Electronic Supplementary Information

Enynone-enabled migratory insertion and Schmittel cyclization

cascade for the synthesis of furan-fused fluorenes

He Zhang, Tongxiang Cao, Hejiang Luo, Lianfen Chen, and Shifa Zhu* Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals and Chemical Engineering, School of Chemistry, South China University of Technology, Guangzhou, 510640, P. R. China *E-mail:* zhusf@scut.edu.cn

Table of contents

1.Experimental procedures and spectroscopic data	2
1. 1 General information	2
1.2 General procedure for the synthesis of enynones 1 and dialkynylbenzene	22
1.3 Optimization of the reaction conditions for Synthesis of 3aa	4
1.4 General procedure for the synthesis of 3am-3bm	4
1.5 Optimization of the reaction conditions for synthesis of 6a	12
1.6 General procedure for the synthesis of 6a-6j	
1.7 General procedure for the synthesis of 8	15
2. References	15
3. X-Ray diffraction analysis	16
3.1 Crystal data and structure refinement for 3am	
3.2 Crystal data and structure refinement for 6d	17
4. Copies of NMR spectra	

1.Experimental procedures and spectroscopic data

1.1 General information

All reactions were carried out under an inert atmosphere of dry N₂ in Schlenk tube, solvents were purified by standard method. ¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F), ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as external standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra are recorded on a Nicolet 210 spectrophotometer and were recorded in potassium bromide (KBr) pellet. Mass spectra (MS) were obtained using EI mass spectrometer. Melting points were determined using a hot stage apparatus. All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature.

1.2 General procedure for the synthesis of enynones 1 and dialkynylbenzene 2

1.2. 1 General procedure for preparation of enynones 1a-1o

The typical procedure for the preparation of enynones **1a–1o** was according to literature.^[1] The characterization data of **1a–1o** was consistent with literature.^[1]

1.2.2 Typical experimental procedure for the synthesis of dialkynylbenzene 2^[2]

To a solution of the corresponding 2-iodoaniline (1.0 eq.), Pd(PPh₃)₂Cl₂ (2.0 mol %), and CuI (1.0 mol %) in NEt₃ (0.25 M) was added the appropriate phenylacetylene (1.2 eq.). The resulting mixture was stirred under nitrogen atmosphere at room temperature overnight. After the reaction finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel to afford the 2- phenylaniline in 80-90% yield.

To a solution of *p*-TsOH H₂O (3.0 eq.) in MeCN (0.25 M) was added phenylaniline (1.0 eq.). The resulting suspension of ammonium salt was cooled to 0 $\,^{\circ}$ C and was added gradually a solution of NaNO₂ (2.0 eq.) and KI (2.5 eq.) in water (5 M). The reaction mixture was stirred for 10 min at 0 $\,^{\circ}$ C. Saturated NaHCO₃ solution and Na₂S₂O₃ solution was added to the reaction mixture successively. The reaction suspension was extracted with diethyl ether and purified on a silica-gel column chromatography (petroleum ether) to provide 1-iodo-2-(phenylethynyl)benzene in 71-76%.

To a solution of the corresponding 2-iodoaniline (1.0 eq.), $Pd(PPh_3)_2Cl_2$ (2.0 mol %), i- Pr_2NH (0.1 eq.) and CuI (1.0 mol %) in THF (0.25 M) was added the appropriate trimethylsilylacetylene (1.2 eq.). The resulting mixture was stirred under nitrogen atmosphere at room temperature overnight. After the reaction finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel to afford the trimethyl((2-(phenylethynyl))phenyl)ethynyl)silane in 78-92% yield.

To a solution of trimethyl((2-(phenylethynyl)phenyl)ethynyl)silane (1.0 eq.) in MeOH was added K_2CO_3 (2.0 eq.). The reaction mixture was stirred for 10 min at room temperature. The mixture was diluted with DCM, and the organic layer was washed with saturated NaCl solution, dried and concentrated to afford the desired product **2** in 90-96% yield.

The characterization data of **2a–2h and 2j** was consistent with literature.^[3,4,5]

1-Ethynyl-2-(m-tolylethynyl)benzene (2i)

21.3. **IR** (KBr, cm⁻¹) 3448, 3293, 2921, 2207, 1641, 1483, 1441, 1250, 1087, 843, 755, 685, 624. **HRMS** (ESI) Calcd for $C_{17}H_{12}$ (M+Na)⁺ 239.0831, found 239.0827.

4-((2-Ethynylphenyl)ethynyl)-1,1'-biphenyl (2k)

White solid, m. p. = 61-62 °C ¹H NMR (400 MHz, CDCl₃) δ 7.64 (ddd, J = 15.8, 11.9, 7.8 Hz, 8H), 7.49 (t, J = 7.5 Hz, 2H), 7.43 – 7.32 (m, 3H), 3.43 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.4, 132.7, 132.3, 131.8, 128.9, 128.6, 128.0, 127.7, 127.1, 126.4, 124.7, 122.1, 93.6, 88.6, 82.3, 81.2. IR (KBr, cm⁻¹) 3289, 3062,

2216, 1917, 1593, 1484, 1442, 1398, 1265, 1101, 1006, 954, 839, 760, 694, 657, 559. **HRMS** (ESI) Calcd for $C_{20}H_{12}$ (M+H)⁺ 253.1012, found 253.1019.

4-Bromo-1-ethynyl-2-(phenylethynyl)benzene (2l)

White solid, m. p. = 46-47 °C ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.61 (s, 2H), 7.44 – 7.37 (m, 5H), 3.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 134.5, 133.7, 131.9, 131.2, 128.9, 128.5, 128.1, 123.6, 122.7, 122.5, 94.9, 86.6, 82.3, 81.4. **IR** (KBr, cm⁻¹) 3745, 3521, 3496, 3464, 3442, 2959, 1539, 1491, 1071, 1023, 819, 754,

687. HRMS (ESI) Calcd for $C_{16}H_9Br (M-H)^- 278.9815$, found 278.9820.

1-Ethynyl-4-methyl-2-(phenylethynyl)benzene (2m)

White solid, m. p. = 56-57 °C ¹H NMR (400 MHz, CDCl₃) δ^{1} H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 3.3 Hz, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 7.9 Hz, 4H), 7.14 (d, J = 7.8 Hz, 1H), 3.43 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 132.6, 132.4, 131.9, 129.1, 128.6, 128.5, 126.2, 123.4, 121.8, 93.3, 88.3,

82.5, 80.6, 21.3. **IR** (KBr, cm⁻¹) 3817, 3744, 3520, 3497, 3442, 3287, 3028, 2921, 2213, 2105, 1911, 1599, 1492, 1443, 1376, 1237, 1098, 1068, 1027, 915, 888, 821, 755, 689, 652, 619, 583, 544, 515. **HRMS** (ESI) Calcd for $C_{17}H_{12}$ (M+Na)⁺ 239.0831, found 239.0834.

(E)-1-Ethynyl-2-(4-phenylbut-3-en-1-yn-1-yl)benzene (2n)

E/Z = 10:1, yellow oil, ¹**H NMR** (400 MHz, CDCl₃) δ Isomer E δ 7.41 (dd, J = 13.2, 7.5 Hz, 2H), 7.33 (d, J = 7.4 Hz, 2H), 7.28 – 7.15 (m, 5H), 7.00 (d, J = 16.2 Hz, 1H), 6.35 (d, J = 16.2 Hz, 1H), 3.27 (s, 1H). Isomer Z δ 7.93 (d, J = 7.5 Hz, 2H), 6.62 (d, J = 12.0 Hz, 1H), 5.89 (d, J = 12.0 Hz, 1H), 3.22 (s, 1H) ppm (remaining peaks

could not be assigned) ¹³C NMR (100 MHz, CDCl₃) Isomer E δ 142.0, 136.3, 132.7, 131.9, 128.8, 128.6, 127.9, 126.5, 126.4, 124.4, 108.1, 107.2, 93.2, 90.2, 82.3, 81.2. Isomer Z δ 139.2, 132.9, 132.2, 129.1, 128.6, 128.3 ppm (the remaining signals could not be assigned) **IR** (KBr, cm⁻¹) 3703, 3521, 3498, 2922, 1475, 1266, 953, 750, 519. **HRMS** (ESI) Calcd for C₁₈H₁₂ (M+H)⁺ 229.1012, found 229.1020.

