	2.289559000	-4.557429000	-0.887700000
Н	-1.013360000	5.523277000	-0.744375000	н	2.380564000	-5.384918000	-0.177734000
C	-2.196865000	-0.403647000	-2.405686000	C	2.166821000	0.512933000	-2.353695000
C	-3 303324000	-0 757536000	-3 174823000	C C	3 216228000	1 011903000	-3 122241000
н	-4 288520000	-0 334192000	-2 963695000	н	4 255072000	0.820776000	-2 842354000
Ċ	-3 116767000	-1 66/333000	-4 214705000	C C	2 9033/0000	1 762856000	-/ 2517/2000
с µ	-3 962683000	-1 96750/000	-4 838768000	, с , ц	2.303340000	2 1729/6000	-4 878591000
с Г	-1 8/5510000	-2 175221000	-1 1501570000		1 567152000	1 986822000	-1 26/08/000
U U	1 650330000	~.1/JJ01000	-5 250746000		1 275501000	1.300022000 2 581500000	-2 433306000
	-1.030330000	-2.034204000 1 755055000	-3.230/40000		1.2/3381000	2.301300000	-3.433300000 2 7/2061000
		-1.755055000	-3.03/4/3000 2.701274000		0.0000000000000000000000000000000000000	1,439098000	-3.743U01UUU
н	0.223274000	-2.13/231000	-3./913/4000		-0.477812000	1.0031/8000	-3.933555000
C N	2.908199000	2.5645/3000	-1.113135000		-2.521118000	-2.958601000	-1.133676000
N C	4.141362000	2.97/418000	-0.816219000		-3.809908000	-3.246655000	-0.908983000
ι.	2.270114000	2.8/9///000	-2.315920000		-1.//1929000	-3.389332000	-2.234188000
н	1.204447000	2.499009000	-2.520422000	Н	-0.722396000	-3.0893/4000	-2.33/8/5000

-				-		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
С	4.793308000	3.706464000	-1.715852000	C	-4.411483000	-3.972229000	-1.907506000
Н	5.809817000	4.023084000	-1.448260000	Н	-5.477863000	-4.183477000	-1.755641000
С	4.247270000	4.071817000	-2.947000000	C	-3.755486000	-4.458938000	-3.037772000
Н	4.830782000	4.666769000	-3.654141000	н	-4.299753000	-5.047384000	-3.780654000
С	2.955840000	3.653607000	-3.247139000	С	-2.403465000	-4.165517000	-3.197870000
н	2.489064000	3.909763000	-4.203018000	н	-1.852891000	-4.519150000	-4.074765000
С	3.335646000	0.706953000	1.067894000	С	-3.017029000	-1.288775000	1.222611000
С	4.230156000	-0.152115000	0.415630000	С	-3.917661000	-0.305166000	0.791232000
Н	4.180296000	-0.289236000	-0.672066000	н	-3.904069000	0.049119000	-0.245856000
Ν	3.332771000	0.894240000	2.384635000	N	-3.004098000	-1.786118000	2.453689000
С	5.166755000	-0.825618000	1.190254000	С	-4.836818000	0.176961000	1.716135000
н	5.884431000	-1.502991000	0.718415000	н	-5.556485000	0.947971000	1.424876000
С	5.173836000	-0.627831000	2.569777000	С	-4.818321000	-0.324697000	3.013923000
н	5.893666000	-1.139915000	3.213615000	н	-5.513691000	0.041282000	3.773651000
С	4.233783000	0.241859000	3.115827000	С	-3.883711000	-1.311604000	3.331252000
н	4.204776000	0.417927000	4.199614000	н	-3.842574000	-1.731501000	4.344467000
С	1.378339000	2.770520000	1.310540000	С	-0.770771000	-3.035383000	1.155168000
С	2.144980000	3.884936000	1.656974000	С	-1.215129000	-4.347573000	1.333263000
Н	3.143162000	4.012741000	1.227422000	н	-2.108939000	-4.702774000	0.812714000
С	1.616990000	4.793508000	2.567824000	С	-0.519126000	-5.165833000	2.216059000
н	2.192537000	5.675156000	2.865102000	н	-0.844352000	-6.196129000	2.387834000
С	0.354913000	4.556732000	3.104206000	С	0.578805000	-4.645348000	2.894564000
Н	-0.094368000	5.237589000	3.830727000	н	1.142060000	-5.244548000	3.613751000
С	-0.333329000	3.412722000	2.709939000	С	0.945003000	-3.322815000	2.654421000
н	-1.320889000	3.176236000	3.124651000	н	1.791827000	-2.872513000	3.186842000