Stereospecific acyloin ring contraction controlled by glucose and concise total synthesis of saffloneoside

Wan Gao, Jian-Shuang Jiang, Zhong Chen, Ya-Nan Yang, Zi-Ming Feng, Xu Zhang, Xiang Yuan, and Pei-Cheng Zhang*

Supporting Information
 Table of Contents

1 Experimental procedures 4
1.1 General experimental details 4
1.2 Isolation and structural identification of saffloneoside5
1.2.1 ECD calculation of $\mathbf{1}$ 8
1.3 Specific experimental conditions 20
1.3.1 Synthesis of saffloneoside (1) from hydroxysafflor yellow A (HSYA) 20
1.3.2 Synthesis of 2,4,6-trihydroxy-3,5-di-C-glucosylacetophenone 4 21
1.3.3 Synthesis of 2-hydroxy-4,6-dimethoxymethoxy-3,5-di-C-glucosylacetophenone 4-1 22
1.3.4 Synthesis of 2,4,6,13-tetrahydroxy-3,5-di-C-glucosylchalone 5 22
1.3.5 Synthesis of 3,4,6-trihydroxycyclohexadienone 6 23
1.3.6 Synthesis of glucosyl acetate 12 25
1.3.7 Synthesis of di-C-(per-O-benzylglucosyl)phloroacetophenone 6-1 25
1.3.8 Synthesis of 3-methyl-2,4,6-trihydroxyacetophenone 10 26
1.3.9 Synthesis of 3-methyl-5-C-(per-O-benzylglucosyl)-2,4,6-trihydroxyacetophenone 9 27
1.3.10 Synthesis of 3,4,6-trihydroxycyclohexadienone 8 28
1.3.11 Synthesis of cyclopentenone 7 29
1.3.12 Synthesis of $\mathbf{1 4}$ 29
1.3.14 Synthesis of $\mathbf{1}$ 30
1.3.15 Synthesis of 15 32
1.3.16 Synthesis of 16 33
1.3.17 Synthesis of $\mathbf{1 7}$. 34
1.3.18 Synthesis of 1-acetoxy-2,3,4,6-tetra-O-benzyl-L-glucose34
1.3.19 Synthesis of 3-methyl-5-C-(per-O-benzyl-L-glucosyl)-2,4,6-trihydroxyacetophenone 18-1 37
1.3.20 Synthesis of 3,4,6-trihydroxycyclohexadienone 18 38
1.3.21 Synthesis of cyclopentenone 19. 38
1.3.22 Synthesis of $\mathbf{2 0}$ 39
1.4 Energy calculation of intermediates B1-B4 40
2 ECD spectra of 1, 7, 16, 19, and 20 53
3 NMR spectra 56
4 IR spectra 85
5 References 88

1 Experimental procedures

1.1 General experimental details

Reagents and solvents: All the reactions sensitive to air or moisture were carried out under argon atmosphere in anhydrous solvents. All solvents were obtained from Beijing Chemical Works. All other reagents with a purity > 95\% were obtained from commercial sources (Acros, Alfa Aesar, and others) and used without further purification.

Thin layer chromatography (TLC) was performed using glass precoated silica gel GF254 plates. Column chromatography was performed using 200-300 mesh silica gel (Qingdao Marine Chemical Factory, China). Spots were visualized under 254 nm or 365 nm UV light.

Nuclear magnetic resonance (NMR): NMR spectra were obtained on Bruker-400 MHz or Varian 500 MHz spectrometers. Chemical shift δ in ppm (number of protons, multiplicity, coupling constant J in Hz) for ${ }^{1} \mathrm{H}$ NMR spectra and chemical shift δ in ppm for ${ }^{13} \mathrm{C}$ NMR spectra. The following multiplicity abbreviations are used: (s) singlet, (brs) broad singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet. Residual solvent peaks were used as internal reference. NMR spectra were assigned using information ascertained from HSQC, HMBC, and ROESY experiments.

High resolution electrospray lonization mass spectra (HR-ESI-MS) data were obtained using an Agilent 1100 series LC/MSD TOF from Agilent Technologies.

Circular dichroism (CD) spectra were reported on a JASCO J-815 spectropolarimeter.

Infrared spectra (IR) were recorded on a Thermo Fisher FT-IR spectrophotometer (Nicolet 5700).

Preparative HPLC was carried out on a Shimadzu LC-6AD instrument with an SPD-20A detector, using a YMC-Pack ODS-A column ($250 \times 20 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Japan).

HPLC-DAD analysis was performed using an Agilent 1260 series system (Agilent Technologies, Waldbronn, Germany) with an Apollo C18 column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Grace Davison).

Melting point were measured on a Gallenkamp Melting Point System.

1.2 Isolation and structural identification of saffloneoside

The florets of Carthamus tinctorius L. (5.0 kg) were exhaustively extracted with $\mathrm{H}_{2} \mathrm{O}$ under refluxed conditions. The $\mathrm{H}_{2} \mathrm{O}$ extracts were then concentrated under reduced pressure to give a residue (1200 g). The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ again, then chromatographing over microporous adsorbent resin (HP-20) column. After eluting with $\mathrm{H}_{2} \mathrm{O}$, then the adsorbed constituents were eluted with 10% ethanol, 30% ethanol, and 50% ethanol, respectively. The 30% ethanol part (80.0 g) was chromatographed over Sephadex LH-20 eluting with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (from 100:0 to $0: 100$) to give 30 fractions. Fr. 15 was further purified by reversed-phase preparative HPLC with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(35: 65,5 \mathrm{~mL} / \mathrm{min})$ as mobile phase to yield $\mathbf{1}(15.0 \mathrm{mg})$, named saffloneoside.

Figure S1 Selected HMBC and ROESY correlations of 1.

Compound 1 was obtained as a yellow amorphous powder. Its molecular formula was determined to be $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{10}$ based on the protonated molecular ion peak at $\mathrm{m} / \mathrm{z} 423.1284[\mathrm{M}+$ $\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{10}$, 423.1247) observed in the HR-ESI-MS, which indicated 10 degrees of unsaturation. $[\alpha] \mathrm{D}^{20}=-30.5(c=0.15, \mathrm{MeOH})$. The IR spectrum showed the presence of hydroxy ($3331 \mathrm{~cm}^{-1}$) and carbonyl ($1684 \mathrm{~cm}^{-1}$) groups, as well as an aromatic ring (1621 and $1578 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 exhibited the presence of para-substituted aromatic protons at $\delta \mathrm{H} 7.34(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$; one set of trans conjugated olefinic protons at $\delta_{\mathrm{H}} 7.42(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz})$. Seven protons at $\delta \mathrm{H}$ 3.78-3.23 indicate the presence of a glucose, and since its terminal proton is at $\delta_{\mathrm{H}} 3.77(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}$), which can be inferred that the sugar is not present as an O-linked glucoside. In addition, two protons at $\delta_{\mathrm{H}} 4.33(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz})$ and $2.74(1 \mathrm{H}, \mathrm{brs})$ are not assigned. In the ${ }^{13} \mathrm{C}$ NMR spectrum, 20 carbon resonances were observed, with nine of these resonances ($\delta \mathrm{c}$ 188.8, 170.8, 144.3, 131.2 (2C), 121.2, 119.6 (2C), and 119.4) attributed to a cinnamyl moiety and with six of these resonances ($\delta \mathrm{c} 79.4,77.7,76.0,71.0,69.6$, and 60.8) attributed to a glucose moiety. In combination with the observed HSQC correlations, the remaining five carbon signals were designated as two carbonyls ($\delta_{c} 202.6$ and 201.2), one olefinic carbon ($\delta_{c} 114.5$), and two methines ($\delta_{c} 70.2$ and 53.0). After we considered the remaining three degrees of unsaturation and the molecular formula, the skeleton of $\mathbf{1}$ was elucidated as a C_{14}
quinochalcone with a cyclopentenone ring. In the HMBC spectrum, a key correlation from $\mathrm{H}-1^{\prime}$ ($\delta_{H} 3.77$) to $\mathrm{C}-5$ ($\delta_{C} 53.0$) suggested that the glucose moiety is located at $\mathrm{C}-5$ through $\mathrm{C}-\mathrm{C}$ link.

To determine the relative configuration of $\mathbf{1}$, the ROESY and ${ }^{1} \mathrm{H}$ NMR data were analyzed. The characteristic ROESY correlations from $\mathrm{H}-4\left(\delta_{H} 4.33\right)$ to $\mathrm{H}-1^{\prime}\left(\delta_{H} 3.77\right)$ and $\mathrm{H}-2^{\prime}\left(\delta_{H} 3.41\right)$, combined with the $J_{4,5}=4.5 \mathrm{~Hz}$ in ${ }^{1} \mathrm{H}$ NMR, indicated that OH at C 4 and glucose at C 5 are in different orientations.

Figure S2 Experimental ECD spectra of compound 1 and calculated ECD spectra of $\mathbf{1 a}$ and 1b in MeOH .

The absolute configuration of 1 was determined by comparing its experimental and calculated ECD data. Conformational analysis of $\mathbf{1 a}$ and its diastereoisomer 1b (Figure S2) were performed using the MMFF94 molecular mechanics force field. The preferred conformers were optimized further at the B3LYP/6-311G(d, p) level. The ECD spectra of different conformers were simulated using a Gaussian function with a half-bandwidth of 0.25 eV . The calculated ECD spectra were obtained according to the Boltzmann weighting of each of the conformers with different populations. The overall theoretical ECD data of $\mathbf{1 b}$ matched the experimental ECD data of 1 very well (Figure S2). Accordingly, the configuration of compound 1 was assigned as $(4 R, 5 S)$.
m.p. $196-197^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-30.5(c=0.15, \mathrm{MeOH})$.

ECD: $\Delta \varepsilon 326(-1.65), 239(+5.12) \mathrm{nm},(c=0.15, \mathrm{MeOH})$.

IR (KBr): 3331, 2923, 2862, 1684, 1621, 1578, 1399, $1093 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta_{\mathrm{H}}: 7.42(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-7), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-10$ and $\mathrm{H}-14), 7.32(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-8), 6.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-11$ and $\mathrm{H}-13), 4.33$
$\left.(1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{H}-4), 3.77(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{H}-1)^{\prime}\right), 3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-6^{\prime}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.12.5,5.0 \mathrm{~Hz}, \mathrm{H}_{2}-6^{\prime}\right), 3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ '), $3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), 3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ '), 3.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 5'), 2.74 (1H, brs, H-5) ppm.
${ }^{13} \mathrm{C}$ NMR (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta_{\mathrm{c}}: 202.6(\mathrm{C}-3), 201.2(\mathrm{C}-1), 188.8(\mathrm{C}-6), 170.8(\mathrm{C}-12)$, 144.3 (C-8), 131.2 (C-10, 14), 121.2 (C-9), 119.6 (C-11, 13), 119.4 (C-7), 114.5 (C-2), 79.4 (C5'), 77.7 (C-3'), 76.0 (C-1'), 71.0 (C-4'), 70.2 (C-4), 69.6 (C-2'), 60.8 (C-6'), 53.0 (C-5) ppm.

HRMS(ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 423.1247, found: 423.1284.

Table S1 NMR data of 1 (measured in $\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) (δ in ppm)

position	type	$\delta \mathrm{C}$	δ_{H} (mult., J in Hz)
1	C	201.2	
2	C	114.5	
3	C	202.6	
4	CH	70.2	4.33 (d, 4.5)
5	CH	53.0	2.74 (brs)
6	C	188.8	
7	CH	119.4	7.42 (d, 15.8)
8	CH	144.3	7.32 (d, 15.8)
9	C	121.2	
10	CH	131.2	7.34 (d, 8.5)
11	CH	119.6	6.50 (d, 8.5)
12	C	170.8	
13	CH	119.6	6.50 (d, 8.5)
14	CH	131.2	7.34 (d, 8.5)
$1 '$	CH	76.0	3.77 (dd, 8.5, 2.0)
2^{\prime}	CH	69.6	3.24 (m)
3'	CH	77.7	3.41 (m)
4'	CH	71.0	3.40 (m)
5^{\prime}	CH	79.4	3.23 (m)
$6{ }^{\prime}$	CH_{2}	60.8	3.65m); 3.50 (dd, 12.5, 5.0)

1.2.1 ECD calculation of 1

Conformational analyses are carried out via systematic searching in the Discovery Studio (version 16.1.0.15350) using the MMFF94 force field. Conformers with Boltzmann distribution over 1% are chosen as the beginning for ECD calculations. Ground-state geometries are optimized at the B3LYP/6-311+G(d,p) level in gas phase by the Gaussian 09 program (Gaussian Inc., Wallingford, CT, USA). ${ }^{[1]}$ All quantum computations are performed on an IBM cluster machine located at the High Performance Computing Center of Peking Union Medical College. The energies, oscillator strengths, and rotational strengths (velocity) of the first 50 electronic excitations are calculated using the TD-DFT methodology at the B3LYP/6-311+G(d,p) level in methanol. The ECD spectra are simulated by the overlapping Gaussian function (half the bandwidth at $1 /$ e peak height, 0.25 eV$).{ }^{[2]}$ By comparison of the calculated and experimental ECD spectra, the absolute configurations of compound 1 are established.