1.3 Optimization of the reaction conditions for Synthesis of 3aa

 \cap additive CH₃CN, 60 °Ć overnight Ph Ph 1a 2a 3aa 4aa Entry Cat. Base 3aa/4aa^b $3aa^{c}(\%)$ 1 CuI 58 6:1 2 CuBr trace 3 CuCl trace 4 Cu(MeCN)₄PF₄ 6:1 34 5 CuI K₂CO₃ 30 4:1 NaHCO₃ 6 CuI 45 5:1 7 *i*-Pr₂NEt CuI 8:1 69 8 8:1 75^d CuI *i*-Pr₂NH

Table S1 Optimization of the Reaction Conditions for Synthesis of 3aa^a

^{*a*}The reaction was performed at 60 °C overnight. The molar ratio of 1a:2a = 1:1. [1a] = 0.1 mmol, Cu(I) = 10 mol %, base (1.0 eq.) in MeCN (1 mL); ^{*b*}Isomeric ratio of **3aa** and **4aa** determined by ¹H NMR spectroscopy. ^{*c*}Yield of **3aa** determined by ¹H NMR spectroscopy. ^{*d*}Isolated yield of **3aa**.

1.4 General procedure for the synthesis of 3am-3bm

To an acetonitrile (MeCN, 1.0 mL) suspension of CuI (10 mol %) in Schlenk tube with a magnetic bar under nitrogen atmosphere, was added alkynyl (**2**, 0.1 mmol), i-Pr₂NH (1 eq.) and enynes (**1**, 0.1 mmol), The reaction mixture was then heated to a temperature of 60 $^{\circ}$ C and stirred. The reaction was monitored by TLC. The reaction mixture was purified by chromatography with petroleum/ethyl acetate, 20/1, and recrystallization to afford **3**. **4aa** was confirmed after further reduction with NaBH₄ to afford **7aa**.

1-(2-Methyl-4,10-diphenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3aa)

White solid, m. p. = 177-178 °C, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.7 Hz, 2H), 7.63 – 7.50 (m, 8H), 7.47 (d, J = 7.4 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 4.01 (s, 2H), 2.46 (s, 3H), 1.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 157.1, 150.5, 143.9, 141.5, 139.5, 139.2, 135.3, 135.0, 130.1, 129.6, 129.3, 128.6, 128.6, 128.4, 128.0, 126.3,

126.1, 125.5, 124.6, 122.8, 122.2, 121.1, 36.3, 30.7, 13.5. **IR** (KBr, cm⁻¹) 3689, 3057, 2922, 1957, 1893, 1681, 1587, 1446, 1384, 1332, 1273, 1218, 1161, 1118, 1028, 941, 625, 496. **HRMS** (ESI) Calcd for $C_{30}H_{22}O_2$ (M+H)⁺ 415.1693, found 415.1694.

1-(2-Methyl-5-(5-phenyl-11H-benzo[b]fluoren-10-yl)furan-3-yl)ethan-1-ol (7aa)

White solid, m. p. = 178-179 °C, yield: 7%. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 9.3 Hz, 4H), 7.50 – 7.36 (m, 5H), 7.21 (d, J = 7.4 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.72 (s, 1H), 6.44 (d, J = 7.8 Hz, 1H), 5.01 (d, J = 6.2 Hz, 1H), 4.18 (s, 2H), 2.48 (s, 3H), 1.75 (s, 1H), 1.61 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 147.6, 144.2, 141.1, 140.9, 139.0, 137.3, 134.1, 133.2, 130.8, 130.1, 129.2, 127.9, 127.2, 126.7, 126.5, 125.7, 125.6, 125.3, 125.0,

124.7, 124.4, 123.7, 109.7, 63.0, 37.3, 24.2, 12.2.**IR** (KBr, cm⁻¹) 3744, 3521, 3497, 2922, 1540, 761, 700. **HRMS** (ESI) Calcd for $C_{30}H_{24}O_2$ (M+Na)⁺ 439.1669, found. 439.1667.

1-(10-(4-Ethylphenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-b] fur an -3-yl) ethan -1-one~(3ab)

White solid, m. p. = 166-167 °C, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 20.5, 7.9 Hz, 7H), 7.45 (dd, J = 12.3, 7.7 Hz, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 4.02 (s, 2H), 2.82 (q, J = 7.6 Hz, 2H), 2.46 (s, 3H), 1.58 (s, 3H), 1.39 (t, J = 7.6 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 199.3, 157.1, 150.6, 145.1, 144.0, 143.9, 141.6, 139.6, 139.3, 135.3, 132.2, 130.2, 129.6, 129.3, 128.4, 128.2, 126.3, 126.1, 125.5, 124.6, 122.8, 122.2,

121.1, 36.4, 30.7, 28.8, 15.4, 13.5. **IR** (KBr, cm⁻¹) 3711, 3060, 2962, 2314, 1685, 1579, 1452, 1333, 1271, 1192, 1110, 1023, 940, 803, 756, 610, 518. **HRMS** (ESI) Calcd for $C_{32}H_{26}O_2$ (M+H)⁺ 443.2006, found 443.2004.

1-(10-(4-(Tert-Butyl)phenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-*b***]furan-3-yl)ethan-1-one (3ac) White solid, m. p. = 222-223 °C, yield: 65%. ¹H NMR (400 MHz, CDCl₃) \delta Isomer 3ac \delta 7.67 – 7.47**

(m, 9H), 7.43 (d, J = 7.2 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 4.00 (s, 2H), 2.43 (s, 3H), 1.54 (s, 3H), 1.43 (s, 9H). Isomer **4ac** δ 8.08 (d, J = 8.9 Hz, 1H), 6.93 (s, 1H), 6.46 (d, J = 7.9 Hz, 1H), 4.14 (s, 2H), 2.78 (s, 3H), 2.55 (s, 3H), 1.27 (s, 9H) ppm (remaining peaks could not be assigned) ¹³C NMR (100 MHz, CDCl₃) mixtures **3ac** and **4ac** δ 199.3, 194.2,

158.2, 157.0, 150.8, 150.6, 149.5, 148.1, 144.0, 141.6, 141.2, 139.59, 139.30, 138.95, 135.31, 134.91, 131.93, 130.17, 129.98, 129.27, 129.13, 128.37, 127.90, 127.2, 126.58, 126.28, 126.1, 125.6, 125.5, 124.9, 124.8, 124.6, 123.7, 122.9, 122.8, 122.1, 122.0, 121.1, 111.0, 36.5, 34.9, 34.8, 31.5, 31.1, 30.7, 29.7, 29.3, 14.7, 13.5.**IR** (KBr, cm⁻¹) 3703, 3057, 2958, 1680, 1580, 1455, 1270, 1227, 1122, 1024, 945, 811, 732, 616, 556. **HRMS** (ESI) Calcd for $C_{34}H_{30}O_2$ (M+Na)⁺ 493.2138, found 493.2135.

1-(10-(4-Fluorophenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3ad)

White solid, m. p. = 172-174 °C, yield: 82%. ¹H NMR (400 MHz, CDCl₃) Isomer **3ad** δ 7.66 (dd, J = 8.4, 5.5 Hz, 2H), 7.56 (d, J = 7.0 Hz, 5H), 7.47 (d, J = 7.4 Hz, 1H), 7.29 (s, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 3.97 (s, 2H), 2.46 (s, 3H), 1.58 (s, 3H). Isomer **4ad** δ 8.15 – 8.08 (m, 1H), 6.94 (s, 1H), 6.46 (d, J = 8.0 Hz, 1H), 4.13 (s, 2H), 2.78 (s, 3H), 2.55 (s, 3H) ppm (remaining

peaks could not be assigned) ¹³C NMR (101 MHz, CDCl₃) mixtures **3ad** and **4ad** δ 199.1, 194.1, 161.3, 158.5, 157.0, 150.5, 148.9, 143.7, 141.4, 140.6, 139.5, 139.1, 138.4, 138.3, 135.4, 131.4, 131.3, 130.1, 129.9, 129.4, 129.3, 128.7, 128.5, 128.3, 127.7, 126.7, 126.4, 126.2, 125.6, 124.7, 123.9, 122.8, 121.2, 115.8, 115.6, 111.3, 37.0, 36.2, 30.7, 29.7, 14.7, 13.4. ¹⁹F NMR (376 MHz, CDCl₃) Isomer **3ad** δ -113.8 Isomer **4ad** δ -114.7 **IR** (KBr, cm⁻¹) 3711, 3062, 2922, 2855, 1680, 1510, 1453, 1226, 1157, 1110, 1022, 948, 808, 757, 613. **HRMS** (ESI) Calcd for C₃₀H₂₁FO₂ (M+H)⁺ 433.1598, found 443.1597. **1-(10-(4-Chlorophenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-***b***]furan-3-yl)ethan-1-one (3ae)**

White solid, m. p. = 217-218 °C, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.3 Hz, 2H), 7.46 (dd, J = 8.9, 3.2 Hz, 7H), 7.36 (d, J = 7.4 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 3.87 (s, 2H), 2.35 (s, 3H), 1.47 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 199.1, 157.1, 150.3, 143.7, 141.4, 139.4, 139.0, 135.4, 134.0, 133.4, 131.0, 130.1, 129.3, 128.9, 128.9, 128.5, 126.4, 126.2, 125.6, 124.7, 122.8, 121.2, 120.9, 36.2, 30.7, 13.4. IR (KBr,

cm⁻¹)3710, ,3060, 2925, 1582, 1487, 1267,1225, 1154, 1112,1021, 934, 790,754, 701, 480.. **HRMS** (ESI) Calcd for $C_{30}H_{21}ClO_2$ (M+H)⁺ 449.1303, found 449.1302.

