Supporting Information

Domino Enyne Metathesis en Route to Skeletally Diverse, Privileged Scaffolds: Synthesis of Tricyclic Core of Pseudolaric Acid F
Mingui Lin, Hao Cui, Yuhui Hua and Yandong Zhang*
Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
Email: ydzhang@xmu.edu.cn

Table of Contents

1. General Information S2
2. General Procedures for the Synthesis of Substrates 1a-1r S3
2.1 Procedures for the preparation of enynes-1b, $\mathbf{1 c}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}, \mathbf{1 h}$ S3
2.2 Procedures for the preparation of enynes-1a, $\mathbf{1 i}, \mathbf{1 k}, \mathbf{1 1}, \mathbf{1 m}, \mathbf{1 n}, \mathbf{1 r}$ S8
2.3 Procedures for the preparation of enynes- $\mathbf{1 j}, \mathbf{1 0}, \mathbf{1 p}, \mathbf{1 q}$ S20
3. Optimization of EYM Conditions S25
3.1 Condition screening of EYM S25
3.2 Proposed mechanism of the formation of byproduct 3 S26
3.3 Typical procedure for EYM reaction S27
4. Characterization of Bicyclic Dienes 2a-2r S28
5. Syntheses of Skeletally Diverse, Privileged Scaffolds from 2g and 2h S36
6. Construction of the Core Skeleton of Pseudolaric Acid F S40
7. X-ray Crystal Structures S44
8. Theoretical Calculations S47
9. Reference S50
10. NMR Spectra Data S51

1. General Information

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. All the chemicals were purchased commercially and used without further purification, unless otherwise stated. The boiling point of petroleum ether (PE) is between $60-90^{\circ} \mathrm{C}$. Tetrahydrofuran (THF) was distilled from sodium-benzophenone; Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from calcium hydride. Toluene was distilled from sodium under argon atmosphere. HMPA was distilled in vacuo from calcium hydride; Diisopropylamine (DIPA) was distilled from calcium hydride under argon atmosphere; 1,2-Dichloroethane (DCE) was distilled from calcium hydride under argon atmosphere. Super-dry N,N-Dimethylformamide (DMF) were purchased from Innochem Science \& Technology Co., Ltd. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm Qingdao silica gel plates (60F-254) using UV lights as the visualizing agent and KMnO4. Flash column chromatography was performed over Qingdao silica gel (200-300 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were recorded on a Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. NMR spectra were recorded on Bruker AV-400 and Bruker AV-500 instruments and were calibrated using residual undeuterated solvents $\left(\mathrm{CHCl}_{3}, \delta \mathrm{H}=7.26 \mathrm{ppm}\right)$ and deuterated solvents $\left(\mathrm{CDCl}_{3}, \delta \mathrm{c}=\right.$ 77.0 ppm) as internal references. The data for H NMR are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, brs $=$ broad singlet), coupling constants (Hz) and integration.

2. General Procedures for the Synthesis of Substrates

2.1) Procedures for the preparation of enyne-I

To a solution of DIPA ($31.8 \mathrm{~mL}, 226.2 \mathrm{mmol}$) in THF $(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-$ $\mathrm{BuLi}(68 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane). After being stirred for 30 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$, and then a solution of α, β-unsaturated ester $\mathbf{S 1}(17.4 \mathrm{~g}, 113.1 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added slowly and the stirring was continued for another 1 h . The distilled HMPA ($118.1 \mathrm{~mL}, 678.6 \mathrm{mmol}$) was added slowly. The mixture was stirred for another 30 min and the bromide ($21.0 \mathrm{~mL}, 170.0 \mathrm{mmol}$) in THF (50 mL) was added dropwise. The reaction was stirred for 2 days, and the saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(150 \mathrm{~mL})$ was
added and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded $\mathbf{1 b}(22.63 \mathrm{~g}, 97 \%)$ as a colorless oil. The product contained $6.6 \mathrm{~mol} \%$ of $\mathbf{S 2}$.