Table S2 The 3D conformers of 1a with Boltzmann distribution over 1\%.

compound	no.	3D conformers	rel. E (kcal/mol)	population (\%)
(4S,5R)-	1		0.00	78.8
1a	2		9.71	19.2

Table S3 The 3D conformers of 1b with Boltzmann distribution over 1%.
$\left.\begin{array}{|c|c|cc|c|c|c|}\hline \text { compound } \text { no. } & \text { rel. E } & \text { population } \\ \text { (\%) }\end{array}\right)$

| 102000 | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table S4 Cartesian coordinates (\AA) for the geometry optimized structure of 1a-1

Atom	X	Y	Z
C	0.26460000	3.13340000	0.59230000
C	-0.48280000	1.77460000	0.69170000
C	0.63910000	0.83470000	0.86990000
C	1.83680000	1.36670000	0.38580000
C	1.60550000	2.72710000	0.16060000
O	0.51640000	-0.31200000	1.36160000
C	3.01400000	0.65010000	0.08930000
C	2.96580000	-0.68890000	-0.36430000
O	4.11950000	1.23130000	0.17890000
O	2.40870000	3.59090000	-0.50250000
C	4.01350000	-1.62260000	-0.31500000
C	3.87390000	-2.96010000	-0.76880000
C	2.69420000	-3.70460000	-0.52730000
C	2.54800000	-5.01320000	-1.03710000
C	3.57250000	-5.57770000	-1.81550000
C	4.78370000	-4.88990000	-1.98350000
C	4.92520000	-3.57700000	-1.48390000
O	3.40290000	-6.75800000	-2.45870000
O	-0.26330000	4.01610000	-0.40090000
C	-1.65130000	1.65340000	1.73490000
O	-2.38960000	0.41210000	1.60530000
C	-3.43430000	0.24870000	0.60760000
C	-4.39380000	1.48050000	0.48900000
C	-3.64060000	2.83650000	0.59130000
C	-2.65340000	2.84930000	1.79470000
O	-3.38240000	2.83180000	3.02830000
C	-2.88710000	-0.26350000	-0.75340000
O	-1.92150000	-1.29580000	-0.54810000

O	-5.39700000	1.44080000	1.51160000
O	-2.96840000	3.11240000	-0.63720000
H	0.31030000	3.64580000	1.55790000
H	-0.86870000	1.56850000	-0.29940000
H	2.08520000	-0.99120000	-0.78660000
H	3.24080000	3.29550000	-0.91820000
H	4.92800000	-1.33140000	0.04250000
H	1.93180000	-3.31250000	0.03060000
H	1.70000000	-5.54630000	-0.83340000
H	5.54550000	-5.32560000	-2.50680000
H	5.78910000	-3.06990000	-1.69220000
H	2.55040000	-7.23700000	-2.42500000
H	-1.20610000	3.81330000	-0.47610000
H	-1.17260000	1.60270000	2.71780000
H	-4.03600000	-0.58400000	0.98250000
H	-4.92460000	1.44760000	-0.46730000
H	-4.36340000	3.64410000	0.73950000
H	-2.10840000	3.79280000	1.80770000
H	-4.22790000	2.39860000	2.80160000
H	-2.44860000	0.53900000	-1.34100000
H	-3.70180000	-0.67570000	-1.35230000
H	-1.30780000	-0.96320000	0.14440000
H	-5.76930000	0.53380000	1.49410000
H	-3.66460000	3.23020000	-1.31830000

Table S5 Cartesian coordinates (\AA) for the geometry optimized structure of 1a-2

Atom	X	Y	Z
C	-3.03470000	0.64150000	0.72550000
C	-1.66910000	-0.08840000	0.81680000
C	-0.75300000	1.04470000	1.01760000
C	-1.28460000	2.21490000	0.48320000
C	-2.64170000	1.97270000	0.25070000
O	0.36000000	0.96550000	1.59190000
C	-0.57530000	3.39240000	0.17160000
C	0.77600000	3.43330000	-0.24380000
O	-1.17360000	4.48510000	0.26530000
O	-3.50910000	2.77330000	-0.40920000
C	1.44920000	2.36860000	-0.86410000

C	2.80390000	2.40380000	-1.25820000
C	3.35490000	3.52540000	-1.91560000
C	4.71790000	3.53860000	-2.27990000
C	5.54150000	2.44560000	-1.95640000
C	4.98410000	1.29360000	-1.37980000
C	3.62420000	1.28150000	-1.00810000
0	6.88160000	2.49570000	-2.14680000
0	-3.91390000	-0.00480000	-0.19470000
C	-1.53880000	-1.24810000	1.85540000
0	-0.30030000	-1.98890000	1.71520000
C	-0.15270000	-3.04350000	0.72230000
C	-1.39090000	-3.99450000	0.60730000
C	-2.73850000	-3.23410000	0.72880000
C	-2.72990000	-2.24980000	1.93500000
0	-2.66410000	-2.97890000	3.17060000
C	0.36130000	-2.50900000	-0.64320000
0	0.93940000	-3.55740000	-1.41690000
0	-1.33640000	-5.01270000	1.60940000
0	-3.00220000	-2.58660000	-0.51590000
H	-3.52020000	0.71970000	1.70290000
H	-1.45090000	-0.46970000	-0.17570000
H	1.28600000	4.30700000	-0.08210000
H	-3.21030000	3.61880000	-0.80190000
H	0.95350000	1.48980000	-1.02660000
H	2.77240000	4.33240000	-2.15210000
H	5.09840000	4.34100000	-2.78450000
H	5.57200000	0.47880000	-1.19450000
H	3.25850000	0.45830000	-0.52070000
H	7.31150000	3.30640000	-2.48690000
H	-4.78110000	0.44240000	-0.09900000
H	-1.48190000	-0.76030000	2.83390000
H	0.67140000	-3.65360000	1.10270000
H	-1.36790000	-4.51750000	-0.35320000
H	-3.54670000	-3.95490000	0.87960000
H	-3.67990000	-1.71450000	1.96250000
H	-1.84850000	-2.67610000	3.63050000
H	1.12360000	-1.74620000	-0.46820000
H	-0.44200000	-2.07730000	-1.23650000

H	1.31060000	-3.11760000	-2.21200000
H	-1.60570000	-4.54650000	2.42360000
H	-3.80560000	-2.04130000	-0.37820000

Table S6 Cartesian coordinates (\AA) for the geometry optimized structure of 1a-3

Atom	X	Y	Z
C	0.61390000	3.04130000	0.67750000
C	-0.09660000	1.66820000	0.76310000
C	1.04940000	0.77070000	0.95890000
C	2.23030000	1.33060000	0.47490000
C	2.00400000	2.71350000	0.37770000
O	0.98530000	-0.33460000	1.55210000
C	3.40360000	0.61180000	0.15690000
C	3.43880000	-0.74330000	-0.27290000
O	4.49900000	1.19990000	0.25770000
O	2.84010000	3.74770000	0.12530000
C	2.37920000	-1.42270000	-0.89460000
C	2.41370000	-2.78190000	-1.29250000
C	3.53320000	-3.33310000	-1.95210000
C	3.54570000	-4.69780000	-2.31900000
C	2.45260000	-5.52050000	-1.99650000
C	1.30160000	-4.96390000	-1.41930000
C	1.29270000	-3.60340000	-1.04400000
O	2.50050000	-6.86180000	-2.18570000
O	0.02790000	3.89640000	-0.30700000
C	-1.25630000	1.55410000	1.81270000
O	-1.99580000	0.31550000	1.68240000
C	-3.03040000	0.16130000	0.67400000
C	-3.98720000	1.39830000	0.56660000
C	-3.23250000	2.75270000	0.67170000
C	-2.24820000	2.75900000	1.87570000
O	-2.97740000	2.74930000	3.10800000
C	-2.50530000	-0.34190000	-0.70340000
O	-1.53380000	-1.37650000	-0.56440000
O	-4.98830000	1.35420000	1.59160000
O	-2.58440000	3.01630000	-0.57140000
H	0.61550000	3.55160000	1.64080000
H	-0.46940000	1.44180000	-0.22880000
C			

H

H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

4.31310000	-1.25470000	-0.11580000
3.80260000	3.64310000	0.00740000
1.49790000	-0.93200000	-1.05820000
4.34010000	-2.75190000	-2.18960000
4.34790000	-5.07900000	-2.82370000
0.48670000	-5.55160000	-1.23420000
0.47060000	-3.24170000	-0.55400000
3.31090000	-7.29360000	-2.52320000
0.42610000	4.78090000	-0.15740000
-0.77280000	1.50610000	2.79390000
-3.63360000	-0.67010000	1.04820000
-4.51860000	1.37400000	-0.38960000
-3.95590000	3.55930000	0.81910000
-1.70300000	3.70190000	1.89180000
-3.81430000	2.29990000	2.88280000
-2.07240000	0.46670000	-1.28570000
-3.33350000	-0.73840000	-1.29290000
-2.01510000	-2.13810000	-0.17420000
-5.36430000	0.44960000	1.56510000
-2.03370000	3.81610000	-0.42800000

Table S7 Cartesian coordinates (\AA) for the geometry optimized structure of $\mathbf{1 b} \mathbf{b - 1}$

Atom	X	Y	Z
C	-1.05180000	1.24370000	0.08120000
C	-1.67730000	-0.16410000	0.30860000
C	-0.55930000	-1.06290000	-0.06090000
C	0.55050000	-0.38850000	-0.57150000
C	0.27230000	0.96820000	-0.46660000
O	-0.59140000	-2.29690000	0.15080000
C	1.74160000	-0.95270000	-1.08550000
C	3.02470000	-0.44050000	-0.79560000
O	1.63580000	-1.96880000	-1.81250000
O	1.09430000	1.98760000	-0.78390000
C	4.20730000	-0.71350000	-1.52370000
C	5.47850000	-0.20240000	-1.18890000
C	6.61520000	-1.05280000	-1.21650000
C	7.88960000	-0.57220000	-0.85380000
C	8.04170000	0.77110000	-0.45690000

C	6.94820000	1.64630000	-0.50990000
C	5.67160000	1.15790000	-0.83630000
O	9.17540000	1.24170000	0.10310000
O	-0.84940000	1.98850000	1.27940000
C	-2.97730000	-0.40040000	-0.53970000
O	-3.92430000	0.69040000	-0.42170000
C	-4.86670000	0.74800000	0.67990000
C	-5.60310000	-0.60860000	0.89770000
C	-4.61250000	-1.80710000	0.88910000
C	-3.70470000	-1.77560000	-0.37260000
O	-4.50250000	-2.04580000	-1.53470000
C	-4.27680000	1.34440000	1.98800000
O	-3.63550000	2.58880000	1.72710000
O	-6.60670000	-0.78790000	-0.10580000
O	-3.81640000	-1.82510000	2.07860000
H	-1.62460000	1.85080000	-0.62960000
H	-1.87870000	-0.29480000	1.37110000
H	3.11330000	0.15250000	0.03220000
H	0.77370000	2.89470000	-0.58610000
H	4.15120000	-1.33900000	-2.33330000
H	6.51930000	-2.03640000	-1.48610000
H	-4.44650000	-1.77410000	2.83030000
H	-3.70070000	-1.19780000	-0.87510000
H	7.07500000	2.62270000	-0.23210000
H	4.88230000	1.80630000	-0.80060000
H	9.89230000	0.63110000	0.35780000
H	-1.74400000	2.26260000	1.53150000
H	-2.64870000	-0.35510000	-1.58250000
H	-5.62410000	1.46980000	0.36110000
H	-6.13600000	-0.59140000	1.85110000
H	-5.18650000	-2.73780000	0.87880000
H	-2.98800000	-2.59290000	-0.30490000
H	-3.07980000	1.53110000	2.70190000
H	-3.29650000	2.89710000	2.59450000
H	-2.14750000	-2.28280000	
H	-0.96400000		

Table S8 Cartesian coordinates (\AA) for the geometry optimized structure of $\mathbf{1 b - 2}$

Atom	X	Y	Z
C	0.66830000	2.69200000	1.13850000
C	0.04520000	1.28510000	1.37750000
c	1.16050000	0.39250000	1.02280000
c	2.22290000	1.06540000	0.42540000
c	1.92610000	2.42940000	0.45440000
\bigcirc	1.14630000	-0.84010000	1.25480000
C	3.36420000	0.45490000	-0.12720000
c	3.34100000	-0.71000000	-0.92730000
0	4.47960000	0.95590000	0.12990000
0	2.55930000	3.47870000	-0.11920000
c	2.22170000	-1.15980000	-1.64590000
c	2.21460000	-2.32610000	-2.43950000
C	3.25710000	-2.61030000	-3.35090000
c	3.18320000	-3.74450000	-4.18670000
c	2.05590000	-4.58380000	-4.12980000
C	1.06300000	-4.36270000	-3.16340000
C	1.12080000	-3.21510000	-2.34800000
0	1.87260000	-5.57840000	-5.02890000
0	0.90820000	3.41790000	2.34200000
C	-1.24130000	1.05090000	0.51070000
0	-2.18710000	2.14220000	0.62900000
C	-3.13550000	2.19920000	1.72510000
c	-3.87260000	0.84310000	1.94330000
C	-2.89020000	-0.36150000	1.91820000
C	-1.97210000	-0.31940000	0.66480000
0	-2.73910000	-0.56090000	-0.51840000
c	-2.55810000	2.81050000	3.03020000
0	-1.92860000	4.05800000	2.76290000
0	-4.87630000	0.69250000	0.93240000
\bigcirc	-2.12150000	-0.39020000	3.12510000
H	0.06130000	3.30850000	0.47120000
H	-0.16100000	1.14530000	2.43610000
H	4.20590000	-1.25620000	-0.98370000
H	3.34060000	3.38140000	-0.69500000
H	1.34300000	-0.63920000	-1.58470000
H	4.06640000	-1.98980000	-3.43260000