1-(10-(4-Bromophenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3af)

White solid, m. p. = 135-136 °C, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 2H), 7.58 – 7.51 (m, 7H), 7.48 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.4 Hz, 1H), 7.15 (t, J = 7.3 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.96 (s, 2H), 2.42 (s, 3H), 1.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 157.1, 150.5, 143.9, 141.5, 139.6, 139.2, 135.3, 135.0, 130.2, 129.7, 129.3, 128.7, 128.6, 128.4, 128.0, 126.4, 126.1, 125.5, 124.7, 122.8, 122.2, 121.2, 36.3, 30.7,

13.5. **IR** (KBr, cm⁻¹) 3711, 3058, 2922, 1679, 1582, 1445, 1385, 1335, 1272, 1224, 1159, 1116, 1025, 944, 802, 760, 704, 625, 497. **HRMS** (ESI) Calcd for C₃₀H₂₁BrO₂ (M+Na)⁺ 515.0617, found 515.0616. **1-(2-Methyl-4-phenyl-10-(4-(trifluoromethyl)phenyl)-9H-fluoreno[2,3-***b***]furan-3-yl)ethan-1-one (3ag)**

White solid, m. p. = 187-189 °C, yield: 66%. ¹H NMR (400 MHz, CDCl₃) Isomer **3ag** δ 7.80 (dd, J = 17.1, 8.1 Hz, 4H), 7.52 (dd, J = 17.4, 6.6 Hz, 5H), 7.42 (d, J = 7.5 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.94 (s, 2H), 2.42 (s, 3H), 1.56 (s, 3H). Isomer **4ag** δ 8.25 (d, J = 8.9 Hz, 1H), 7.89 (s, 1H), 7.63 (d, J = 4.5 Hz, 1H), 6.96 (s, 1H), 6.45 (d, J = 7.9 Hz, 1H), 4.17 (s, 1H), 2.79

(s, 1H), 2.56 (s, 1H) ppm (remaining peaks could not be assigned) ¹³C NMR (100 MHz, CDCl₃)

Isomer **3ag** δ 199.0, 157.1, 150.2, 143.6, 141.3, 139.4, 138.9, 135.6, 130.0, 130.0, 129.8, 129.5, 129.3, 128.6, 126.5, 126.3, 125.7, 125.7, 125.6, 124.7, 122.8, 121.2, 120.7, 36.2, 30.7, 13.4. Isomer **4ag** δ 194.0, 138.8, 29.73 ppm (the remaining signals could not be assigned) ¹⁹**F** NMR (376 MHz, CDCl₃) Isomer **3ag** δ -62.5. **IR** (KBr, cm⁻¹) 3624, 3061, 2923, 2855, 1679, 1580, 1448, 1398, 1322, 1275, 1228, 1166, 1122, 1068, 1022, 946, 845, 758, 618. **HRMS** (ESI) Calcd for C₃₁H₂1F₃O₂ (M+H)⁺ 483.1566, found 483.1566.

1-(10-(4-Methoxyphenyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3ah)

Colorless oil, yield: 46%. ¹H NMR (400 MHz, CDCl₃) Isomer **3ah** δ 7.60 (dd, J = 7.1, 3.9 Hz, 3H), 7.52 (d, J = 2.8 Hz, 4H), 7.42 (d, J = 7.2 Hz, 1H), 7.16 (dd, J = 8.5, 5.2 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 7.00 (dd, J = 11.7, 7.3 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.96 (s, 2H), 3.90 (s, 3H), 2.43 (s, 3H), 1.54 (s, 3H). Isomer **4ah** δ 8.05 (d, J = 7.5

9.2 Hz, 1H), 6.92 (s, 1H), 6.88 (s, 1H), 6.45 (d, J = 7.9 Hz, 1H), 4.11(s, 1H), 3.69 (s, 3H), 2.78 (s, 2H), 2.56 (s, 2H) ppm (remaining peaks could not be assigned) ¹³C NMR (100MHz, CDCl₃) mixtures **3ah** and **4ah** δ 199.3, 194.2, 159.3, 158.3, 157.3, 157.0, 150.6, 149.3, 144.1, 143.9, 141.6, 141.1, 139.5, 139.3, 139.3, 139.0, 137.9, 135.3, 134.6, 133.7, 130.8, 130.1, 129.9, 129.5, 129.3, 129.3, 128.4, 128.2, 128.0, 127.3, 127.1, 126.7, 126.6, 126.3, 126.1, 125.5, 124.8, 124.6, 123.7, 123.1, 122.9, 122.8, 121.9, 121.1, 118.0, 114.1, 111.0, 105.7, 55.4, 55.1, 36.9, 36.4, 30.7, 29.7, 29.4, 14.7, 13.5. **IR** (KBr, cm⁻¹) 3057, 2922, 2846, 1676, 1611, 1508, 1455, 1349, 1283, 1235, 1177, 1121, 1032, 949, 832, 732, 620, 514. **HRMS** (ESI) Calcd for C₃₁H₂₄O₃ (M+H)⁺ 445.1798, found 445.1797.

1-(2-Methyl-4-phenyl-10-(m-tolyl)-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3ai)

White solid, m. p. = 131-132 °C, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 5H), 7.44 (t, J = 7.4 Hz, 4H), 7.29 (d, J = 4.0 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.96 (s, 2H), 2.48 (s, 3H), 2.42 (s, 3H), 1.55 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 199.2, 157.1, 150.6, 144.0, 141.6, 139.6, 139.3, 138.3, 135.3, 135.0, 130.3, 130.2, 129.3, 128.8, 128.6,

128.5, 128.4, 126.8, 126.4, 126.1, 125.5, 124.7, 122.8, 122.4, 121.2, 36.3, 30.7, 21.7, 13.5. **IR** (KBr, cm⁻¹) 3690, 3052, 2921, 1680, 1587, 1447, 1382, 1336, 1276, 1233, 1161, 1115, 1031, 948, 903, 628. **HRMS** (ESI) Calcd for $C_{31}H_{24}O_2$ (M+Na)⁺ 451.1669, found 451.1670.

1-(2-Ethyl-4,10-diphenyl-9H-fluoreno[2,3-b]furan-3-yl)propan-1-one (3aj)

Colorless oil, yield: 84%. ¹H NMR (400 MHz, CDCl₃) Isomer **3aj** δ 7.56 (d, J = 7.3 Hz, 2H), 7.50 – 7.31 (m, 8H), 7.28 (d, J = 7.2 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 6.86 (dd, J = 14.9, 7.4 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 3.84 (s, 2H), 2.60 (q, J = 7.5 Hz, 2H), 1.78 (q, J = 7.2 Hz, 2H), 1.16 – 1.07 (m, 3H), 0.55 (t, J = 7.2 Hz, 3H). Isomer **4aj** δ 8.05 (d, J = 8.4 Hz, 1H), 7.08 (s, 2H),

6.34 (d, J = 7.9 Hz, 1H), 4.03 (s, 2H), 3.11 (q, J = 7.5 Hz, 2H), 2.78 (q, J = 7.2 Hz, 2H), 1.28 (dd, J = 15.5, 8.0 Hz, 3H) ppm (remaining peaks could not be assigned) ¹³C NMR (100 MHz, CDCl₃) mixtures **3aj** and **4aj** δ 203.2, 197.2, 163.1, 160.2, 150.5, 149.2, 143.9, 141.6, 141.0, 139.4, 138.8, 135.2, 135.2, 134.8, 133.3, 130.9, 130.0, 129.7, 129.3, 128.6, 128.6, 128.4, 128.0, 127.9, 127.4, 126.9, 126.7, 126.3, 126.1, 125.8, 125.6, 125.2, 124.8, 124.7, 123.8, 122.7, 122.2, 121.4, 119.5, 110.8, 37.8, 37.1, 36.4, 34.7, 29.8, 22.0, 20.9, 13.0, 12.3, 8.3, 8.1 **IR** (KBr, cm⁻¹) 3692, 3058, 2976, 2932, 1955, 1685, 1588, 1452,

1379, 1329, 1245, 1116, 1019, 919, 758, 706, 601, 496. **HRMS** (ESI) Calcd for $C_{32}H_{26}O_2 (M+H)^+$ 443.2006, found 443.2008.