Ethyl 2-(cyclopent-1-en-1-yl)hex-5-ynoate (1b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60$ - $5.56(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 4 \mathrm{H})$, $2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 3 \mathrm{H})$, $1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,140.3,127.9,83.4,68.9$, $60.5,46.3,32.8,32.3,28.9,23.2,16.4,14.2$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2956, 1732, 1157, 1043 , 634. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$207.1380, found: 207.1377.

To a suspension of ester $\mathbf{1 b}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ and $\mathrm{NH}(\mathrm{OMe}) \mathrm{Me} \cdot \mathrm{HCl}(0.71 \mathrm{~g}, 7.3 \mathrm{mmol})$ in THF (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added $i-\mathrm{PrMgCl}(7.3 \mathrm{~mL}, 14.7 \mathrm{mmol}, 2 \mathrm{M}$ in THF) over 15 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h before being quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) afforded $\mathbf{1 c}(0.77 \mathrm{~g}, 72 \%)$ as a colorless oil.

2-(Cyclopent-1-en-1-yl)-N-methoxy-N-methylhex-5-ynamide (1c). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53-5.49(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.79(\mathrm{brs}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $2.32-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{t}, J=2.63 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86-1.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,141.3,127.2,83.9,68.7$, 61.3, 41.8, 33.1, 32.2, 29.1, 23.1, 16.4. IR (KBr, cm-1): 2937, 1660, 1383, 992, 629. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 244.1308$, found: 244.1310.

To a stirred suspension of $\mathrm{LiAlH}_{4}(0.20 \mathrm{~g}, 5.3 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of ester $\mathbf{1 b}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ in THF (20 mL), and the mixture was stirred for 10 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ afforded the desired alcohol $\mathbf{S 3}(0.63 \mathrm{~g}, 80 \%)$ as a colorless oil.

2-(Cyclopent-1-en-1-yl)hex-5-yn-1-ol (S3). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.56(\mathrm{dq}, J$ $=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.24$ - $2.15(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.70$
$-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,128.1$, 84.2, 68.4, 63.9, 43.1, 32.2, 31.8, 28.4, 23.1, 16.3. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3291, 2936, 1433, 1039, 639. HRMS (ESI, m/z) calc for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 165.1274$, found: 165.1273.

To a stirred solution of alcohol $\mathbf{S 3}(0.10 \mathrm{~g}, 0.61 \mathrm{mmol})$ in THF at $0{ }^{\circ} \mathrm{C}$ was added TsNHBoc ($0.22 \mathrm{~g}, 0.82 \mathrm{mmol}$), Diisopropyl azodicarboxylate (DIAD) ($0.19 \mathrm{~mL}, 0.92$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.32 \mathrm{~g}, 1.22 \mathrm{mmol})$ successively. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before being quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$ afforded $\mathbf{1 d}$ ($0.18 \mathrm{~g}, 71 \%$) as a colorless oil.
tert-Butyl (2-(cyclopent-1-en-1-yl)hex-5-yn-1-yl)(tosyl)carbamate (1d). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.54-5.51(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.86(\mathrm{dd}, J=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.75$ (dd, $J=14.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.15(\mathrm{~m}$, 2H), 2.11 - 2.03 (m, 1H), 1.96 - 1.93 (t, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1$, $144.0,142.5,137.6,129.1,128.8,127.9,84.2,84.0,68.4,49.7,40.9,32.2,31.0,29.3$, 27.8, 23.2, 21.6, 16.4. IR (KBr, cm^{-1}): 3286, 2933, 2847, 1728, 1355, 1088, 545. HRMS (ESI, m / z) calc for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 440.1866$, found: 440.1870 .