H	3.94840000	-3.94990000	-4.83240000
H	0.27840000	-5.01200000	-3.08020000
H	0.34670000	-3.03410000	-1.70270000
H	2.50780000	-5.71530000	-5.75980000
H	1.37960000	4.23380000	2.05510000
H	-0.90730000	1.09950000	-0.53220000
H	-3.89120000	2.91970000	1.39790000
H	-4.39610000	0.85680000	2.90360000
H	-3.47220000	-1.28670000	1.89510000
H	-1.25780000	-1.13930000	0.72460000
H	-3.35400000	0.20460000	-0.57300000
H	-3.36800000	2.99930000	3.73640000
H	-1.85170000	2.14330000	3.51850000
H	-1.08690000	3.82500000	2.32750000
H	-5.41900000	-0.07770000	1.20740000
H	-1.60210000	-1.22380000	3.10200000

Table S9 Cartesian coordinates $(\AA$) for the geometry optimized structure of $\mathbf{1 b - 3}$

Atom	X	Y	Z
C	-0.85540000	0.95860000	-0.30540000
C	-1.47770000	-0.44960000	-0.07400000
C	-0.36220000	-1.34780000	-0.44010000
C	0.74280000	-0.67390000	-0.94790000
C	0.46400000	0.68490000	-0.85800000
O	-0.39470000	-2.58480000	-0.22610000
C	1.93600000	-1.24390000	-1.44300000
C	3.24000000	-0.78840000	-1.21440000
O	1.81700000	-2.25440000	-2.18620000
O	1.28060000	1.70490000	-1.18220000
C	3.64610000	0.04860000	-0.14100000
C	4.95650000	0.48630000	0.06000000
C	6.07320000	-0.38670000	-0.05270000
C	7.37980000	0.07990000	0.15220000
C	7.60210000	1.44100000	0.45790000
C	6.50800000	2.30170000	0.63980000
C	5.20510000	1.84250000	0.41540000
O	8.82690000	1.99960000	0.45700000
O	-0.64710000	1.70210000	0.89190000

C	-2.77180000	-0.68480000	-0.92570000
O	-3.72190000	0.40340000	-0.81000000
C	-4.65650000	0.46010000	0.29720000
C	-5.39410000	-0.89700000	0.50980000
C	-4.40840000	-2.09840000	0.50010000
C	-3.49970000	-2.05630000	-0.76020000
O	-4.27520000	-2.29380000	-1.93860000
C	-4.06910000	1.05430000	1.60520000
O	-3.43090000	2.29930000	1.34100000
O	-6.37150000	-1.07910000	-0.52200000
O	-3.63520000	-2.12080000	1.70590000
H	-1.42840000	1.56510000	-1.01620000
H	-1.67990000	-0.58090000	0.98760000
H	3.96960000	-1.08990000	-1.86860000
H	0.96380000	2.61120000	-0.97730000
H	2.93210000	0.36680000	0.51930000
H	5.92740000	-1.37720000	-0.27180000
H	8.17120000	-0.56640000	0.08240000
H	6.68230000	3.28800000	0.85490000
H	4.43350000	2.51320000	0.47010000
H	9.59870000	1.50430000	0.12210000
H	-1.54100000	1.97530000	1.14620000
H	-2.44080000	-0.64220000	-1.96870000
H	-5.40940000	1.18780000	-0.01840000
H	-5.93260000	-0.88600000	1.46160000
H	-4.98840000	-3.02520000	0.48220000
H	-2.78770000	-2.87770000	-0.70640000
H	-4.86170000	-1.50720000	-2.01000000
H	-4.87350000	1.24100000	2.31740000
H	-3.36780000	0.37280000	2.08010000
H	-3.09180000	2.60930000	2.20760000
H	-6.85060000	-0.22700000	-0.59800000
H	-3.13040000	-2.96420000	1.69580000

Table S10 Cartesian coordinates (\AA) for the geometry optimized structure of 1b-4

Atom	X	Y	Z
C	0.67520000	2.70370000	1.11130000
C	0.06110000	1.29030000	1.33900000

C	1.17990000	0.40270000	0.98200000
C	2.24230000	1.08040000	0.39180000
C	1.94090000	2.44410000	0.43160000
O	1.17260000	-0.83080000	1.20720000
C	3.38330000	0.46890000	-0.16350000
C	3.36380000	-0.69810000	-0.96190000
O	4.49920000	0.97050000	0.09130000
O	2.58090000	3.49010000	-0.14140000
C	2.24640000	-1.15220000	-1.68180000
C	2.23990000	-2.31910000	-2.47430000
C	3.28200000	-2.60380000	-3.38630000
C	3.20790000	-3.73740000	-4.22280000
C	2.08120000	-4.57750000	-4.16650000
C	1.08810000	-4.35600000	-3.19990000
C	1.14630000	-3.20900000	-2.38350000
O	1.90060000	-5.57340000	-5.06500000
O	0.88370000	3.43420000	2.32020000
C	-1.22850000	1.05340000	0.47350000
O	-2.17050000	2.14960000	0.59480000
C	-3.11480000	2.20730000	1.69350000
C	-3.85410000	0.85080000	1.90350000
C	-2.86910000	-0.35280000	1.88670000
C	-1.95400000	-0.32330000	0.63060000
O	-2.73460000	-0.60220000	-0.54160000
C	-2.51100000	2.79700000	2.99750000
O	-3.53810000	3.08830000	3.94340000
O	-4.85390000	0.67750000	0.89530000
O	-2.06830000	-0.38440000	3.07160000
H	0.07060000	3.31500000	0.43740000
H	-0.13630000	1.14190000	2.39740000
H	4.22980000	-1.24360000	-1.01720000
H	3.36340000	3.38570000	-0.71540000
H	1.36750000	-0.63230000	-1.62160000
H	4.09150000	-1.98350000	-3.46740000
H	3.97300000	-3.94280000	-4.86870000
H	0.30360000	-5.00560000	-3.11680000
H	0.00000	-5.79480000	

H	1.37360000	4.24150000	2.04110000
H	-0.89590000	1.10370000	-0.56900000
H	-3.86790000	2.93450000	1.37610000
H	-4.38880000	0.86300000	2.85610000
H	-3.44890000	-1.27970000	1.87350000
H	-1.23320000	-1.13660000	0.71040000
H	-2.09940000	-0.67910000	-1.28520000
H	-1.82490000	2.10120000	3.46990000
H	-1.96660000	3.71540000	2.76920000
H	-3.06640000	3.35050000	4.76340000
H	-4.33930000	0.44240000	0.09740000
H	-2.69620000	-0.33940000	3.82520000

1.3 Specific experimental conditions

1.3.1 Synthesis of saffloneoside (1) from hydroxysafflor yellow A (HSYA)

To a stirred solution of HSYA ($1.0 \mathrm{~g}, 1.63 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(60 \mathrm{~mL})$ were added $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONa}(2.5 \mathrm{~g}, 36.76 \mathrm{mmol}$) at room temperature. Then, the resulting mixture was stirred for 6 h under reflux. Water (20 mL) was added to quench the reaction, and the mixture was neutralized with 1 M aqueous HCl . The mixed solution was concentrated under reduced pressure at $40^{\circ} \mathrm{C}$, and the concentrated residue was purified by Sephadex LH-20 with $\mathrm{H}_{2} \mathrm{O}$ as the mobile phase to give 1 ($447 \mathrm{mg}, 65 \%$) as a yellow powder.
$[\alpha]_{\mathrm{D}}{ }^{20}=-33.3(c=0.15, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{\mathbf{2}} \mathbf{O}+\mathbf{N a O D}$) δ н: $7.42(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{H}-7), 7.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, $\mathrm{H}-10$ and $\mathrm{H}-14), 7.32(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{H}-8), 6.51(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-11$ and $\mathrm{H}-13), 4.34$ (1 H , brs, $\mathrm{H}-4$), 3.77 ($1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{H}-1$ '), $3.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-6{ }^{\prime}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, J=12.5$, $\left.5.0 \mathrm{~Hz}, \mathrm{H}_{2}-6^{\prime}\right), 3.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.41$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), 3.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 3.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 2.72 (1H, brs, H-5).
${ }^{13} \mathrm{C}$ NMR (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta_{\mathrm{C}}: 202.6$ (C-3), 201.2 (C-1), 188.8 (C-6), 170.8 (C-12), 144.3 (C-8), 131.2 (C-10, 14), 121.2 (C-9), 119.6 (C-11, 13), 119.4 (C-7), 114.5 (C-2), 79.4 (C5'), 77.7 (C-3'), 76.0 (C-1'), 71.0 (C-4'), 70.2 (C-4), 69.6 (C-2'), 60.8 (C-6'), 52.7 (C-5).

The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and optical rotation value of the synthetic 1 were in good agreement with those for natural saffloneoside.

1.3.2 Synthesis of 2,4,6-trihydroxy-3,5-di-C-glucosylacetophenone 4

To a stirred solution of 2,4,6-trihydroxyacetophenone ($1.0 \mathrm{~g}, 5.96 \mathrm{mmol}$) and D-glucose (5.4 g , 29.80 mmol) in ethanol (30 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at room temperature, scandium (III) trifluoromethanesulfonate ($1.2 \mathrm{~g}, 2.38 \mathrm{mmol}$) was added, and the resultant mixture was heated at $90^{\circ} \mathrm{C}$ for 18 h . Water (200 mL) was added to the reaction mixture, and the suspension was passed through a column of MCI GEL CHP20P (75-150 $\mu \mathrm{m}$, Mitsubishi Chemical Corp., $3.5 \times$ 25 cm) loaded with water, and the gel was then washed with 300 mL of water, to remove nonabsorbed glucose and $\mathrm{Sc}(\mathrm{OTf})_{3}$. The nonabsorbed components, which include the unreactive glucose and $\mathrm{Sc}(\mathrm{OTf})_{3}$, was evaporated in vacuo to give a colorless solid. The absorbed products were eluted from the gel column with 300 mL of 50% aqueous $\mathrm{CH}_{3} \mathrm{OH}$, and the eluate was evaporated in vacuo to give a pale-brown solid $(2.2 \mathrm{~g})$ that was then separated by silica-gel column chromatography ($\mathrm{Me}_{2} \mathrm{CO}: \mathrm{EtOAc}: \mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}=15: 30: 2: 1$) to give 4 ($1.32 \mathrm{~g}, 45 \%$) as white powder.
$\mathbf{R}_{\mathbf{f}} 0.18\left(\mathrm{Me}_{2} \mathrm{CO}: \mathrm{EtOAc}: \mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}=15: 30: 2: 1\right)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) ~ \delta \mathrm{H}: 4.92(2 \mathrm{H}, \mathrm{d}, J=9.7), 3.82(4 \mathrm{H}, \mathrm{m}), 3.60(2 \mathrm{H}, \mathrm{m}), 3.51(2 \mathrm{H}, \mathrm{m})$, $3.49(2 \mathrm{H}, \mathrm{m}), 3.44(2 \mathrm{H}, \mathrm{m}), 2.65(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) δ_{C} : 205.5, 163.3 (2C), 162.5, 106.4, 104.3 (2C), 82.7 (2C), 79.1 (2C), 76.7 (2C), 74.1 (2C), 71.1 (2C), 61.9 (2C) ppm.

HRMS(ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+}: 493.1479$, found: 439.1472.

1.3.3 Synthesis of 2-hydroxy-4,6-dimethoxymethoxy-3,5-di-C-glucosylacetophenone 4-1

To a stirred solution of 2,4,6-trihydroxy-3,5-di-C-glucosylacetophenone 4 ($500 \mathrm{mg}, 1.02 \mathrm{mmol}$) in DMF (8 mL) at room temperature, $\mathrm{K}_{2} \mathrm{CO}_{3}(1042 \mathrm{mg}, 7.55 \mathrm{mmol}$) was added. After 15 min , MOMCI was added dropwise under argon, and the reaction mixture was stirred at rt for 5 h and then filtered. The filtrate was evapovated and the residue was chromotographed with $\mathrm{Me}_{2} \mathrm{CO}$: EtOAc : $\mathrm{H}_{2} \mathrm{O}(20: 20: 3)$ to give 4-1 (402 mg, 68\%) as a yellow solid.
$\mathbf{R}_{\mathbf{f}} 0.25\left(\mathrm{Me}_{2} \mathrm{CO}: \mathrm{EtOAc}: \mathrm{H}_{2} \mathrm{O}=20: 20: 3\right)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta \mathrm{H}: 5.13(1 \mathrm{H}, \mathrm{d}, J=5.1), 5.10(1 \mathrm{H}, \mathrm{d}, J=5.1), 4.98(1 \mathrm{H}, \mathrm{d}, J=5.8)$, $4.87(1 \mathrm{H}, \mathrm{d}, J=5.8), 4.60(1 \mathrm{H}, \mathrm{d}, J=9.6), 4.46(1 \mathrm{H}, \mathrm{d}, J=9.6), 3.82(2 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{m})$, $3.65(1 \mathrm{H}, \mathrm{m}), 3.61(2 \mathrm{H}, \mathrm{m}), 3.61(3 \mathrm{H}, \mathrm{s}), 3.59(3 \mathrm{H}, \mathrm{s}), 3.44(1 \mathrm{H}, \mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{m}), 3.41(1 \mathrm{H}, \mathrm{m})$, $3.36(2 \mathrm{H}, 3.36) \mathrm{ppm}$.

HRMS(ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]^{+}: 581.2037$, found: 581.2029.