Phenyl(2,4,10-triphenyl-9H-fluoreno[2,3-*b*]furan-3-yl)methanone (3ak)

White solid, m. p. = 150-151 °C, yield: 63%. ¹H NMR (400 MHz, CDCl₃) Isomer **3ak** δ 7.69 (d, J = 7.8 Hz, 2H), 7.52 – 7.44 (m, 5H), 7.44 – 7.34 (m, 4H),7.34 – 7.27 (m, 2H), 7.21-7.16 (m, 1H), 7.13 – 7.05 (m, 5H), 6.93 (m, 4H), 6.78 (t, J = 7.6 Hz, 1H), 3.90 (s, 2H). Isomer **4ak** δ 8.20 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.2 Hz, 1H), 6.35 (d,

J = 7.7 Hz, 3H), 4.14 (s, 2H) ppm (remaining peaks could not be assigned) ¹³C NMR (100 MHz, CDCl₃) mixtures **3ak** and **4ak** δ 193.9, 191.9, 155.6, 153.0, 150.6, 150.3, 143.9, 143.7, 141.8, 141.4, 141.0, 140.2, 138.9, 138.2, 137.6, 137.0, 135.8, 135.2, 135.1, 133.4, 133.3, 133.1, 130.8, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.2, 129.1, 128.8, 128.7, 128.6, 128.6, 128.2, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.0, 126.7, 126.4, 126.3, 126.2, 125.7, 125.2, 124.9, 124.6, 123.8, 123.1, 122.8, 122.3, 117.2, 114.7, 37.4, 36.5.**IR** (KBr, cm⁻¹) 3728, 3059, 2922, 1957, 1815, 1662, 1593, 1486, 1450, 1373, 1326, 1276, 1168, 1067, 1025, 891, 838, 755, 605, 508. **HRMS** (ESI) Calcd for C₄₀H₂₆O₂ (M+H)⁺ 539.2006, found 539.2009.

1-(10-Hexyl-2-methyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3al)

White solid, m. p. = 100-101 °C, yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 6.6 Hz, 4H), 7.46 (d, J = 6.9 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 3.95 (s, 2H), 3.02 (t, J = 7.7 Hz, 2H), 2.48 (s, 3H), 1.82 – 1.76 (m, 2H), 1.51 (s, 3H), 1.47 (s, 2H), 1.36 (s, 4H), 0.91 (t, J = 6.4

Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 156.5, 151.7, 143.6, 142.0, 139.5, 134.7, 130.2, 129.1, 128.2, 127.1, 126.3, 125.9, 124.9, 124.7, 122.7, 121.9, 121.2, 35.2, 31.8, 30.6, 29.6, 29.2, 27.6, 22.7, 14.2, 13.5. **IR** (KBr, cm⁻¹) 3058, 2926, 2859, 1682, 1584, 1452, 1387, 1342, 1265, 1160, 1032, 953, 730, 622. **HRMS** (ESI) Calcd for C₃₀H₃₀O₂ (M+H)⁺ 423.2319, found 423.2318.

1-(2-Methyl-10-pentyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3am)

White solid, m. p. = 118-119 °C, yield: 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 6H), 7.15 (t, *J* = 7.3 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 3.93 (s, 2H), 3.04 – 2.94 (m, 2H), 2.48 (s, 3H), 1.86 – 1.76 (m, 2H), 1.51 (s, 3H), 1.44 (dd, *J* = 8.3, 4.9 Hz, 4H), 0.93 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, 1.51 K)

CDCl₃) δ 199.4, 156.5, 151.7, 143.6, 142.0, 139.5, 134.8, 130.2, 129.2, 128.2, 127.1, 126.3, 125.9, 124.9, 124.7, 123.3, 122.7, 121.9, 121.2, 35.2, 32.0, 30.6, 29.0, 27.6, 22.6, 14.1, 13.5. **IR** (KBr, cm⁻¹) 3718, 3059, 2928, 2861, 2315, 1681, 1582, 1452, 1388, 1339, 1263, 1157, 1092, 1023, 952, 802, 756,624. **HRMS** (ESI) Calcd for C₂₉H₂₈O₂ (M+H)⁺ 409.2162, found 409.2161.

1-(10-Butyl-2-methyl-4-phenyl-9H-fluoreno[2,3-*b*]furan-3-yl)ethan-1-one (3an)

White solid, m. p. = 139-149 °C, yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 5.6 Hz, 4H), 7.49 (d, J = 7.4 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 3.99 (s, 2H), 3.06 (t, J = 7.7 Hz, 2H), 2.52 (s, 3H), 1.86 – 1.78 (m, 2H), 1.55 (s, 3H), 1.54 – 1.47 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.4, 156.5, 151.7, 143.6, 142.0, 139.5, 134.8, 130.2, 129.3, 129.2, 128.2, 127.1, 126.3, 125.9, 124.9, 124.7, 122.7, 121.8, 121.2, 35.2, 31.5, 30.6, 27.3, 23.0, 14.1, 13.5. **IR** (KBr, cm⁻¹) 3728, 3058, 2939, 2865, 1681, 1584, 1452, 1386, 1267, 1159, 1069, 1023, 953, 755, 626. **HRMS** (ESI) Calcd for C₂₈H₂₆O₂ (M+Na)⁺ 417.1825, found 417.1830.

1-(10-(Tert-butyl)-2-methyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3ao)

White solid, m. p. = 177-178 °C, yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dt, J = 8.5, 3.9 Hz, 6H), 7.14 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 4.26 (s, 2H), 2.47 (s, 3H), 1.73 (s, 9H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 155.2, 151.8, 143.9, 140.7, 139.5, 137.6, 136.1, 130.2,

130.0, 129.2, 128.3, 127.6, 126.2, 126.1, 125.9, 124.1, 122.7, 120.6, 39.0, 37.3, 31.7, 30.7, 13.4. **IR** (KBr, cm⁻¹) 3713, 3046, 2920, 2851, 1680, 1591, 1451, 1369, 1232, 1139, 1232, 1139, 1027, 953, 807, 757, 696, 626. **HRMS** (ESI) Calcd for $C_{28}H_{26}O_2$ (M+H)⁺ 395.2006, found 395.2005.

1-(4-(4-Ethylphenyl)-10-hexyl-2-methyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3ba)

Colorless oil, yield: 56%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, J = 7.4 Hz, 1H), 7.35 (q, J = 8.0 Hz, 4H), 7.16 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 3.94 (s, 2H), 3.01 (t, J = 7.7 Hz, 2H), 2.77 (q, J = 7.6 Hz, 2H), 2.47 (s, 3H), 1.83 – 1.74 (m, 2H), 1.47 (s, 5H), 1.34 (dd, J = 13.6, 5.9 Hz, 7H), 0.91 (t, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 156.5, 151.7, 144.4, 143.6, 142.1, 139.5, 136.7, 134.7, 130.1, 128.6, 127.2, 126.3, 125.8, 125.1, 124.7,

122.7, 121.7, 121.3, 35.2, 31.8, 30.5, 29.6, 29.3, 28.8, 27.6, 22.7, 15.8, 14.2, 13.4. **IR** (KBr, cm⁻¹) 3729, 2927, 2861, 1680, 1583, 1454, 1388, 1264, 1157, 1025, 953, 836, 625. **HRMS** (ESI) Calcd for $C_{32}H_{34}O_2$ (M+Na)⁺ 473.2451, found 473.2449.