To a stirred solution of alcohol $\mathbf{S 3}(0.54 \mathrm{~g}, 3.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at rt was added DIPEA ($2.17 \mathrm{~mL}, 13.2 \mathrm{mmol}$) and $\mathrm{MOMCl}(0.75 \mathrm{~mL}, 9.88 \mathrm{mmol})$. The reaction mixture was stirred at rt for 2 h before being quenched with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=50: 1)$ afforded $\mathbf{1 e}(0.64 \mathrm{~g}, 94 \%)$ as a colorless oil. 1-(1-(Methoxymethoxy)hex-5-yn-2-yl)cyclopent-1-ene (1e). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.49-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J$ $=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.09$ $(\mathrm{m}, 4 \mathrm{H}), 1.92(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,126.4,96.4,84.3,69.9,68.2,55.1,40.3,32.1,32.0,28.9$, 23.1, 16.2. IR (KBr, cm^{-1}): 3312, 2925, 2852, 1463, 1045, 630. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 231.1356$, found: 231.1356 .

To a stirred solution of alcohol $\mathbf{S 3}(0.4 \mathrm{~g}, 2.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt was added $\mathrm{Et}_{3} \mathrm{~N}(0.68 \mathrm{~mL}, 4.9 \mathrm{mmol})$ and DMAP $(0.03 \mathrm{~g}, 0.24 \mathrm{mmol})$ and acetic anhydride $(0.35 \mathrm{~mL}, 3.7 \mathrm{mmol})$ in sequence. The reaction mixture was stirred at rt for 3 h before being quenched with saturated NaHCO_{3} solution (10 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography (PE/EtOAc $=100: 1)$ afforded $\mathbf{1 f}(0.40 \mathrm{~g}, 80 \%)$ as a colorless oil.

2-(Cyclopent-1-en-1-yl)hex-5-yn-1-yl acetate (1f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.48(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.9,142.5,127.1,84.0,68.5,66.2,39.4,32.2,32.2,28.9,23.2,20.9,16.2$. IR (KBr, cm^{-1}): 2950, 1741, 1365, 1240, 1037, 634. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 229.1199$, found: 229.1196.

To a stirred solution of alcohol $\mathbf{S 3}(0.63 \mathrm{~g}, 3.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with TBDPSCl ($1.31 \mathrm{~mL}, 5.0 \mathrm{mmol}$), imidazole $(0.53 \mathrm{~g}, 7.7 \mathrm{mmol})$, and a catalytic amount of DMAP. The reaction mixture was stirred at rt for 0.5 h before being quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded $\mathbf{1 g}(1.45 \mathrm{~g}, 94 \%)$ as a colorless oil.
tert-Butyl((2-(cyclopent-1-en-1-yl)hex-5-yn-1-yl)oxy)diphenylsilane (1g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.47-5.43(\mathrm{~m}, 1 \mathrm{H})$, 3.63 (qd, $J=9.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.07$ $(\mathrm{m}, 4 \mathrm{H}), 1.95(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,135.6,135.6,133.9,133.9,129.5,129.5,127.6$, $126.2,84.8,68.1,66.1,42.8,32.6,32.2,28.8,26.8,23.2,19.3,16.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2930, 1427, 1111, 701, 504. HRMS (ESI, m/z) calc for $\mathrm{C}_{2} 7 \mathrm{H}_{34} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 425.2271, found: 425.2274 .

To a stirred solution of alcohol $\mathbf{S 3}(1.97 \mathrm{~g}, 12.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\operatorname{TBSCl}(2.72 \mathrm{~g}, 18.1 \mathrm{mmol})$, imidazole ($1.64 \mathrm{~g}, 24.1 \mathrm{mmol}$), and a catalytic amount of DMAP in sequence. The reaction mixture was stirred at rt for 0.5 h before being quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=100: 1$) afforded $\mathbf{1 h}(3.12 \mathrm{~g}, 93 \%)$ as a colorless oil.
tert-Butyl((2-(cyclopent-1-en-1-yl)hex-5-yn-1-yl)oxy)dimethylsilane (1h). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $9.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.13-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.88$ $(\mathrm{s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,126.0,84.8,68.0,65.6$, $43.0,32.7,32.2,28.9,25.9,23.3,18.3,16.4,-5.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2929, 2856, 1254, 1110, 836, 628. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$: 279.2139, found: 279.2136.