1.3.4 Synthesis of 2,4,6,13-tetrahydroxy-3,5-di-C-glucosylchalone 5

To a stirred solution of $4-1(580 \mathrm{mg}, 1.0 \mathrm{mmol})$ and 4-methoxymethoxybenzaldehyde (340 mg , $2.0 \mathrm{mmol})$ in ethanol (5.7 mL) and $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL}), 50 \%$ aqueous potassium hydroxide (2.9 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was stirred at rt for 2 d . Then the mixture was carefully neutralized with 1 M aqueous HCl and concentrated by rotary evaporation under reduced pressure. The residue was redissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, and concentrated hydrochloric acid (1 mL) was added. The mixture was stired at $50^{\circ} \mathrm{C}$ for 30 min , then neutralized with $10 \% \mathrm{NaHCO}_{3}$. The solution was concentrated under reduced pressure and purified by
preparative HPLC with an ODS-A column ($250 \times 20 \mathrm{~mm}, 5 \mu \mathrm{~m}$, YMC Corp.) using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($45: 55, \mathrm{v} / \mathrm{v}$) as mobile phase to afford 5 ($328 \mathrm{mg}, 55 \%$) as a yellow solid. In addition, isomerism between di-C-glucosylchalcone (5) and flavanone (5-1) can be reversibly controlled by altering solution pH . These two constitutional isomers rapidly interconvert between pH 11 and 13, with flavanone (5-1) the only species present at the low end of this range and anionic chalcone (5) observed exclusively in more alkaline solutions. This change can be detected colorimetrically, as only 5 absorbs strongly in the ultraviolet region.
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of $5-1 \delta_{\mathrm{H}}: 7.34(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-12,16), 6.78(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-$ 13,15), 5.37 (1H, m, H-2), 4.85 (1H, d, J = 10.4, H-1'), 4.79 (1H, d, J = 10.4, H-1"), 3.93 (1H, m, $\left.\mathrm{H}_{1}-6^{\prime}\right), 3.82$ (1H, m, H-5'), 3.80 (1H, m, H1-6"), 3.78 (1H, m, H-5"), 3.68 (1H, m, H2-6"), 3.45 (1H, m, H-3"), 3.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 3.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4{ }^{\prime \prime}$) 3.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 3.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 2^{\prime \prime}$), 3.05 (1H, m, $\mathrm{H}_{1}-3$), $2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of $5-1$ бс: 197.0, 165.2, 161.3, 157.5, 157.4, 129.7, 129.4, 127.7 (2C), 127.3, 114.9 (2C), 101.6, 81.1 (2), 81.0, 80.9, 78.9, 78.7, 78.3, 74.2, 71.6, 71.5, 71.4, 70.0, 60.9 (2C) ppm.

HRMS(ESI): calc. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}]^{+}: 597.1775$, found: 597.1773.

1.3.5 Synthesis of 3,4,6-trihydroxycyclohexadienone $6^{[a]}$

Table S11 Oxidative dearomatization of 4

entry	catalyst	pH	oxidant	time (h)	yield (\%) ${ }^{[\mathrm{g}, \mathrm{h}]}$
$1{ }^{\text {[b] }}$	pyridine	-	O_{2}	24	-
$2^{[c]}$	$\mathrm{Pb}(\mathrm{OAc})_{2}$	-	O_{2}	24	-
$3^{[c]}$	$\mathrm{Pb}(\mathrm{OAc})_{2} \cdot \mathrm{~Pb}(\mathrm{OH})$	-	O_{2}	24	-
$4^{\text {[d] }}$	NaHCO_{3}	-	$\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}$	12	-
$5{ }^{\text {[e] }}$	-	-	$\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$	12	-
$6{ }^{[f]}$	-	-	DDQ	12	-
7	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	7.0	air	24	-
8	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	7.5	air	24	21
9	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	8.0	air	24	68
10	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	8.5	air	24	62
11	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	9.0	air	24	36
12	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	9.5	air	24	-
13	$\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	8.0	O_{2}	12	72
14	$\mathrm{K}_{2} \mathrm{HPO}_{4}-\mathrm{KH}_{2} \mathrm{PO}_{4}$	7.5	O_{2}	12	35
15	$\mathrm{K}_{2} \mathrm{HPO}_{4}-\mathrm{KH}_{2} \mathrm{PO}_{4}$	8.0	O_{2}	12	49

[a] Reaction conditions: $\mathbf{4}\left(1.0 \mathrm{mmol}\right.$), room temperature. [b] Pyridine (2 equiv), $\mathrm{CH}_{3} \mathrm{OH}$ as solvent.
[c] Catalyst (2.5 equiv), $\mathrm{CH}_{3} \mathrm{OH}$ as solvent. [d] $\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right) 2$ (1.5 equiv), NaHCO_{3} (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}$ as solvent. [e] CAN (3 equiv), $\mathrm{CH}_{3} \mathrm{OH}$ as solvent. [f] DDQ (1 equiv), $\mathrm{CH}_{3} \mathrm{OH}$ as solvent. [g] Determined by UV and MS. [h] d.r. 1:1.

Many commonly used dearomatization reagents (Pyridine, $\mathrm{Pb}(\mathrm{OAc})_{2}, \mathrm{~Pb}(\mathrm{OAc})_{2} \cdot \mathrm{~Pb}(\mathrm{OH})$, $\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}, \mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$, and DDQ) were examined, but none of these reagents were suitable for the reaction due to serious side reactions or poor reactivity of 4 (entries $1-6) .{ }^{[3-8]}$ To our delight, vigorous stirring of 4 in $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ buffer salt ($\mathrm{pH}=7.5$) under an air atmosphere at room temperature for 24 h afforded oxidized products 6 in a total yield of 21% as an inseparable mixture of stereoisomers. Then, this reaction was evaluated with various buffer salts with different pH values, and the yield of product 6 was improved to 72% in the presence of $\mathrm{NH}_{4} \mathrm{CI}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ buffer salt $(\mathrm{pH}=8.0)$ under O_{2}.

General procedure for 6:

Preparation of $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ buffer salt ($\mathrm{pH}=8.0,500 \mathrm{~mL}$). To a stirred solution of the $\mathrm{NH}_{4} \mathrm{Cl}$ $(5.35 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL}), \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(1 \rightarrow 30)$ was added dropwise until pH reached 8.0 at room temperature.

A solution of $4(1.0 \mathrm{mmol})$ in $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ buffer salt ($\mathrm{pH}=8.0,30 \mathrm{~mL}$) was vigorously stirred at rt under O_{2} atmosphere (balloon) for 12 h . The mixture was passed through a column of MCl

GEL CHP20P (75-150 $\mu \mathrm{m}$, Mitsubishi Chemical Corp., $1.5 \times 20 \mathrm{~cm}$) loaded with water, and the gel was then washed with 100 mL of water, to remove nonabsorbed $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. The absorbed products were eluted from the gel column with 100 mL of 30% aqueous MeOH , and the eluate was evaporated in vacuo to give a light green solid 6.

Due to the instability of quinone unit of 6, it is difficult to obtain the pure product. The target product was identified by the characteristic ultraviolet absorption and HRMS (ESI) measurements.

1.3.6 Synthesis of glucosyl acetate 12

To a solution of 2,3,4,6-tetra-O-benzyl-D-glucopyranose 11 ($60.0 \mathrm{~g}, 112 \mathrm{mmol}$) in pyridine (300 mL) was added $\mathrm{Ac}_{2} \mathrm{O}(80 \mathrm{~mL})$ at room temperature and the solution was stirred for 24 h at room temperature. The reaction was quenched with $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether : $\mathrm{EtOAc}=5: 1$) to afford acetate $12(65.2 \mathrm{~g}, 98 \%)$ as a colorless oil. (α-anomer as major product)
$\mathbf{R}_{\mathbf{f}} 0.32$ (petroleum ether : $\mathrm{EtOAc}=5: 1$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{\mathrm{H}}: 7.31(18 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 6.26(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}), 4.83$ $(1 \mathrm{H}, \mathrm{m}), 4.77-4.72(3 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{m}), 4.53-4.47(3 \mathrm{H}, \mathrm{m}), 3.81(2 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.60(2 \mathrm{H}, \mathrm{m}), 2.12(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{\mathrm{c}}: 169.7$, 139.1, 138.6, 138.5 (2C), 128.8-128.1 (20C), 89.7, 81.5, 78.8, 77.2, 75.1, 74.7, 72.8, 72.7, 72.5, 68.7, 21.3 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]+$: 583.2618, found: 583.2612.

1.3.7 Synthesis of di-C-(per-O-benzylglucosyl)phloroacetophenone 6-1

To a stirred solution of 2,4,6-trihydroxyacetophenone $3(1.0 \mathrm{~g}, 5.95 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(20$ mL) was added $\mathrm{Sc}(\mathrm{OTf})_{3}(1.2 \mathrm{~g}, 2.38 \mathrm{mmol})$, 12 ($\left.10.4 \mathrm{~g}, 17.85 \mathrm{mmol}\right)$, and $\mathrm{CaSO}_{4}(1.0 \mathrm{~g})$ at room temperature. After stirring for 12 h at $60^{\circ} \mathrm{C}$ under nirtogen, the reaction mixture was filtered through a thin pad of Celite $®$, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc $=$ $10: 1$) to afford 6-1 (3.5 g, 48\%) as a white powder.
$\mathbf{R}_{\mathrm{f}} 0.36$ (petroleum ether : $\mathrm{EtOAc}=10: 1$).

IR (KBr): 3171, 2912, 2869, 1614, 1090, 742, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 14.41(\mathrm{OH}, \mathrm{s}), 9.35(\mathrm{OH}, \mathrm{s}), 7.38-7.15(40 \mathrm{H}, \mathrm{m}), 5.25-4.62(16 \mathrm{H}$, $\mathrm{m})$, 3.87-3.62 (14H, m), $2.73(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) δ_{c} : 204.3, 161.9, 161.3 (2C), 140.9, 139.1-138.6 (8C), 136.5, 128.7-126.4 (40C), 85.7 (2C), 81.3 (2C), 78.4 (2C), 77.7 (2C), 74.8 (2C), 74.6 (2C), 74.1 (2C), 73.3 (2C), 72.7 (2C), 68.5 (2C), 33.4 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{76} \mathrm{H}_{77} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+}: 1213.5235$, found: 1213.5308.

1.3.8 Synthesis of 3-methyl-2,4,6-trihydroxyacetophenone 10

To a solution of 2,4,6-trihydroxyacetophenone ($10.0 \mathrm{~g}, 59.5 \mathrm{mmol}$) in anhydrous acetone (200 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (20.5 g , 148.8 mmol). $\mathrm{CH}_{3} \mathrm{l}(15.0 \mathrm{~mL}, 240 \mathrm{mmol}$) was added over 5 min after the mixture was brought to $0^{\circ} \mathrm{C}$. The reaction was allowed to proceed for 12 h at $0^{\circ} \mathrm{C}$
with stirring. Then, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and concd $\mathrm{HCl}(9 \mathrm{~mL})$, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ three times and the combined organic layer was washed with brine, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (n hexane : isopropanol = 15:1) to provide $10(5.6 \mathrm{~g}, 52 \%)$ as a yellow powder.
m.p. $211-212^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathrm{f}} 0.28$ (n-hexane : isopropanol = $15: 1$).

IR (KBr): 3200, 2935, 1630, 1569, 1443, 1361, 1113, $796 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta_{\mathrm{H}}: 13.97(\mathrm{OH}, \mathrm{s}), 10.55(\mathrm{OH}, \mathrm{s}), 10.32(\mathrm{OH}, \mathrm{s}), 6.01(1 \mathrm{H}, \mathrm{s})$, $2.55(3 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) δ_{c} : 203.1, 164.0, 163.3, 160.7, 104.4, 101.9, 94.5, 33.1, 7.9 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]:$: 181.0579, found: 181.0504 .

1.3.9 Synthesis of 3-methyl-5-C-(per-O-benzylglucosyl)-2,4,6-trihydroxyacetophenone

 9

To a stirred solution of 3-methyl-2,4,6-trihydroxyacetophenone 10 ($5.0 \mathrm{~g}, 27.47 \mathrm{mmol}$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(100 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(5.41 \mathrm{~g}, 10.99 \mathrm{mmol}), 12(13.3 \mathrm{~g}, 22.89 \mathrm{mmol})$, and $\mathrm{CaSO}_{4}(10.0 \mathrm{~g})$ at room temperature. After stirring for 12 h at $45^{\circ} \mathrm{C}$ under nirtogen, the reaction mixture was filtered through a thin pad of Celite $®$, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether : acetone = $15: 1$) to afford $9(18.4 \mathrm{~g}, 95 \%)$ as a white solid.
m.p. $132-133{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathrm{f}} 0.32$ (petroleum ether : acetone $=15: 1$).

IR (KBr): 3294, 2916, 2880, 1621, 1593, 1088, 751, $694 \mathrm{~cm}^{-1}$.
 3.93-3.83 (3H, m), 3.79-3.74 (3H, m), $2.59(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{\mathrm{c}}: 204.5,163.3$, 161.1, 159.7, 139.9, 139.4, 139.2, 138.5, 129.2-128.2 (20C), 106.3, 104.3, 103.3, 86.8, 82.2, 79.4, 78.1, 76.0, 75.9, 75.6, 75.5, 73.7, 68.7, 33.3, 7.8 ppm .

HRMS(ESI): calc. for $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{O}_{9}[\mathrm{M}-\mathrm{H}]: 703.2985$, found: 703.2916.

1.3.10 Synthesis of 3,4,6-trihydroxycyclohexadienone 8

To a stirred solution of 3-methyl-5-C-(per-O-benzylglucosyl)-2,4,6-trihydroxyacetophenone $9(5.0 \mathrm{~g}, 7.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ was added pyridine $(20 \mathrm{~mL})$ at room temperature. After stirring for 24 h at the same temperature under O_{2} condition, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (toluene : EtOAc : $\left.\mathrm{CH}_{3} \mathrm{COOH}=7: 2: 0.5\right)$ to afford $8(8 \mathrm{a}+\mathbf{8 b})(4.19 \mathrm{~g}, 83 \%)$ as a syrup.
$\mathbf{R}_{\mathrm{f}} 0.30$ (toluene : $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=7: 2: 0.5$).