1-(4-(4-(Tert-butyl)phenyl)-10-hexyl-2-methyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bb)

Colorless oil, yield: 60%. ¹**H** NMR (400 MHz, CDCl₃) δ 7.42 (t, J = 8.3 Hz, 3H), 7.29 (d, J = 7.9 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 3.85 (s, 2H), 2.92 (t, J = 7.7 Hz, 2H), 2.39 (s, 3H), 1.71 (dd, J = 14.9, 7.4 Hz, 2H), 1.38 (d, J = 8.5 Hz, 2H), 1.34 (s, 12H), 1.31 – 1.24 (m, 4H), 0.83 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.6, 156.6, 151.7, 151.4, 143.6, 142.2, 139.5, 136.5, 134.8, 129.9, 127.1, 126.3, 126.0, 125.8, 125.1, 124.7,

122.8, 121.7, 121.4, 35.2, 34.8, 31.8, 31.5, 30.4, 29.6, 29.3, 27.6, 22.7, 14.2, 13.4. **IR** (KBr, cm⁻¹) 3710, 3051, 2955, 2862, 1681, 1582, 1456, 1389, 1268, 1194, 1159, 1109, 1023, 952, 837, 758, 622, 561. **HRMS** (ESI) Calcd for $C_{34}H_{38}O_2$ (M+H)⁺ 479.2945, found 479.2946.

1-(4-(4-Fluorophenyl)-10-hexyl-2-methyl-9H-fluoreno[2, 3-b] fur an -3-yl) ethan -1-one~(3bc)

White solid, m. p. = 130-131 °C, yield: 74%. ¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.4 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.21 (dd, J = 15.4, 7.8 Hz, 3H), 7.03 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 7.9 Hz, 1H), 3.94 (s, 2H), 3.01 (t, J = 7.7 Hz, 2H), 2.49 (s, 3H), 1.83 – 1.75 (m, 2H), 1.63 (s, 3H), 1.50 – 1.42 (m, 2H), 1.40 – 1.28 (m, 4H), 0.91 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 162.7 (d, J = 247.9 Hz), 156.5, 151.7, 143.7, 141.9, 139.5, 135.5 (d, J = 3.3 Hz),135.0, 131.9, 131.8,

131.3, 128.3, 126.4, 126.0, 125.8, 125.0, 124.8, 122.5, 122.1, 121.0, 116.16 (d, J = 21.3 Hz), 35.2, 31.8, 30.9, 29.6, 29.2, 27.6, 22.7, 14.2, 13.5.¹⁹**F** NMR (376 MHz, CDCl₃) δ -113.4. **IR** (KBr, cm⁻¹) 3713, 3063, 2929, 2860, 2315, 1682, 1589, 1508, 1455, 1389, 1340, 1226, 1155, 1088, 1022, 951, 839, 728, 626, 517. **HRMS** (ESI) Calcd for C₃₀H₂₉FO₂ (M+H)⁺ 441.2224, found 441.2230.

1-(4-(4-Chlorophenyl)-10-hexyl-2-methyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bd)

White solid, m. p. = 103-104 °C, yield: 98%. ¹H NMR (400 MHz, DMSO) δ 7.49 (d, J = 7.8 Hz, 3H), 7.38 (d, J = 7.6 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 3.92 (s, 2H), 3.00 (t, J = 7.6 Hz, 2H), 2.49 (s, 3H), 1.82 – 1.74 (m, 2H), 1.63 (s, 3H), 1.45 (d, J = 7.3 Hz, 2H), 1.36 (s, 4H), 0.91 (t, J = 6.4 Hz, 3H).¹³C NMR (100 MHz, DMSO) δ 198.9, 156.6, 151.7, 143.7, 141.8, 139.6, 137.9, 134.8, 134.2, 131.6, 129.4, 126.4, 126.1, 125.6, 124.9, 124.8,

122.5, 122.3, 121.0, 35.2, 31.8, 30.9, 29.6, 29.2, 27.6, 22.7, 14.2, 13.6. **IR** (KBr, cm⁻¹) 3710, 2926, 2859, 1682, 1583, 1453, 1389, 1342, 1262, 1160, 1090, 1019, 952, 830, 727, 625, 502. **HRMS** (ESI) Calcd for $C_{30}H_{29}ClO_2$ (M+H)⁺ 457.1929, found 457.1930.

1-(4-(4-Bromophenyl)-10-hexyl-2-methyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3be)

White solid, m. p. = 109-110 °C, yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 7.4 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 3.92 (s, 2H), 3.06 – 2.92 (m, 2H), 2.49 (s, 3H), 1.82 – 1.73 (m, 2H), 1.62 (s, 3H), 1.49 – 1.42 (m, 2H), 1.35 (dd, J = 9.2, 5.9 Hz, 4H), 0.91 (t, J = 6.7 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 198.9, 156.6, 151.7, 143.7, 141.7, 139.6, 138.4, 134.7, 132.3, 131.9, 131.0, 126.4,

126.1, 125.5, 124.9, 124.7, 122.5, 122.3, 121.0, 35.2, 31.8, 30.9, 29.6, 29.2, 27.6, 22.7, 14.2, 13.6. **IR** (KBr, cm⁻¹) 2926, 2860, 1680, 1583, 1453, 1391, 1230, 1071, 1014, 956, 896, 827, 726, 627, 498. **HRMS** (ESI) Calcd for $C_{30}H_{29}BrO_2$ (M+H)⁺ 501.1424, found 501.1425.

1-(10-Hexyl-2-methyl-4-(4-(trifluoromethyl)phenyl)-9H-fluoreno[2,3-*b*]furan-3-yl)ethan-1-one (3bf)

White solid, m. p. = 145-146 °C, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 2H), 7.52 (d, J = 7.8 Hz, 2H), 7.45 (d, J = 7.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 7.9 Hz, 1H), 3.88 (s, 2H), 2.95 (t, J = 7.7 Hz, 2H), 2.43 (s, 3H), 1.76 – 1.68 (m, 2H), 1.50 (s, 3H), 1.39 (d, J = 7.4 Hz, 2H), 1.28 (d, J = 11.8 Hz, 4H), 0.84 (t, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 156.8, 151.7, 143.7, 143.4, 141.5, 139.7, 134.7, 130.7, 130.4 (q, J

= 32.6 Hz), 126.5, 126.2, 126.0 (q, J = 3.6 Hz), 125.3, 124.9, 124.6, 122.9, 122.6, 122.4, 120.9, 117.7, 35.2, 31.8, 30.7, 29.6, 29.2, 27.6, 22.7, 14.1, 13.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.3. **IR** (KBr, cm⁻¹) 3711, 2929, 2861, 1685, 1580, 1456, 1395, 1323, 1264, 1165, 1125, 1067, 1020, 952, 846, 759, 725, 619. **HRMS** (ESI) Calcd for C₃₁H₂₉F₃O₂ (M+H)⁺ 491.2192, found 491.2193.

1-(10-Hexyl-4-(4-methoxyphenyl)-2-methyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bg)

White solid, m. p. = 117-118 °C, yield: 61%. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 9.0 Hz, 3H), 6.89 (d, J = 7.8 Hz, 1H), 3.96 (d, J = 7.5 Hz, 5H), 3.04 (t, J = 7.7 Hz, 2H), 2.52 (s, 3H), 1.87 – 1.79 (m, 2H), 1.62 (s, 3H), 1.50 (d, J = 7.3 Hz, 2H), 1.44 – 1.35 (m, 4H), 0.96 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 159.5, 156.3, 151.7, 143.6, 142.2, 139.5, 135.1, 131.8, 131.3, 126.8, 126.3, 125.8,

125.3, 124.7, 122.7, 121.7, 121.3, 114.5, 55.4, 35.2, 31.8, 30.8, 29.6, 29.3, 27.6, 22.7, 14.2, 13.4. **IR** (KBr, cm⁻¹) 3714, 2929, 2859, 2314, 1682, 1597, 1513, 1454, 1389, 1342, 1284, 1246, 1173, 1105, 1031, 951, 834, 758, 728, 624. **HRMS** (ESI) Calcd for C₃₁H₃₂O₃ (M+H)⁺ 453.2424, found 453.2426. **4-(3-Acetyl-10-hexyl-2-methyl-9H-fluoreno[2,3-***b***]furan-4-yl)benzonitrile (3bh)**

+-(3-Acety1-10-nexy1-2-metny1-9H-nuoreno[2,3-*0*]1uran-4-y1)benzonitrite

White solid, m. p. = 133-134 °C, yield: 58%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 7.4 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 3.98 (s, 2H), 3.05 (t, J = 7.7 Hz, 2H), 2.57 (s, 3H), 1.85 – 1.80 (m, 2H), 1.79 (s, 3H), 1.53 – 1.46 (m, 2H), 1.43 – 1.35 (m, 4H), 0.95 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 157.2, 151.7, 144.6, 143.7, 141.4, 139.7, 134.7, 132.7, 131.1, 126.5, 126.3,

125.0, 125.0, 124.2, 122.8, 122.3, 120.6, 118.8, 111.9, 35.2, 31.8, 31.0, 29.5, 29.2, 27.6, 22.7, 14.2, 14.0. **IR** (KBr, cm⁻¹) 3714, 3060, 2928, 2860, 2314, 2227, 1686, 1593, 1454, 1394, 1340, 1265, 1193, 1103, 1023, 952, 841, 758, 613, 553. **HRMS** (ESI) Calcd for $C_{31}H_{29}NO_2$ (M+H)⁺ 448.2271, found 448.2276.