IR (KBr): 3368, 2924, 2867, 1623, 1537, 1455, 1070, 737, $698 \mathrm{~cm}^{-1}$.
 ($6 \mathrm{H}, \mathrm{m}$), 4.61-4.50 (10H, m), 3.60-3.34 (14H, m), 2.34 ($6 \mathrm{H}, \mathrm{s}$), 1.21 (s, 3H), 1.17 (s, 3H).
 138.9 (8 C), 135.3 (2C), 128.9-128.0 (40 C) 102.0 (2C), 87.5, 87.4, 79.5-78.6 (8C), 75.1-71.9 (10C), 69.7 (2C), 29.7, 29.2, 27.8, 27.5 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 721.2934$, found: 721.3003.

1.3.11 Synthesis of cyclopentenone 7

To a solution of $8(3.0 \mathrm{~g}, 4.17 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ at room temperature, 2 M aqueous NaOH solution (20 mL) was added and the mixture was stirred for 6 h at $50^{\circ} \mathrm{C}$ until starting material consumed completely. The reaction mixture was neutralized with 1 M aqueous HCl solution and diluted with EtOAc (150 mL). The aqueous layer was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (toluene : $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=12: 2: 0.5$) to afford $7(1.5 \mathrm{~g}, 52 \%)$ as a light yellow powder.
m.p. $126-127^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}} 0.35$ (toluene : $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=12: 2: 0.5$).
$[\alpha]{ }_{\mathrm{D}}{ }^{20}=-25.8(c=0.17, \mathrm{MeOH})$.

IR (KBr): 3406, 2917, 2869, 1596, 1455, 1095, 736, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta_{H}: 7.33-7.17(20 \mathrm{H}, \mathrm{m}), 5.89-5.81(\mathrm{OH}), 4.84-4.70(5 \mathrm{H}, \mathrm{m}), 4.54-$ $4.42(3 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.70-3.44(6 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}$, s).
${ }^{13}$ C NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}$) δ_{c} : 138.3, 138.1, 137.9, 137.8, 128.0-127.0 (20C), 111.4, 86.2, 78.9, 77.7, 77.6, 74.4, 74.2, 73.7, 73.6, 71.7, 71.6, 68.0, 52.5, 27.2. Some carbon resonances (C1, C3, C6) were absent in the ${ }^{13} \mathrm{C}$ NMR spectra due to rapid interconversion of the numerous tautomeric forms.

HRMS(ESI): calc. for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]+: 679.2862$, found: 679.2859.

1.3.12 Synthesis of 14

A mixture of compound $7(1.2 \mathrm{~g}, 1.77 \mathrm{mmol})$, 4-hydroxybenzaldehyde ($0.26 \mathrm{~g}, 2.12 \mathrm{mmol}$), Lproline ($407 \mathrm{mg}, 3.54 \mathrm{mmol}$), and TEA ($536 \mathrm{mg}, 5.31 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(10.0 \mathrm{~mL}$) was stirred at room temperature for 3 d . The resulting mixture was concentrated in vacuo affording the corresponding cyclopentenone intermediate 13 , which was used in the subsequent step without further purification.

A solution of the crude cyclopentenone intermediate $13 \mathrm{in} \mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was stirred under reflux for 8 h . The resulting mixture was concentrated under reduced pressure to afford crude residue. The residue was purified by reversed-phase preparative HPLC (MeOH : $\left.\mathrm{H}_{2} \mathrm{O}=85: 15\right)$ to afford 14 ($886 \mathrm{mg}, 64 \%$).

Compound 14:

$[\alpha]_{\mathrm{D}}{ }^{20}=-18.2(c=0.10, \mathrm{MeOH})$.

IR (KBr): 3286, 2903, 1578, 1396, 1283, 1097, 982, 738, $698 \mathrm{~cm}^{-1}$.
 $15.3 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.35-7.20(20 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 4.87(2 \mathrm{H}, \mathrm{m})$, $4.80(2 \mathrm{H}, \mathrm{dd}, J=4.2,8.6 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{m}), 4.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 4.41(2 \mathrm{H}, \mathrm{q}, J=6.3$,$) ,$ $3.99(1 \mathrm{H}, \mathrm{d}, J=9.9), 3.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.9), 3.60-3.48(5 \mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- d_{6}) $\delta \mathrm{c}: 162.2,139.3,139.0,139.0,138.8,132.4,129.0-127.9$ (20C), 126.1, 117.0, 110.8, 87.0, 79.8, 78.9, 78.8, 75.6, 75.3, 74.1, 74.7, 72.5, 70.1, 69.0, 54.1. Some carbon resonances (C1, C3, C6, C7, C8) were absent in the ${ }^{13} \mathrm{C}$ NMR spectra due to rapid interconversion of the numerous tautomeric forms.

HRMS(ESI): calc. for $\mathrm{C}_{48} \mathrm{H}_{47} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]+: 783.3125$, found: 783.3122.

1.3.14 Synthesis of 1

Intermediate 14 ($500 \mathrm{mg}, 0.64 \mathrm{mmol}$) was pre-treated to dryness and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under atmosphere of nitrogen. After being cooled to $-40^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(6.4 \mathrm{mmol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.0 \mathrm{~mL}$) was added dropwise with an injector, and the reaction mixture was stirred for 2 h . Appropriate amount of water was added to quench the reaction, and the aqueous phase was evaporated under reduced pressure. The residue was purified by column chromatography on Sephadex LH-20 ($\mathrm{H}_{2} \mathrm{O}$ as eluent) to afford saffloneoside $1(270 \mathrm{mg}, 100 \%)$ as a yellow solid.
$[\alpha]_{\mathrm{D}^{20}}=-35.8(c=0.15, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ + NaOD) $\delta_{\mathrm{H}}: 7.41(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-7), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-10$ and $\mathrm{H}-14), 7.32(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-8), 6.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-11$ and $\mathrm{H}-13), 4.32$ (1H, brs), 3.77 (1H, dd, J = 8.5, $2.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 3.65 (1H, m, H1-6'), 3.50 (1H, dd, J = 12.5, 5.0 Hz, H2-6'), 3.42 (1H, m, H-3'), 3.39 (1H, m, H-4'), 3.26 (1H, m, H-2'), 3.24 (1H, m, H-5'), 2.72 ($1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-5$).
${ }^{13} \mathrm{C}$ NMR (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta_{\mathrm{c}}: 202.8(\mathrm{C}-3), 201.3(\mathrm{C}-1), 188.7(\mathrm{C}-6), 170.6(\mathrm{C}-12)$, 144.1 (C-8), 131.0 (C-10, 14), 121.0 (C-9), 119.4 (C-11, 13), 119.4 (C-7), 114.4 (C-2), 79.4 (C5'), 77.7 (C-3'), 76.0 (C-1'), 70.9 (C-4'), 70.1 (C-4), 69.7 (C-2'), 60.8 (C-6'), 53.0 (C-5).

HRMS(ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 423.1247$, found: 423.1244.

The spectral data and the optical rotation value of the synthetic 1 were in good agreement with those for natural saffloneoside.

Table S12 Comparison of NMR Data between natural 1 and synthetic 1 in $\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$

position	δ_{c}	δ_{c}	δ_{H} (mult., J in Hz)	$\delta_{\mathrm{H}}($ mult., $J \mathrm{in} \mathrm{Hz})$ Synthetic
1	Natural	Synthetic	Natural	
2	201.2	201.3		
3	114.5	114.4		
4	202.6	202.8		$4.32(\mathrm{brs})$
5	70.2	70.1	$4.33(\mathrm{~d}, 4.5)$	$2.72(\mathrm{brs})$
	53.0	53.0	$2.74(\mathrm{brs})$	

6	188.8	188.7		
7	119.4	119.4	$7.42(\mathrm{~d}, 15.8)$	$7.41(\mathrm{~d}, 15.5)$
8	144.3	144.1	$7.32(\mathrm{~d}, 15.8)$	$7.32(\mathrm{~d}, 15.5)$
9	121.2	121.0		
10	131.2	131.0	$7.34(\mathrm{~d}, 8.5)$	$7.37(\mathrm{~d}, 8.5)$
11	119.6	119.4	$6.50(\mathrm{~d}, 8.5)$	$6.50(\mathrm{~d}, 8.5)$
12	170.8	170.6		
13	119.6	119.4	$6.50(\mathrm{~d}, 8.5)$	$6.50(\mathrm{~d}, 8.5)$
14	131.2	131.0	$7.34(\mathrm{~d}, 8.5)$	$7.37(\mathrm{~d}, 8.5)$
1^{\prime}	76.0	76.0	$3.77(\mathrm{dd}, 8.5,2.0)$	$3.77(\mathrm{dd}, 8.5,2.0)$
2^{\prime}	69.6	69.7	$3.24(\mathrm{~m})$	$3.26(\mathrm{~m})$
3^{\prime}	77.7	77.7	$3.41(\mathrm{~m})$	$3.42(\mathrm{~m})$
4^{\prime}	71.0	70.9	$3.40(\mathrm{~m})$	$3.39(\mathrm{~m})$
5^{\prime}	79.4	79.4	$3.23(\mathrm{~m})$	$3.24(\mathrm{~m})$
6^{\prime}	60.8	60.8	$3.65(\mathrm{~m}) ;$	$3.65(\mathrm{~m}) ;$
			$3.50(\mathrm{dd}, 12.5,5.0)$	$3.52(\mathrm{dd}, 12.5,5.0)$

1.3.15 Synthesis of 15

To a solution of 2,4,6-trihydroxyacetophenone $3(10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added $\mathrm{KOH}(1.12 \mathrm{~g}, 20 \mathrm{mmol})$ in one portion. Prenyl bromide (2.98 g , 20 mmol) was then added dropwise over 10 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 1 h , during which time a thick orange precipitate was formed. The reaction mixture was then acidified with 1 M aqueous HCl solution $(5 \mathrm{~mL})$ and then extracted with EtOAc $(3 \times 50$ mL). The combined extracts were washed with brine, dried over NaSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether : EtOAC = $20: 1$) to give 15-1 ($1.40 \mathrm{~g}, 46 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}} 0.33$ (petroleum ether : $\mathrm{EtOAC}=20: 1$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, acetone $\left.-d_{6}\right) \delta_{\mathrm{H}}: 10.89(\mathrm{OH} \times 2$, brs), $7.86(\mathrm{OH}, \mathrm{brs}), 5.13(2 \mathrm{H}, \mathrm{m}), 3.38(4 \mathrm{H}$, d, $J=6.8 \mathrm{~Hz}), 2.64(3 \mathrm{H}, \mathrm{s}), 1.75(6 \mathrm{H}, \mathrm{s}), 1.66(6 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13}$ C NMR (500 MHz, acetone- \boldsymbol{d}_{6}) δ_{c} : 203.5, 159.6, 159.0 (2C), 131.8 (2C), 122.6 (4C), 106.8, 32.2, 24.9 (2C), 21.4 (2C), 17.1 (2C) ppm.

HRMS(ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 305.1708$, found:305.1716.

A solution of $15-1$ ($1.40 \mathrm{~g}, 4.6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(7 \mathrm{~mL})$ and pyridine (7 mL) was vigorously stirred at rt under O_{2} atmosphere (balloon) for 24 h . The mixture was evaporated in vacuo to give a dark red oil that was then separated by flash chromatography on silica gel (petrol : EtOAC, 12 : 1 as eluent) to give 15 ($1.12 \mathrm{~g}, 76 \%$) as a light yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{20}=+0.3(c=0.20, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, acetone- \boldsymbol{d}_{6}) δ_{H} : $18.87(\mathrm{OH}, \mathrm{brs}), 5.16(1 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{m})$, $3.05(1 \mathrm{H}, \mathrm{m}), 2.53(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 2.45(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 1.52$ $(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, acetone- \boldsymbol{d}_{6}) δ_{c} : 196.8, 194.9, 189.9, 170.8, 136.3, 130.9, 122.0, 116.6, 108.3, 106.0, 78.6, 41.7, 25.3, 25.1, 25.0, 20.7, 16.9, 16.9 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1533$, found 343.1536.

1.3.16 Synthesis of 16

To a solution of $15(1.12 \mathrm{~g}, 3.50 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ at room temperature, 2 M aqueous NaOH solution (10 mL) was added and the mixture was stirred for 6 h at $50{ }^{\circ} \mathrm{C}$ until starting material consumed completely. The reaction mixture was neutralized with 1 M aqueous HCl solution and diluted with EtOAc $(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 50$ mL) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by column chromatography on ODS (Methanol : $\mathrm{H}_{2} \mathrm{O}=1: 2$ as eluent) to afford $16(424 \mathrm{mg}, 54 \%)$ as a light yellow oil.

$$
[\alpha]_{\mathrm{D}}{ }^{20}=-0.1(c=0.20, \mathrm{MeOH}) .
$$

ECD: baseline curve ($c=0.20, \mathrm{MeOH}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{\mathrm{H}}: 5.10(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{m})$, $2.41(1 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.25(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{\mathrm{c}}: 199.1,197.4,195.9,133.3,120.3,112.9,73.2,52.0,26.8$, 26.2, 25.6, 17.7 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 225.1121$, found 225.1125.

1.3.17 Synthesis of 17

To a solution of $16(424 \mathrm{mg}, 1.89 \mathrm{mmol})$ and benzaldehyde $(401 \mathrm{mg}, 3.78 \mathrm{mmol})$ in $\mathrm{EtOH}(20$ mL), anhydrous $\mathrm{Ba}(\mathrm{OH})_{2}(596 \mathrm{mg}, 1.89 \mathrm{mmol})$ was added and the mixture was vigorously stirred under reflux for 2 d . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, then neutralized with 1 M aqueous HCl solution and diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by column chromatography on ODS (Methanol : $\mathrm{H}_{2} \mathrm{O}=7: 3$ as eluent) to afford 17 (277 mg, 47\%) as a yellow oil.
$[a]_{\mathrm{D}}{ }^{20}=-0.3(c=0.20, \mathrm{MeOH}) ;$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 7.96(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.75$ $(2 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{m}), 7.51(1 \mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 2.61(1 \mathrm{H}$, m), $2.48(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ_{c} : 202.3, 201.3, 180.6, 145.7, 134.1, 133.2, 131.5, 129.2 (2C), 128.9 (2C), 120.5, 119.6, 110.4, 74.3, 52.9, 26.1, 25.6, 17.7 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 313.1434$, found 313.1445.

A solution of L-glucose ($10.0 \mathrm{~g}, 55.6 \mathrm{mmol}$) and activated SK1B cation exchange resin (5.0 g) in $\mathrm{CH}_{3} \mathrm{OH}$ (100 mL) was vigorously stirred under reflux for 24 h . After cool down to room temperature, the mixture was filtered to remove SK1B cation exchange resin. The filtrate was concentrated under reduced pressure to give 1-methoxy-L-glucose ($10.5 \mathrm{~g}, 97 \%$) as a mixture of α-anomer and β-anomer ($1.7: 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta_{\mathrm{H}} \boldsymbol{\alpha}$-anomer: $4.81(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=12.2,1.8 \mathrm{~Hz})$, $3.77(1 \mathrm{H}, \mathrm{dd}, J=12.2,5.5 \mathrm{~Hz}), 3.69-3.64(2 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=9.8,3.8 \mathrm{~Hz}), 3.42(3 \mathrm{H}, \mathrm{s})$, $3.40(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$ ppm; β-anomer: $4.38(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{dd}, J=12.2,1.8$ Hz), $3.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.2,5.5 \mathrm{~Hz}), 3.58(3 \mathrm{H}, \mathrm{s}), 3.51-3.45(2 \mathrm{H}, \mathrm{m}), 3.36(1 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{t}$, $J=8.6 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta_{c} \boldsymbol{\alpha}$-anomer: 102.1, 75.9, 74.4, 74.1, 72.4, 63.4, $57.9 \mathrm{ppm} ; \boldsymbol{\beta}$ anomer: 106.1, 78.8, 78.6, 76.0, 72.5, 63.6, 60.1 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 195.0790 , found 195.0782.

A solution of 1-methoxy-L-glucose ($10.5 \mathrm{~g}, 53.9 \mathrm{mmol}$) in dry DMF (150 mL) cooled to $0^{\circ} \mathrm{C}$. NaH from 60% dispersion in mineral oil ($12.9 \mathrm{~g}, 323.4 \mathrm{mmol}$) was added over a period of 30 min followed by the addition of $\mathrm{BnCl}(41.0 \mathrm{~g}, 323.4 \mathrm{mmol})$; the reaction was allowed to reach $60^{\circ} \mathrm{C}$ and stirring was continued for 10 h . After completion of the reaction, the mixture was cooled in a water bath and quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$ and the combined extracts were washed with brine $(300 \mathrm{~mL})$ and water (300 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The product was purified by column chromatography (hexane : ethyl acetate $=9: 1$ as eluent) to give $\mathbf{1 - m e t h o x y - 2 , 3 , 4 , 6 -}$ tetra-O-benzyl-L-glucose ($27.5 \mathrm{~g}, 49.6 \mathrm{mmol}$) as a syrup.

α-anomer:

$\mathbf{R}_{\mathrm{f}} 0.35$ (hexane : ethyl acetate $=9: 1$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.40-7.17(20 \mathrm{H}, \mathrm{m}), 5.02-4.50(8 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$, $4.03(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}), 3.80-3.76(2 \mathrm{H}, \mathrm{m}), 3.70-3.68(2 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=9.7,3.6 \mathrm{~Hz})$. $3.42(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}^{2}$ NMR (125 MHz, CDCl_{3}) $\delta \mathrm{c}: 139.0,138.5,138.4,138.1,128.7-127.8$ (20C), 98.4, 82.4, 80.0, $77.8,76.0,75.3,73.7,73.6,70.0,68.6,55.4 \mathrm{ppm}$.

HRMS(ESI): calc. for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 577.2668$, found 577.2561 .

To a solution of 1-methoxy-2,3,4,6-tetra-O-benzyl-L-glucose (27.5 g, 49.6 mmol) in propionic acid $(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL}), \mathrm{HClO}_{4}(5 \mathrm{~mL})$ was added dropwise. The reaction was allowed to reach $90^{\circ} \mathrm{C}$ and stirring was continued for 18 h . After completion of the reaction, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and white crystal precipitated out. The precipitation was filtered, washed with ethanol, and dried at $60^{\circ} \mathrm{C}$ in oven to give 2,3,4,6-tetra-O-benzyl-L-glucose ($15.5 \mathrm{~g}, 58 \%$) as white solid. $\boldsymbol{\alpha}$-anomer and $\boldsymbol{\beta}$-anomer (2:1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}: ~} 7.39-7.18(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 5.01-4.54(8 \mathrm{H}$, m), 4.10-3.35 (6H, m) ppm.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta_{\mathrm{c}} \boldsymbol{\alpha}$-anomer: 138.9, 138.4, 138.1, 138.0, 128.7-128.2 (20C), 91.5, 82.0, 80.1, 77.9, 76.0, 75.3, 73.7, 73.5, 70.4, 68.8 ppm; β-anomer: 138.7, 138.6, 138.1, 138.0, 128.7-128.2 (20C), 97.7, 84.8, 83.3, 78.0, 77.9, 75.9, 75.2, 75.0, 74.8, 69.1 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 563.2512$, found 563.2404.

To a solution of 2,3,4,6-tetra-O-benzyl-D-glucose ($15.5 \mathrm{~g}, 28.8 \mathrm{mmol}$) in pyridine (150 mL) was added $\mathrm{Ac}_{2} \mathrm{O}(40 \mathrm{~mL})$ at room temperature and the solution was stirred for 24 h at room temperature. The reaction was quenched with $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether : $\mathrm{EtOAc}=5: 1$) to afford 1-acetoxy-2,3,4,6-tetra-O-benzyl-L-glucose (16.4 g, 98\%) as a colorless oil. α-anomer and β-anomer (3.3:1).
$\mathbf{R}_{\mathbf{f}} 0.40$ (petroleum ether: $\mathrm{EtOAc}=5: 1$)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: \boldsymbol{\alpha}$-anomer 7.36-7.14 $(20 \mathrm{H}, \mathrm{m}), 6.38(1 \mathrm{H}, \mathrm{t}, J=3.3 \mathrm{~Hz}), 4.99-$ $4.48(8 \mathrm{H}, \mathrm{m}), 3.97-3.58(6 \mathrm{H}, \mathrm{m}), 2.15(3 \mathrm{H}, \mathrm{s}) ; \beta$-anomer 7.36-7.14(20H, m), $5.63(1 \mathrm{H}, \mathrm{m})$, 4.99-4.48 (8H, m), 3.97-3.58 (6H, m), 2.07 (3H, s).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ_{C} : $\boldsymbol{\alpha}$-anomer 169.7, 138.8, 138.2, 138.0,137.8, 128.7-127.9 (20 C), $90.2,81.9,79.1,77.1,75.9,75.5,73.8,73.4,73.0,68.3,21.4 \mathrm{ppm} ; \boldsymbol{\beta}$-anomer 169.6, 138.6 , $138.3,138.0,137.8,128.7-127.9$ (20C), $94.2,85.0,81.3,77.4,76.0,75.7,75.3,75.3,73.7,68.3$, 21.3 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 605.2618$, found 605.2510 .

1.3.19 Synthesis of 3-methyl-5-C-(per-O-benzyl-L-glucosyl)-2,4,6-

 trihydroxyacetophenone 18-1

To a stirred solution of 3-methyl-2,4,6-trihydroxyacetophenone 10 ($3.6 \mathrm{~g}, 23.4 \mathrm{mmol}$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(100 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(4.6 \mathrm{~g}, 9.4 \mathrm{mmol})$, 1-acetoxy-2,3,4,6-tetra-O-benzyl-L-glucose (16.4 g, 28.1 mmol), and $\mathrm{CaSO}_{4}(10.0 \mathrm{~g})$ at room temperature. After stirring for 12 h at $45^{\circ} \mathrm{C}$ under nirtogen, the reaction mixture was filtered through a thin pad of Celite $®$, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether : acetone = $15: 1$) to afford 18-1 (15.6 g, 95\%) as a white solid.
m.p. $132-133{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}} 0.32$ (petroleum ether : acetone $=15: 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 7.40-7.00(20 \mathrm{H}), 5.04-4.50(8 \mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}), 3.96$ $(1 \mathrm{H}, \mathrm{m}), 3.84-3.79(3 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{m}) 2.57(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta_{C}: 204.3,163.3,161.1,159.6,138.4,137.9,137.8,136.0,129.1-$ 127.8 (20C), 106.4, 105.6, 102.4, 86.4, 82.6, 78.9, 77.2, 76.8, 75.9, 75.5, 75.5, 73.6, 67.5, 33.5, 7.5 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 705.3019$, found 705.3058 .

1.3.20 Synthesis of 3,4,6-trihydroxycyclohexadienone 18

To a stirred solution of 3-methyl-5-C-(per-O-benzyl-L-glucosyl)-2,4,6trihydroxyacetophenone $18-1(5.0 \mathrm{~g}, 7.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ was added pyridine $(20 \mathrm{~mL})$ at room temperature. After stirring for 24 h at the same temperature under air condition, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (toluene : $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=7: 2: 0.5$) to afford 18 $(18 \mathrm{a}+18 \mathrm{~b})(4.2 \mathrm{~g}, 83 \%)$ as a white solid.
$\mathbf{R}_{\mathbf{f}} 0.30$ (toluene : $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=7: 2: 0.5$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) סн: 18.52 (2H, brs), 7.33-7.17 ($40 \mathrm{H}, \mathrm{m}$), 4.81-4.54 (16H, m), 3.61-3.34 (14H, m), $2.42(6 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13}$ C NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) δ_{C} : 197.3, 196.6, 195.8 (2C), 193.7 (2C), 172.5 (2C), 139.5138.8 (8C), 135.1 (2C), 128.7-127.8 (40C), 101.8 (2C), 87.3, 87.1, 79.5-78.6 (8C), 75.1-71.9 (8C), 69.7 (2C), 29.7, 29.2, 27.6, 27.4 ppm.

HRMS(ESI): calc. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 721.2968$, found 721.3007 .

1.3.21 Synthesis of cyclopentenone 19

To a solution of $18(4.1 \mathrm{~g}, 5.70 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$ at room temperature, 2 M aqueous NaOH solution (25 mL) was added and the mixture was stirred for 6 h at $50{ }^{\circ} \mathrm{C}$ until starting material consumed completely. The reaction mixture was neutralized with 1 N HCl aqueous solution and diluted with EtOAc (150 mL). The aqueous layer was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel
(toluene : $\left.\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{COOH}=12: 2: 0.5\right)$ to afford $19(1.9 \mathrm{~g}, 52 \%)$ as a light yellow powder.
$\mathbf{R}_{\mathbf{f}} 0.35$ (toluene : EtOAc: $\mathrm{CH}_{3} \mathrm{COOH}=12: 2: 0.5$).
$[\alpha]_{\mathrm{D}}{ }^{20}=+27.2(c=0.17, \mathrm{MeOH})$.
${ }^{1}$ H NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta_{H}: 7.33-7.19$ (20H), 5.90-5.82 (OH), 4.85-4.71 (5H, m), 4.55$4.43(3 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 3.71-3.46(6 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}$, s).
${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta_{C}: ~ 202.9,200.2,194.8,138.4,138.3,138.0,137.9,128.0-$ 127.1 (20C), 112.5, 86.3, 79.1, 78.0, 77.7, 74.7, 74.3, 73.8, 73.6, 71.8, 71.6, 68.2, 52.7, 27.2.

HRMS(ESI): calc. for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 679.2862$, found: 679.2902 .

1.3.22 Synthesis of 20

To a mixture of compound $19(1.2 \mathrm{~g}, 1.8 \mathrm{mmol})$, 4-hydroxybenzaldehyde ($0.26 \mathrm{~g}, 2.1 \mathrm{mmol}$), and L-proline ($407 \mathrm{mg}, 3.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(10.0 \mathrm{~mL})$, TEA ($536 \mathrm{mg}, 5.3 \mathrm{mmol}$) was added at room temperature. After stirring for 3 d , the reaction mixture was concentrated in vacuo affording the corresponding cyclopentenone intermediate 19-1, which was used in the subsequent step without further purification.