1-(10-Hexyl-2-methyl-4-(m-tolyl)-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bi)

Colorless oil, m. p. = 177-178 °C, yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.20 – 7.16 (m, 3H), 7.09 (t, J = 7.3 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 3.86 (s, 2H), 2.93 (t, J = 7.7 Hz, 2H), 2.40 (s, 3H), 2.32 (s, 3H), 1.74 – 1.67 (m, 2H), 1.43 (s, 3H), 1.37 (d, J = 7.2 Hz, 2H), 1.28 (d, J = 3.1 Hz, 4H), 0.83 (t, J = 6.7 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 199.5, 156.3, 151.7, 143.6, 142.1, 139.5, 139.3, 138.9, 134.6, 130.8, 129.0, 128.8, 127.3, 126.3, 125.8, 124.9, 124.7, 123.3, 122.8, 121.7, 121.3, 35.2, 31.8, 30.6, 29.6, 29.3, 27.6, 22.7, 21.5, 14.2, 13.5. **IR** (KBr, cm⁻¹) 3692, 3045, 2926, 2860, 1683, 1588, 1453, 1386, 1343, 1271, 1207, 1155, 1034, 954, 882, 625. **HRMS** (ESI) Calcd for C₃₁H₃₂O₂ (M+Na)⁺ 459.2295, found 459.2297.

1-(10-Hexyl-2-methyl-4-(thiophen-2-yl)-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bj)

White solid, m. p. = 105-106 °C, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.46 (m, 2H), 7.27 (d, J = 2.0 Hz, 1H), 7.19 (dd, J = 13.3, 6.1 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 3.93 (s, 2H), 3.00 (t, J = 7.7 Hz, 2H), 2.48 (s, 3H), 1.83 – 1.74 (m, 2H), 1.68 (s, 3H), 1.49 – 1.42 (m, 2H), 1.40 – 1.30 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4,156.4, 151.7, 143.6,

141.9, 139.7, 139.4, 135.6, 129.9, 126.6, 126.5, 126.0, 125.6, 124.7, 124.3, 122.5, 122.2, 121.4, 121.2, 35.2, 31.8, 30.2, 29.6, 29.2, 27.6, 22.7, 14.2, 13.5. **IR** (KBr, cm⁻¹) 3443, 3101, 2925, 2859, 1680, 1585, 1454, 1385, 1260, 1201, 1154, 1038, 955, 841, 758, 726, 640. **HRMS** (ESI) Calcd for $C_{31}H_{32}O_2$ (M+Na)⁺ 459.2295, found 459.2297.

1-(4-([1,1'-Biphenyl]-4-yl)-10-hexyl-2-methyl-9H-fluoreno[2,3-*b*]furan-3-yl)ethan-1-one (3bk)

White solid, m. p. = 148-149 °C, yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 11.4, 7.8 Hz, 4H), 7.64 – 7.54 (m, 5H), 7.46 (t, J = 7.3 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 4.02 (s, 2H), 3.09 (t, J = 7.6 Hz, 2H), 2.57 (s, 3H), 1.94 – 1.82 (m, 2H), 1.63 (s, 3H), 1.56 (s, 2H), 1.45 (d, J = 3.1 Hz, 4H), 1.01 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 156.6, 151.8, 143.7, 142.0, 140.8, 140.4, 139.6, 138.5, 134.8, 130.7, 129.0, 127.7,

127.1, 126.7, 126.4, 126.0, 125.0, 124.8, 122.8, 122.0, 121.3, 35.2, 31.8, 30.8, 29.6, 29.3, 27.7, 22.8, 14.2, 13.5. **IR** (KBr, cm⁻¹) 3714, 3054, 2926, 2859, 2315, 1683, 1585, 1456, 1342, 1265, 1018, 952, 842, 755, 624. **HRMS** (ESI) Calcd for $C_{34}H_{32}O_2$ (M+Na)⁺ 495.2295, found 495.2283.

1-(10-Hexyl-2-methyl-4-(naphthalen-2-yl)-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bl)

White solid, m. p. = 117-118 °C, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 3H), 7.46 (s, 2H), 7.36 (s, 1H), 7.31 (s, 1H), 6.85 (s, 1H), 3.91 (s, 2H), 3.02 (s, 2H), 2.52 (s, 3H), 1.80 (d, *J* = 6.7 Hz, 2H), 1.55 (s, 3H), 1.49 (s, 2H), 1.38 (s, 4H), 0.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 156.9, 151.9, 144.1, 142.2, 139.7, 138.8, 133.6, 129.9, 129.3, 128.5, 127.5, 125.9, 125.8, 124.9, 122.0, 121.1, 120.3,

34.8, 31.8, 30.7, 29.6, 29.2, 27.6, 22.7, 14.2, 13.5. **IR** (KBr, cm⁻¹). 3849, 3704, 3522, 3498, 2925,1682, 1588, 1448, 655. **HRMS** (ESI) Calcd for $C_{30}H_{29}BrO_2$ (M+H)⁺ 501.1424, found 501.1421.

1-(10-Hexyl-2,6-dimethyl-4-phenyl-9H-fluoreno[2,3-b]furan-3-yl)ethan-1-one (3bm)

White solid, m. p. = 116-117 °C, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 14.1 Hz, 5H), 7.41 (d, *J* = 7.1 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.58 (s, 1H), 3.93 (s, 2H), 3.03 (s, 2H), 2.51 (s, 3H), 2.15 (s, 3H), 1.81 (s, 2H), 1.55 (s, 3H), 1.49 (s, 2H), 1.39 (s, 4H), 0.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 156.5, 151.6, 142.1, 140.7, 139.9, 139.5, 135.7, 134.8, 130.2, 129.1, 128.1, 127.0, 126.8,

124.7, 124.4, 123.5, 121.8, 121.2, 34.8, 31.8, 30.7, 29.6, 29.26, 27.6, 22.7, 21.7, 14.2, 13.5. **IR** (KBr, cm⁻¹) 3925, 3817, 3742, 3565, 3524, 3481, 3456, 3425, 2927, 1680, 1581, 1460, 1387, 1284, 1264, 1208, 1111, 1072, 1029, 952, 805, 724, 702, 627. **HRMS** (ESI) Calcd for $C_{31}H_{32}O_2$ (M+Na)⁺ 459.2295, found 459.2290.

1.5 Optimization of the reaction conditions for synthesis of 6a

	N ₂ CO ₂ Me	+ Ph -	cat., base CH ₃ CN, 60 °C overnight CO ₂	Me
Entry	Cat.	(5 mol %)	Base	Yield $(\%)^b$
1	(CuBr	-	12
2	(CuCl	-	41
3	Cu(MeCN) ₄ PF ₄		-	45
4		CuI	-	68 ^c
5		CuI	i-Pr ₂ NH	59
6^d	CuI		-	51

Table S2. Optimization of the reaction conditions for synthesis of $6a^{a}$

^{*a*}The reaction was performed at 60 °C overnight. The molar ratio of 5a:2a = 1.5:1. [2a] = 0.1M. ^{*b*}Yield of **6a** determined by ¹H NMR spectroscopy. ^{*c*}Isolated yield of **6a**. ^{*d*}5a:2a = 1:1.

1.6 General procedure for the synthesis of 6a-6j

To an acetonitrile (MeCN, 1.0 mL) suspension of CuI (10 mol %) in Schlenk tube with a magnetic bar under nitrogen atmosphere, was added alkynyl (2, 0.1 mmol) and diazonium (5, 0.15 mmol). The reaction was stirred at 60 °C unless being noted and monitored by TLC. After accomplished, the reaction mixture was purified by chromatography with petroleum/ethyl acetate(v/v: 20/1) to obtain **6**. Methyl 5-phenyl-11H-benzo[*b*]fluorene-10-carboxylate (6a)

Ph White solid, m. p. = 145-

White solid, m. p. = 145-146 °C, yield = 68%; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.5 Hz, 1H), 7.54 (dt, J = 16.7, 7.3 Hz, 6H), 7.38 (t, J = 8.0 Hz, 3H), 7.22 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 7.9 Hz, 1H), 4.01 (s, 2H), 4.29 (s, 2H), 4.11 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 168.9, 143.9, 142.8, 140.4, 138.6,

137.4, 136.8, 133.2, 129.8, 129.7, 129.3, 128.1, 127.5, 126.8, 126.6, 126.6, 125.7, 125.3, 124.9, 124.7, 123.7, 52.2, 37.5. **IR** (KBr, cm⁻¹) 3777, 3437, 3061, 2955, 1719, 1633, 1441, 1392, 1254, 1210, 1037, 969, 752, 598. **HRMS** (ESI) Calcd for $C_{25}H_{18}O_2$ (M+H)⁺ 351.1380, found 351.1381.