A solution of the crude cyclopentenone intermediate $19-1$ in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was stirred under reflux for 8 h . The resulting mixture was concentrated under reduced pressure to afford crude residue. The crude residue was pre-treated to dryness and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under atmosphere of nitrogen. After being cooled to $-40{ }^{\circ} \mathrm{C}, \mathrm{BBr}_{3}$ (6.4 mmol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.0 \mathrm{~mL}$) was added dropwise with an injector, and the reaction mixture was stirred for 2 h . Appropriate amount of water was added to quench the reaction, and the aqueous phase was evaporated under reduced pressure. The residue was purified by column chromatography on Sephadex LH-20 ($\mathrm{H}_{2} \mathrm{O}$ as eluent) to afford $20(478 \mathrm{mg})$ as a yellow solid.
m.p. $196-197^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+38.6(c=0.15, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) $\delta_{\mathrm{H}: ~} 7.44(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-7), 7.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, $\mathrm{H}-10$ and $\mathrm{H}-14), 7.36(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-8), 6.53(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-11$ and $\mathrm{H}-13), 4.30$ $(1 \mathrm{H}$, brs, $\mathrm{H}-4), 3.75\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.66\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H}_{1}-6{ }^{\prime}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.12.5,5.0 \mathrm{~Hz}, \mathrm{H}_{2}-6^{\prime}\right), 3.45$ (1H, m, H-3'), 3.38 (1H, m, H-4'), 3.24 (1H, m, H-2'), 3.21 (1H, m, H5'), 2.72 (1H, brs, H-5).
${ }^{13} \mathrm{C}$ NMR (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta_{\mathrm{c}}: 202.8(\mathrm{C}-3), 201.3(\mathrm{C}-1), 188.4$ (C-6), 170.5 (C-12), 143.9 (C-8), 130.9 (C-10, 14), 120.9 (C-9), 119.3 (C-11, 13), 119.1 (C-7), 114.2 (C-2), 79.3 (C5'), 77.7 (C-3'), 76.0 (C-1'), 70.8 (C-4'), 69.9 (C-4), 69.6 (C-2'), 60.7 (C-6'), 52.2 (C-5).

1.4 Energy calculation of intermediates B1-B4

Conformational analyses of B1-B4 are carried out via systematic searching in the Discovery Studio (version 16.1.0.15350) using the MMFF94 force field. Conformers with Boltzmann distribution over 1% are chosen as the beginning for energry calculations. Ground-state geometries are optimized at the B3LYP/6-311+G(d,p) level in gas phase by the Gaussian 09 program (Gaussian Inc., Wallingford, CT, USA). ${ }^{[1]}$ All quantum computations are performed on an IBM cluster machine located at the High Performance Computing Center of Peking Union Medical College. The energies of the proposed cyclohexadienone intermediates B1-B4 are calculated using the DFT methodology at the B3LYP/6-311+G(d,p) level.

Table S13 Relative gas phase energies for proposed cyclohexadienone intermediates B1-B4 calculated at the B3LYP level.

	E (Hartree)	E rel $(\mathrm{kcal} / \mathrm{mol})$
B1	-2417.94229599	0
B2	-2417.94037771	1.21
B3	-2417.93153919	6.75
B4	-2417.93410454	5.14

Figure S3 Geometry optimization models of proposed B1-B4 intermediates calculated at the B3LYP level.

 B1

Table S14 Cartesian coordinates (\AA) for the geometry optimized structure of B1

Atom	X	Y	Z
C	1.99060000	2.29970000	0.95230000
C	1.59570000	0.97500000	0.41880000
C	2.91510000	0.22760000	0.35110000
C	4.04020000	0.79040000	-0.16690000
c	3.93890000	2.17520000	-0.62550000
c	2.94340000	3.08130000	0.12780000
0	1.60470000	2.71350000	2.03320000
0	2.91880000	-1.05040000	0.87260000
C	5.33310000	0.06190000	-0.21500000
c	6.58690000	0.75660000	-0.58060000
0	5.41030000	-1.13260000	0.05480000
c	2.15200000	3.97950000	-0.87060000
c	0.43140000	0.27920000	1.17950000
0	0.13240000	-1.05670000	0.72190000
C	-0.71600000	-1.26860000	-0.41790000
C	-2.03480000	-0.45020000	-0.36220000
C	-1.75730000	1.01820000	0.03310000
C	-0.87260000	1.13580000	1.28840000
c	-0.00830000	-1.11220000	-1.78050000
0	3.70550000	3.96740000	0.97150000
0	4.58530000	2.57340000	-1.57280000
0	-1.65350000	0.74720000	2.43290000
C	-2.06250000	0.86480000	4.76590000
C	-2.98480000	1.73200000	5.41170000
C	-3.78010000	1.25270000	6.47630000
C	-3.66480000	-0.09430000	6.90020000
c	-2.74640000	-0.96200000	6.25850000
C	-1.95060000	-0.48800000	5.19170000
C	-1.21580000	1.35930000	3.65490000
0	1.05400000	-2.05970000	-1.87770000
C	2.83370000	-2.98560000	-3.21950000
C	3.31750000	-3.30730000	-4.51930000
C	4.26330000	-4.34370000	-4.69330000
C	4.74040000	-5.06670000	-3.57320000
C	4.26980000	-4.74910000	-2.27600000
C	3.32540000	-3.71210000	-2.09750000

C	1.85300000	-1.87570000	-3.05520000
0	-2.96690000	-0.98900000	0.58410000
C	-4.56770000	-2.68030000	1.19800000
C	-5.67010000	-3.50530000	0.84090000
C	-6.49810000	-4.05730000	1.84410000
C	-6.23120000	-3.79540000	3.21070000
C	-5.12960000	-2.98230000	3.57290000
C	-4.30050000	-2.42750000	2.57310000
C	-3.68740000	-2.14310000	0.12890000
0	-1.09740000	1.72420000	-1.03360000
C	-1.19020000	2.98270000	-3.00950000
C	-0.98670000	4.38900000	-2.95350000
C	-0.18420000	5.02640000	-3.92540000
C	0.42330000	4.26650000	-4.95480000
C	0.22230000	2.86550000	-5.01430000
C	-0.57910000	2.22230000	-4.04510000
C	-2.00460000	2.30430000	-1.97540000
H	1.28160000	1.13300000	-0.61400000
H	3.74350000	-1.52490000	0.72840000
H	6.65600000	1.72940000	-0.08450000
H	7.46400000	0.17800000	-0.26930000
H	6.64380000	0.89700000	-1.66740000
H	2.81700000	4.67580000	-1.38760000
H	1.64890000	3.36300000	-1.61650000
H	1.40390000	4.57110000	-0.34040000
H	0.80230000	0.11520000	2.19060000
H	-0.95930000	-2.32480000	-0.34220000
H	-2.51110000	-0.46360000	-1.34550000
H	-2.71120000	1.50180000	0.26910000
H	-0.63190000	2.19670000	1.38370000
H	-0.72160000	-1.30660000	-2.58170000
H	0.37690000	-0.11560000	-1.93180000
H	3.13940000	4.14280000	1.76000000
H	-3.08160000	2.71760000	5.10500000
H	-4.44930000	1.88770000	6.94600000
H	-4.25290000	-0.44440000	7.67710000
H	-2.66050000	-1.94680000	6.56790000
H	-1.28850000	-1.12910000	4.71750000

H	-1.29460000	2.44670000	3.55380000
H	-0.17050000	1.11780000	3.85990000
H	2.98060000	-2.78440000	-5.34770000
H	4.60750000	-4.57630000	-5.64220000
H	5.43270000	-5.82700000	-3.70180000
H	4.61570000	-5.27780000	-1.45570000
H	2.99390000	-3.48730000	-1.14140000
H	2.39400000	-0.92560000	-2.97440000
H	1.19050000	-1.83310000	-3.92800000
H	-5.86940000	-3.71060000	-0.15530000
H	-7.29980000	-4.65710000	1.57910000
H	-6.83960000	-4.19910000	3.94510000
H	-4.92790000	-2.79100000	4.57010000
H	-3.49450000	-1.83840000	2.85180000
H	-2.99800000	-2.93460000	-0.17270000
H	-4.28520000	-1.84820000	-0.73960000
H	-1.41720000	4.95270000	-2.19770000
H	-0.03910000	6.05080000	-3.88440000
H	1.01410000	4.73540000	-5.66380000
H	0.66410000	2.31260000	-5.77040000
H	-0.71780000	1.19630000	-4.09460000
H	-2.65720000	3.01550000	-1.45540000
H	-2.63390000	1.53420000	-2.42920000

Table S15 Cartesian coordinates (\AA) for the geometry optimized structure of B2

Atom	X	Y	Z
C	2.23740000	1.83400000	0.49100000
C	2.03060000	0.38140000	0.28880000
C	3.33100000	-0.15600000	-0.26350000
C	4.14190000	0.53500000	-1.09760000
C	3.71040000	1.85940000	-1.54800000
C	2.75870000	2.64900000	-0.63270000
O	2.08410000	2.32320000	1.59940000
O	3.64190000	-1.43000000	0.18170000
C	5.44840000	-0.02170000	-1.52690000
C	6.53100000	0.85770000	-2.02090000
O	5.67770000	-1.22530000	-1.45750000
C	1.60170000	3.30450000	-1.45300000

C	0.82200000	0.03570000	-0.63620000
O	-0.31510000	0.88460000	-0.38170000
C	-1.28700000	0.51430000	0.61110000
C	-1.71840000	-0.97580000	0.54230000
C	-0.49730000	-1.90770000	0.43580000
C	0.45780000	-1.48260000	-0.70270000
C	-0.89700000	0.92830000	2.04540000
O	3.52920000	3.73630000	-0.08290000
O	4.07900000	2.29520000	-2.61890000
H	1.86920000	-0.08210000	1.25250000
O	-1.04860000	2.34250000	2.17860000
C	-1.21220000	4.16080000	3.76900000
C	-0.59550000	4.94400000	4.78400000
C	-1.10580000	6.22080000	5.10760000
C	-2.23740000	6.72850000	4.42490000
C	-2.85930000	5.95370000	3.41630000
C	-2.35180000	4.67570000	3.08940000
C	-0.69360000	2.79280000	3.49380000
O	-2.58990000	-1.21120000	-0.57860000
C	-4.79550000	-1.16140000	-1.50840000
C	-5.97890000	-1.94540000	-1.43480000
C	-6.78040000	-2.13010000	-2.58310000
C	-6.40750000	-1.53680000	-3.81330000
C	-5.23030000	-0.75300000	-3.89170000
C	-4.42680000	-0.56380000	-2.74510000
C	-3.97050000	-0.93590000	-0.29510000
C	0.16830000	-1.90560000	1.71340000
C	1.53890000	-3.06380000	3.32870000
C	1.76890000	-4.27890000	4.03250000
C	2.42440000	-4.26470000	5.28360000
C	2.86080000	-3.04090000	5.84490000
C	2.64100000	-1.82840000	5.14920000
C	1.98510000	-1.83850000	3.89800000
C	0.89140000	-3.11270000	1.98960000
C	-0.17670000	-1.78550000	-1.95490000
C	-2.2749000000	-6.47390000	

C	-1.29400000	-2.46710000	-6.80440000
C	-1.67200000	-1.45910000	-5.88460000
C	-1.01820000	-1.35790000	-4.63660000
C	0.73620000	-2.15100000	-3.00040000
H	4.45910000	-1.77620000	-0.19540000
H	6.43080000	1.01880000	-3.10240000
H	6.52260000	1.82460000	-1.50870000
H	7.51270000	0.40790000	-1.83090000
H	0.86110000	3.74430000	-0.78290000
H	1.98130000	4.10360000	-2.09440000
H	1.10410000	2.57290000	-2.08970000
H	1.10680000	0.31680000	-1.64790000
H	-2.15230000	1.12130000	0.34980000
H	-2.25110000	-1.24570000	1.46100000
H	-0.87860000	-2.91040000	0.21610000
H	1.36540000	-2.08190000	-0.62650000
H	-1.56670000	0.44310000	2.76270000
H	0.12300000	0.64810000	2.28820000
H	3.03550000	4.03330000	0.71810000
H	0.22890000	4.57890000	5.29600000
H	-0.65200000	6.78560000	5.84880000
H	-2.61090000	7.66570000	4.66400000
H	-3.68890000	6.32250000	2.91720000
H	-2.82260000	4.11440000	2.35450000
H	0.39820000	2.77150000	3.57410000
H	-1.11200000	2.11860000	4.25060000
H	-6.26530000	-2.38230000	-0.53850000
H	-7.64170000	-2.70300000	-2.52440000
H	-6.99460000	-1.67800000	-4.65580000
H	-4.95640000	-0.31950000	-4.79200000
H	-3.56480000	0.00900000	-2.80830000
H	-4.09780000	0.09950000	0.03310000
H	-4.29220000	-1.59490000	0.51900000
H	-0.9399000000	-5.18420000	3.62910000
H	-5.15350000	5.78960000	
H	-3.03270000	6.76190000	

H	1.66420000	-3.27180000	1.23200000
H	0.18230000	-3.94820000	1.94870000
H	1.16160000	-3.94030000	-4.99840000
H	0.02230000	-4.10790000	-7.14770000
H	-1.77820000	-2.54400000	-7.71770000
H	-2.43170000	-0.79670000	-6.12450000
H	-1.30350000	-0.61880000	-3.96730000
H	1.52640000	-1.39970000	-3.09990000
H	1.19610000	-3.10610000	-2.72180000

Table S16 Cartesian coordinates (\AA) for the geometry optimized structure of B3

Atom	X	Y	Z
C	1.80650000	2.38780000	1.14340000
C	1.53420000	1.07120000	0.51470000
C	2.89290000	0.38500000	0.50400000
C	4.04500000	1.03580000	0.19980000
C	3.96910000	2.46390000	-0.11380000
C	2.76480000	3.25550000	0.41630000
O	1.30750000	2.70790000	2.20930000
O	2.88800000	-0.96180000	0.81430000
C	5.35620000	0.33390000	0.21590000
C	6.62220000	1.09080000	0.33610000
O	5.42300000	-0.88670000	0.14490000
C	3.27550000	4.43220000	1.30030000
C	0.34080000	0.30820000	1.16340000
O	0.19010000	-1.07310000	0.76440000
C	-0.55240000	-1.42370000	-0.41160000
C	-1.94210000	-0.73560000	-0.45470000
C	-1.80290000	0.77930000	-0.21490000
C	-1.00830000	1.10210000	1.07160000
C	0.22820000	-1.23500000	-1.72790000
O	2.06320000	3.83610000	-0.70450000
O	4.79430000	3.00850000	-0.81680000
O	-1.85530000	0.82300000	2.20080000
C	-2.39120000	1.15600000	4.50420000
C	-3.15160000	2.10080000	5.24410000
C	-3.92480000	1.67930000	6.34870000
C	-3.94710000	0.31320000	6.72200000