Methyl 7-fluoro-5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6b)

White solid, m. p. = 126-127 °C, yield = 56%; ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.29 (m, 1H), 7.47 (d, *J* = 3.8 Hz, 3H), 7.38 (d, *J* = 7.5 Hz, 1H), 7.24 – 7.15 (m, 3H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.05 (d, *J* = 11.0 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.29 (d, *J* = 7.9 Hz, 1H), 4.15 (s, 2H), 3.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 168.6, 160.6 (d, J = 245.9 Hz), 144.1, 142.4, 140.1, 138.5, 138.1, 136.2, 136.2, 134.6, 134.6, 129.6, 129.4, 128.4, 127.9, 126.7, 124.8, 123.8, 116.7, 116.4, 110.4, 110.2, 52.2, 37.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.2. **IR** (KBr, cm⁻¹) 3714, 3061, 2952, 1719, 1619, 1508, 1437, 1210, 1124, 1038, 966, 864, 825, 751, 587, 453. **HRMS** (ESI) Calcd for C₂₅H₁₇FO₂ (M+H)⁺ 369.1285, found 369.1289.

Methyl 7-chloro-5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6c)

White solid, m. p. = 173-174 °C, yield = 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 9.1 Hz, 1H), 7.62 (d, *J* = 5.6 Hz, 3H), 7.51 (d, *J* = 6.2 Hz, 2H), 7.47 (d, *J* = 9.2 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 2H), 7.25 (s, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.37 (d, *J* = 7.9 Hz, 1H), 4.29 (s, 2H), 4.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

168.5, 144.0, 143.3, 140.0, 138.6, 137.8, 136.0, 134.2, 131.9, 129.7, 129.4, 128.4, 128.1, 127.9, 127.3, 127.1, 126.7, 125.5, 124.7, 123.8, 52.3, 37.7. **IR** (KBr, cm⁻¹) 3731, 3061, 2952, 1720, 1600, 1489, 1443, 1396, 1247, 1148, 1090, 1039, 969, 883, 821, 756, 711, 599. **HRMS** (ESI) Calcd for $C_{25}H_{17}ClO_2$ (M+H)⁺ 385.0990, found 385.0983.

Methyl 7-methoxy-5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6d)

White solid, m. p. = 192-193 °C, yield =46%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 2H), 7.56 – 7.49 (m, 7H), 7.43 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.3 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 3.94 (s, 2H), 2.42 (s, 3H), 1.55 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 169.0, 157.2, 144.2,

140.6, 140.5, 138.8, 137.9, 135.8, 134.6, 129.7, 129.3, 128.1, 127.4, 126.9, 126.5, 125.3, 124.7, 124.6, 123.6, 118.5, 105.8, 55.1, 52.1, 37.5. **IR** (KBr, cm⁻¹) 3460, 2918, 1733, 1624, 1509, 1428, 1242, 1149, 1030, 813. **HRMS** (ESI) Calcd for $C_{26}H_{20}O_3$ (M+H)⁺ 381.1485, found 381.1485.

Benzyl 5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6e)

White solid, m. p. = 118-119 °C, yield = 61%; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.6 Hz, 1H), 7.58 (dd, J = 15.0, 6.9 Hz, 6H), 7.42 (ddd, J = 19.9, 15.1, 7.4 Hz, 8H), 7.21 (d, J = 7.4 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.39 (d, J = 7.9 Hz, 1H), 5.60 (s, 2H), 4.24 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 143.9, 142.7, 140.4,

138.6, 137.4, 136.9, 135.9, 133.2, 129.8, 129.8, 129.3, 128.8, 128.7, 128.5, 128.1, 127.5, 126.9, 126.7, 126.6, 125.7, 125.3, 124.9, 124.8, 123.7, 67.2, 37.5. **IR** (KBr, cm⁻¹) 3458, 3063, 2955, 1454, 1393, 1248, 1207, 1137, 1036, 967, 756, 697, 594. **HRMS** (ESI) Calcd for $C_{31}H_{22}O_2$ (M+Na)⁺ 449.1512, found 449.1516.

Isopropyl 5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6f)

White solid, m. p. = 160-161 °C, yield = 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.5 Hz, 1H), 7.62 – 7.49 (m, 6H), 7.38 (t, J = 7.0 Hz, 3H), 7.21 (d, J = 6.5 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.41 (d, J = 7.8 Hz, 1H), 5.60 – 5.47 (m, 1H), 4.29 (s, 2H), 1.53 (d, J = 6.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 143.9, 141.9, 140.5, 138.7, 137.4, 136.5, 133.2, 129.8, 129.7, 129.3, 128.1, 127.5, 126.9, 126.7,

126.5, 125.8, 125.7, 125.2, 124.8, 123.7, 69.1, 37.3, 22.3. **IR** (KBr, cm⁻¹) 3716, 3062, 2975, 2314, 1716, 1596, 1456, 1383, 1251, 1213, 1103, 1035, 963, 757, 700. **HRMS** (ESI) Calcd for $C_{27}H_{22}O_2$ (M+H)⁺ 379.1693, found 379.1696.

Methyl 5,7-diphenyl-11H-benzo[b]fluorene-10-carboxylate (6g)

White solid, m. p. = 163-164 °C, yield = 64%; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.8 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.58 (q, J = 5.7 Hz, 3H), 7.51 (t, J = 8.6 Hz, 3H), 7.41 – 7.34 (m, 4H), 7.29 (t, J = 7.3 Hz, 1H), 7.23 – 7.17 (m, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.39 (d, J = 7.9 Hz, 1H), 4.30 (s, 2H), 4.12 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 168.86, 144.04, 143.11, 140.97, 140.43, 138.49, 138.28, 137.92, 137.22, 133.55, 129.80, 129.38, 129.14, 128.88, 128.25, 127.62, 127.43, 126.70, 126.28, 125.99, 124.77, 124.67, 123.76, 52.22, 37.73. **IR** (KBr, cm⁻¹) 3713, 3047, 2926, 2858, 2314, 1734, 1594, 1482, 1445, 1251, 1164, 1089, 1013, 958, 832, 755, 696, 617, 501. **HRMS** (ESI) Calcd for C₃₁H₂₂O₂ (M+Na)⁺ 449.1512, found 449.1512.

Methyl 9-chloro-5-phenyl-11H-benzo[b]fluorene-10-carboxylate (6h)

Yellow oil, yield = 66%; ¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (t, J = 6.6 Hz, 4H), 7.55 (t, J = 6.9 Hz, 2H), 7.39 (d, J = 6.9 Hz, 2H), 7.30 (d, J = 7.6 Hz, 2H), 7.06 (t, J= 7.6 Hz, 1H), 6.41 (d, J = 7.9 Hz, 1H), 4.15 (d, J = 31.8 Hz, 5H). ¹³**C** NMR (100 MHz, CDCl₃) δ 170.5, 143.7, 141.8, 140.1, 138.2, 137.9, 135.4, 135.0, 129.9, 129.8,

129.3, 128.3, 128.2, 128.0, 126.8, 126.4, 126.1, 125.9, 125.5, 124.9, 123.9, 52.8, 36.0.**IR** (KBr, cm⁻¹) 3726, 3062, 2937, 2314, 1730, 1446, 1251, 1183, 1144, 880, 814, 733, 513. **HRMS** (ESI) Calcd for $C_{25}H_{17}ClO_2$ (M+H)⁺ 385.0990, found 385.0989.