C	-3.19230000	-0.63240000	5.98590000
C	-2.41810000	-0.21560000	4.88080000
C	-1.54060000	1.59420000	3.37050000
0	1.20230000	-2.26650000	-1.87930000
C	2.65120000	-3.24440000	-3.57540000
C	3.49110000	-3.12640000	-4.71870000
C	4.02100000	-4.28040000	-5.33620000
C	3.72110000	-5.56360000	-4.81970000
C	2.89170000	-5.68900000	-3.67910000
C	2.35940000	-4.53660000	-3.05760000
C	2.09710000	-2.00190000	-2.97120000
0	-2.82790000	-1.27660000	0.54020000
C	-4.22900000	-3.04850000	1.30260000
C	-5.57370000	-3.48040000	1.14540000
C	-6.27320000	-4.03510000	2.24020000
C	-5.63850000	-4.16300000	3.49970000
C	-4.29770000	-3.73650000	3.66110000
C	-3.59390000	-3.18240000	2.56910000
C	-3.47790000	-2.49340000	0.14820000
0	-1.16450000	1.34950000	-1.37290000
C	-1.00030000	3.13880000	-2.97230000
C	-1.70200000	4.07200000	-3.78460000
C	-1.11860000	4.56040000	-4.97510000
C	0.17040000	4.12650000	-5.36690000
C	0.87800000	3.20250000	-4.56220000
C	0.29750000	2.71260000	-3.37080000
C	-1.62100000	2.66560000	-1.70450000
H	1.27550000	1.26520000	-0.53170000
H	3.72560000	-1.40820000	0.64380000
H	7.41000000	0.46210000	0.76780000
H	6.95810000	1.43010000	-0.65270000
H	6.50770000	1.95520000	0.99760000
H	3.95150000	5.08110000	0.74260000
H	3.80420000	4.03990000	2.17120000
H	2.43930000	5.04560000	1.64130000
H	0.59710000	0.21260000	2.21860000
H	-0.70550000	-2.49530000	-0.30630000
H	-2.39400000	-0.87960000	-1.44160000

H	-2.81670000	1.17810000	-0.10600000
H	-0.81490000	2.17770000	1.05540000
H	-0.45590000	-1.29590000	-2.57930000
H	0.72670000	-0.27760000	-1.76860000
H	2.70810000	4.39570000	-1.19750000
H	-3.13950000	3.10490000	4.98280000
H	-4.47780000	2.37140000	6.88590000
H	-4.51700000	0.00550000	7.53120000
H	-3.20960000	-1.63290000	6.25620000
H	-1.87010000	-0.91180000	4.34180000
H	-0.49420000	1.46150000	3.65590000
H	-1.70140000	2.65250000	3.13980000
H	3.71600000	-2.19160000	-5.10650000
H	4.63090000	-4.18690000	-6.16950000
H	4.10920000	-6.41040000	-5.27500000
H	2.67330000	-6.62680000	-3.29790000
H	1.75490000	-4.64540000	-2.22100000
H	1.57520000	-1.44500000	-3.76140000
H	2.91080000	-1.37920000	-2.58490000
H	-6.04850000	-3.39480000	0.22700000
H	-7.25430000	-4.34620000	2.12160000
H	-6.15540000	-4.56550000	4.30300000
H	-3.83240000	-3.82700000	4.58280000
H	-2.61410000	-2.86580000	2.69390000
H	-2.75190000	-3.23830000	-0.18810000
H	-4.14690000	-2.26620000	-0.68720000
H	-2.64440000	4.40400000	-3.50730000
H	-1.63550000	5.23940000	-5.56220000
H	0.59650000	4.48630000	-6.24100000
H	1.82330000	2.88650000	-4.84560000
H	0.83290000	2.04460000	-2.78970000
H	-1.37160000	3.35810000	-0.89430000
H	2.62910000	-1.81930000	

Table S17 Cartesian coordinates (\AA) for the geometry optimized structure of B4

Atom	X	Y	Z
C	-0.94150000	2.04530000	-0.05610000
C	-1.12540000	0.58570000	-0.07080000

C	0.21300000	0.06330000	-0.46650000
C	1.39190000	0.54850000	0.19070000
C	1.17500000	1.63490000	1.08530000
C	0.04770000	2.61790000	0.87820000
0	-1.52980000	2.77270000	-0.84600000
0	0.22080000	-0.82450000	-1.48390000
C	2.68960000	0.04540000	-0.07450000
C	3.01770000	-1.12590000	-0.92070000
0	3.69520000	0.62810000	0.41270000
C	-0.68800000	3.03230000	2.18880000
C	-2.36190000	0.05920000	-0.89020000
0	-3.52110000	0.81250000	-0.48170000
C	-4.36050000	0.36640000	0.60340000
C	-4.74740000	-1.14170000	0.50880000
C	-3.44990000	-1.96780000	0.33980000
C	-2.66280000	-1.49160000	-0.92500000
C	-3.96790000	0.80950000	2.03440000
0	0.61180000	3.81620000	0.32390000
0	1.90340000	1.77270000	2.10620000
0	-2.59970000	-1.90920000	1.49320000
C	-0.47450000	-2.51270000	2.31920000
C	-0.54070000	-1.62020000	3.41420000
C	0.63450000	-1.10330000	3.98390000
C	1.88820000	-1.49110000	3.47920000
C	1.96650000	-2.38420000	2.39600000
C	0.79110000	-2.88330000	1.80920000
C	-1.71720000	-3.02960000	1.71500000
0	-3.33940000	-1.81790000	-2.16420000
C	-4.36410000	-3.41810000	-3.64320000
C	-4.16460000	-4.68960000	-4.21670000
C	-4.67130000	-4.96710000	-5.49300000
C	-5.38830000	-3.98000000	-6.19410000
C	-5.62780000	-2.72310000	-5.60780000
C	-5.13360000	-2.44740000	-4.32320000
C	-3.86080000	-3.16160000	-2.29790000
0	-4.93730000	0.35790000	3.00130000
C	-7.19470000	0.36750000	3.88750000
C	-8.57480000	0.56230000	3.63950000

C	-9.54150000	-0.03390000	4.46650000
C	-9.13960000	-0.83770000	5.54750000
C	-7.77220000	-1.05500000	5.79430000
C	-6.80450000	-0.45960000	4.96640000
C	-6.19700000	1.05750000	3.04260000
O	-5.63780000	-1.46120000	-0.58740000
C	-7.15570000	0.37050000	-1.05950000
C	-6.23370000	0.94810000	-1.96970000
C	-6.21390000	2.33700000	-2.18400000
C	-7.18310000	3.15130000	-1.57380000
C	-8.14110000	2.58320000	-0.71430000
C	-8.12010000	1.20250000	-0.44880000
C	-7.01130000	-1.04060000	-0.62510000
H	-1.28380000	0.26560000	0.95470000
H	1.00960000	-1.24520000	-1.86120000
H	2.39890000	-1.98190000	-0.64400000
H	2.85540000	-0.87150000	-1.97020000
H	4.05890000	-1.43210000	-0.81750000
H	0.00020000	3.52980000	2.87610000
H	-1.10990000	2.16550000	2.69990000
H	-1.49720000	3.73450000	1.96770000
H	-2.17420000	0.36330000	-1.92570000
H	-5.24090000	0.94980000	0.42780000
H	-5.23260000	-1.49630000	1.42030000
H	-3.76690000	-3.00860000	0.25560000
H	-1.72690000	-2.04230000	-0.95710000
H	-3.02260000	0.37020000	2.32680000
H	-3.85250000	1.89480000	2.06870000
H	0.98250000	4.31960000	1.08100000
H	-1.44730000	-1.33050000	3.79220000
H	0.57500000	-0.44790000	4.76590000
H	2.74320000	-1.12630000	3.90230000
H	-5.890400000	-5.90100000	
H	-36660000	-3.51980000	1.01100000
H	-3.67220000	2.03420000	
H	-3.58430000	0.79660000	
H	-3.4250000	2.40480000	

H

-5.73680000	-4.17820000	-7.13130000
-6.15570000	-2.00840000	-6.11300000
-5.33840000	-1.54320000	-3.88910000
-4.74020000	-3.32350000	-1.67960000
-3.10730000	-3.89410000	-1.99360000
-8.88730000	1.14200000	2.85570000
-10.53500000	0.12050000	4.28150000
-9.84200000	-1.26200000	6.15550000
-7.47930000	-1.63920000	6.58010000
-5.81410000	-0.62620000	5.16320000
-6.02520000	2.05540000	3.44480000
-6.62880000	1.16220000	2.04850000
-5.50960000	0.37610000	-2.41090000
-5.48290000	2.75350000	-2.76630000
-7.19200000	4.15600000	-1.75770000
-8.84620000	3.17500000	-0.27130000
-8.78620000	0.81430000	0.22310000
-7.52750000	-1.66680000	-1.35500000
-7.47190000	-1.22590000	0.35000000

2 ECD spectra of 1, 7, 16, 19, and 20

ECD spectra of the compound $\mathbf{1}$ in MeOH

ECD spectra of the compound 7 in MeOH

ECD spectra of the compound 16 in MeOH

ECD spectra of the compound 19 in MeOH

ECD spectra of the compound $\mathbf{2 0}$ in MeOH

3 NMR spectra

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right)$ of 1

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1

$\stackrel{\infty}{\stackrel{\infty}{-}}$

HMBC ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right)$ of 1

HSQC (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right)$ of 1

ROESY ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1 (obtained from HSYA)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1 (obtained from HSYA)
으웅

∞
∞
∞

$\stackrel{\infty}{\stackrel{\infty}{¿}}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4

${ }^{13} \mathrm{C}$ NMR (125 MHz, CD ${ }_{3} \mathrm{OD}$) of 4

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-1

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-1

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-1

$$
\begin{aligned}
& \stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{1}}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of $\mathbf{1 2}$ (α-anomer + $\boldsymbol{\beta}$-anomer)

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- \boldsymbol{d}_{6}) of 12 (α-anomer $+\boldsymbol{\beta}$-anomer)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6-1

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 10
$\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{\stackrel{\rightharpoonup}{\top}}$

10.9-
o ninninn

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of 10

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 9

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 9

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 8

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 8

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 7

∞
in
in

 તั તે

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 7

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 14

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of 14

HSQC (500 MHz, DMSO- d_{6}) of 14

HMBC (500 MHz, DMSO- d_{6}) of 14

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1 (obtained from 14)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) of 1 (obtained from 14)

$\stackrel{\uparrow}{\infty} \underset{\substack{\infty \\ \uparrow}}{ }$

\bullet
$\stackrel{\circ}{\square}$

${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) of 15-1

${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone $-d_{6}$) of 15-1

${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) of 15

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{\infty} \\
& \underset{T}{\infty}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) of 15

HMBC (500 MHz , acetone $-d_{6}$) of 15

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 16

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 16

HMBC ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 16

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) of 17

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of 17

HSQC ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 17

HMBC (500 MHz, DMSO- d_{6}) of 17

ROESY (500 MHz , DMSO- d_{6}) of 17

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of 1-methoxy-L-glucose (α-anomer : β-anomer = $1.7: 1$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of 1-methoxy-L-glucose $(\alpha$-anomer : β-anomer = $1.7: 1$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methoxy-2,3,4,6-tetra-O-benzyl-L-glucose

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methoxy-2,3,4,6-tetra-O-benzyl-L-glucose

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2,3,4,6-tetra-O-benzyl-L-glucose (α-anomer : β-anomer $=2: 1$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2,3,4,6-tetra-O-benzyl-L-glucose (α-anomer : β-anomer = 2 :
1)

50	130	110	90	75 $\mathrm{fl} \mathrm{(ppm)}$	60	45	30

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-acetoxy-2,3,4,6-tetra-O-benzyl-L-glucose (α-anomer: β anomer $=3.3: 1$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-acetoxy-2,3,4,6-tetra-O-benzyl-L-glucose (α-anomer: β anomer $=3.3: 1$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 18-1

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 18-1

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 18

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of 18

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of 19

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of 19

${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$ ）of 20

${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$ ）of 20
$\stackrel{\infty}{\text { ヘ }} \stackrel{+}{\infty}$ ぶ

4 IR spectra

Compound 1

Compound 10

Compound 9

Compound 8

Compound 7

Compound 14

5 References

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et. al., D. J. Gaussian 09, Rev. C 01; Gaussian, Inc., Wallingford CT, 2009.
[2] P. J. Stephens, N. Harada, Chirality, 2010, 22, 229-233.
[3] T. Suzuki, M. Ishida, T. Kumazawa, S. Sato, Carbohydr. Res., 2017, 448, 52-56.
[4] S. Sata, H. Obara, J. Onoder, A. Endo, Bull. Chem. Soc. Jpn., 1992, 65, 452-457.
[5] T. Hayashi, K. Ohmori, K. Suzuki, Synlett., 2016, 27, 2345-2351.
[6] A. McKillop, L. McLaren, R. J. K. Taylor, J. Chem. Soc., Perkin Trans., 1994, 2047.
[7] Y. Girard, P. Hamel, M. Therien, J. P. Springer, J. Hirshfield, J. Org. Chem., 1987, 52, 4000.
[8] D. Magdziak, S. J. Meek, T. R. R. Pettus, Chem. Rev., 2004, 104, 1383-1429.