Methyl (E)-5-styryl-11H-benzo[b]fluorene-10-carboxylate (6i)

Yellow oil, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.3 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 7.4 Hz, 1H), 7.76 – 7.68 (m, 3H), 7.59 (d, J = 6.6 Hz, 2H), 7.53 (dd, J = 14.6, 7.4 Hz, 3H), 7.43 (t, J = 6.9 Hz, 1H), 7.36 (dd, J = 14.2, 6.9 Hz, 2H), 6.93 (d, J = 16.7 Hz, 1H), 4.30 (s, 2H), 4.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 144.0, 142.8, 140.9, 137.1, 136.9, 136.8, 133.7, 132.4,

130.0, 129.0, 128.7, 128.3, 128.2, 127.5, 126.9, 126.7, 126.2, 125.7, 125.6, 125.0, 124.9, 124.5, 52.1, 37.6. **IR** (KBr, cm⁻¹) 3441, 2919, 1713, 1643, 1441, 1391, 1213, 1043, 974, 798, 753. **HRMS** (ESI) Calcd for $C_{27}H_{20}O_2$ (M+H)⁺ 377.1536, found 377.1543.

Methyl 5-(2-methylprop-1-en-1-yl)-11H-benzo[b]fluorene-10-carboxylate (6j)

CO₂Me

Yellow solid, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.2 Hz, 1H), 8.19 (t, J = 6.7 Hz, 2H), 7.59 (dd, J = 15.3, 7.3 Hz, 3H), 7.40 (d, J = 4.1 Hz, 2H), 5.76 (s, 1H), 5.22 (s, 1H), 4.30 (s, 2H), 4.14 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 143.9, 143.1, 142.6, 140.1, 138.6, 135.0, 131.4, 129.9, 129.3,

127.5, 126.9, 126.6, 125.9, 125.8, 125.5, 124.8, 123.9, 117.5, 52.1, 37.4, 24.1. **IR** (KBr, cm⁻¹) 3443, 2954, 1714, 1639, 1438, 1212, 1042, 759. **HRMS** (ESI) Calcd for $C_{22}H_{18}O_2$ (M+H)⁺ 315.1380, found 315.1376.

1.7 General procedure for the synthesis of 8

To an acetonitrile (MeCN, 1.0 mL) suspension of CuI (10 mol %) and LiO^{t}Bu (2eq.) in Schlenk tube with a magnetic bar under nitrogen atmosphere, was added alkynyl (2a, 0.1 mmol) and N-tosylhydrazones (7, 0.15 mmol). The reaction was stirred at 90 °C unless being noted and monitored by TLC. After accomplished, the reaction mixture was purified by chromatography with petroleum/ethyl acetate(v/v: 20/1) to obtain **8**.

The characterization data of $\mathbf{8}$ was consistent with literature.^[6]

5,10-Diphenyl-11H-benzo[b]fluorene (8)

White solid, yield = 53%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.54 (m, 7H), 7.50 (d, *J* = 9.2 Hz, 5H), 7.42 – 7.33 (m, 3H), 7.19 (s, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 7.9 Hz, 1H), 3.87 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.3, 141.5, 139.5, 139.3, 139.2, 137.0, 135.3, 133.2, 133.0, 131.6, 130.2, 130.0, 129.2, 128.7, 127.8,

127.4, 127.1, 126.5, 126.5, 125.8, 125.3, 125.1, 124.8, 123.8, 36.6.

2. References

- [1] H. Luo, K. Chen, H. Jiang and S. Zhu, Org. Lett., 2016, 18, 5208.
- [2] Y. Yang, J.-X. Yu, X-H. Ouyang, and J.-H. Li, Org. Lett., 2017, 19, 3982.
- [3] E. Rettenmeier, M. M. Hansmann, A. Ahrens, K. R benacker, T. Saboo, J. Massholder, C. Meier, M.

Rudolph, F. Rominger and A. Stephen K. Hashmi, Chem. Eur.J., 2015, 21, 14401.

[4] A. Stephen K. Hashmi, M. Wieteck, I. Braun, P. Nçsel, L. Jongbloed and M. Rudolph, F. Romingera, *Adv. Synth. Catal.*, 2012, **354**, 555.

- [5] D. Li, Y. Wei and M. Shi, Chem. Eur. J., 2013, 19, 15682.
- [6] K. Wang, H. Zhang and J. L. Petersen, J. Org. Chem., 1999, 64,1650.

3. X-Ray diffraction analysis

3.1 Crystal data and structure refinement for 3am

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $			
CCDC number	1888277			
Identification code	3am			
Empirical formula	$C_{29}H_{28}O_2$			
Formula weight	408.51			
Temperature/K	100.00(10)			
Crystal system	triclinic			
Space group	P-1			
a/Å	10.2239(5)			
b/Å	11.0090(6)			
c/Å	11.0538(6)			
$\alpha/^{\circ}$	73.729(5)			
β/°	86.050(5)			
γ/°	65.798(5)			
Volume/Å ³	1087.85(11)			
Z	2			
$ ho_{calc}g/cm^3$	1.247			
μ/mm^{-1}	0.076			
F(000)	436.0			
Crystal size/mm ³	0.13 imes 0.12 imes 0.11			
Radiation	MoKa ($\lambda = 0.71073$)			
2θ range for data collection/ ° 4.222 to 49.99				
Index ranges	$-12 \le h \le 12, -13 \le k \le 12, -13 \le l \le 12$			
Reflections collected	11241			
Independent reflections	3818 [$R_{int} = 0.0404$, $R_{sigma} = 0.0473$]			
Data/restraints/parameters	3818/0/292			
Goodness-of-fit on F^2	1.043			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0458, wR_2 = 0.1096$			
Final R indexes [all data]	$R_1 = 0.0577, wR_2 = 0.1198$			

3.2 Crystal data and structure refinement for 6d

	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		
CCDC number	1888278		
Identification code	6d		
Empirical formula	$C_{26}H_{20}O_3$		
Formula weight	380.42		
Temperature/K	100.01(10)		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
a/Å	11.5269(6)		
b/Å	6.9766(4)		
c/Å	23.8120(12)		
α/°	90		
β/°	98.369(5)		
γ/°	90		
Volume/Å ³	1894.54(18)		
Z	4		
$\rho_{calc}g/cm^3$	1.334		
μ/mm^{-1}	0.086		
F(000)	800.0		
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$		
Radiation	Mo Ka ($\lambda = 0.71073$)		
2θ range for data collection/	² 4.188 to 50		
Index ranges	$\text{-}13 \le h \le 13, \text{-}6 \le k \le 8, \text{-}26 \le l \le 28$		
Reflections collected	11699		
Independent reflections	3333 [$R_{int} = 0.0287$, $R_{sigma} = 0.0290$]		
Data/restraints/parameters	3333/0/273		
Goodness-of-fit on F^2	1.084		
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0398$, $wR_2 = 0.0945$		
Final R indexes [all data]	$R_1 = 0.0474, wR_2 = 0.0991$		
Largest diff. peak/hole / e Å ⁻³ 0.20/-0.17			

4. Copies of NMR spectra

S18

S19

21

2m

2n(E/Z = 5:1)

7aa

$\begin{tabular}{c} & 8.245 \\ & 8.2245 \\ & 8.2246 \\ & 7.562 \\ & 7.7481 \\ & 7.7411 \\ & 7$

3ab

3ac

3ad

S28

3ae

S2

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 \$\$ 10 0 -10 -20 -30 -40 -50 -60 -70 -80

3ah

S5

3ai

3aj
203.228 7101.175 7101.175 7101.175 141.577 141.577 141.577 141.577 133.201 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 135.216 128.650 128.650 128.651 128.6557 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567 128.6567

3ak

77.700 77.789 77.489 77.489 77.482 77.482 77.394 77.394 77.393 77.391 77.391 77.391 77.298 77.2094 77.200477.2004

193.877 193.877 193.877 193.877 193.877 193.563 1943.729 1943.729 197.547 137.547 137.547 137.547 137.547 137.547 137.547 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 133.376 129.486 129.486 129.561 128.583 128.583 128.583 128.583 128.583 128.583 128.583 128.583 128.583 128.583 128.583</

3al

3an

3ba

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S19

3bd

210

3be

3bg

110 90 80 70 60 f1 (ppm) 30 20 0 -10 -3.358 - 3.3736 - 3.37356 - 7.3336 - 7.3336 - 7.3336 - 7.3238 - 7.3174 - 7.3175 - 7.3175 - 7.3175 - 7.3168 - 7.3106 -

3bi

3bj

$\begin{array}{c} 7.532\\ 7.524\\ 7.524\\ 7.524\\ 7.525\\ 7.7490\\ 7.7263\\ 7.7216\\ 7.7216\\ 7.7216\\ 7.7216\\ 7.7291\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 6.859\\ 1.777\\ 7.717\\ 6.859\\ 6.859\\ 1.777\\ 1.775\\ 1.775\\ 1.756\\ 1.$

Ċ₆H₁₃

3bk

3bl

Ċ₆H₁₃

6a

6c

6d

6e

6f

6g

6h

6i (*E* major)

S41