2.2) Procedures for the preparation of enynes- $1 \mathrm{r}, 1 \mathrm{n}, 1 \mathrm{~s}, 1 \mathrm{i}, 1 \mathrm{k}, 11,1 \mathrm{~m}, 1 \mathrm{a}$

To a stirred solution of DIPA ($0.58 \mathrm{~mL}, 4.11 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}\left(1.64 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexane). After 30 min , the reaction was cooled to $-78^{\circ} \mathrm{C}$, and then a solution of ethyl isobutyrate ($0.48 \mathrm{~g}, 4.11 \mathrm{mmol}$) in THF was added slowly and the stirring was continued for another 1 h . The 1-(bromomethyl)cyclopent-1-ene $(0.508 \mathrm{~g}, 3.16 \mathrm{mmol})$ in THF was added dropwise. The reaction was stirred for 2 h at this temperature before being quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded $\mathbf{S 4}(0.50 \mathrm{~g}, 2.55 \mathrm{mmol})$.

Ethyl 3-(cyclopent-1-en-1-yl)-2,2-dimethylpropanoate (S4). All spectral data were in agreement with reported values. ${ }^{1}$

Step 1. To a stirred solution of DIPA (1.3 equiv) in THF (0.2 M) at $0^{\circ} \mathrm{C}$ was added $n-$ BuLi (1.3 equiv, 2.5 M in hexane). After 30 min , the reaction was cooled to $-78^{\circ} \mathrm{C}$, and then a solution of ethyl isobutyrate (1.3 equiv) in THF was added slowly and the stirring was continued for another 1 h . The ketone (1.0 equiv) in THF was added dropwise. The reaction was stirred for 2 h before being quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo to afford the crude aldol products which was used
for next step without further purification.

Step 2. To a stirred solution of the alcohol (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ and pyridine (3.0 equiv) at $0{ }^{\circ} \mathrm{C}$ was added SOCl_{2} (1.5 equiv). The mixture wa stirred for 1 h at this temperature, then poured into ice water and stirred for an additional 20 min at rt . The two-phase system was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo to afford the unsaturated ester.

Step 3.To a stirred suspension of LiAlH_{4} (1.1 equiv) in THF at $0^{\circ} \mathrm{C}$ was added a solution of above unsaturated ester (1.0 equiv) in THF (0.1 M) dropwise. The mixture was stirred for 10 min before being quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers was washed with brine, dried over MgSO_{4} and concentrated in vacuo to afford the reduction product alcohol.

Step 4. To alcohol (1.0 equiv) in EtOAc (0.3 M) was added IBX (1.5 equiv.). The resulting suspension was immersed in an oil bath preheated to $80^{\circ} \mathrm{C}$ and stirred vigorously open to the air atmosphere. After being stirred for 4 h , the reaction was cooled to rt and filtered. The filter cake was washed with EtOAc, and the combined filtrates were concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded aldehyde.

Step 5. Epoxide formation method I: To a stirred solution of trimethylsulfonium iodide (2.5 equiv) in THF (0.1 M) was added sodium hydride (60% in mineral oil, 3.0 equiv) and the reaction mixture was heated to reflux for 1 h . A solution of aldehyde (1.0 equiv) in THF was added dropwise. After 4 h , the reaction was cooled to rt and was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded the epoxide.

Epoxide formation method II: To a stirred solution of aldehyde (1.0 equiv) and dibromomethane (1.3 equiv) in THF $(0.1 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added dropwise $n-\mathrm{BuLi}(1.3$ equiv, 2.5 M in hexane). ${ }^{3}$ The resulting pale yellow mixture was stirred for overnight while allowing the bath temperature to rise to rt . The reaction was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded the epoxide.

Step 6. To a solution of trimethylsilylacetylene (2.5 equiv) and THF (0.1 M) at $-78^{\circ} \mathrm{C}$ was added n-BuLi (2.5 equiv, 2.5 M in hexane) dropwise. The resulting solution was stirred at the same temperature for 30 min before the addition of $\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ (1.0 equiv). After being stirring for an additional 10 min at $-78^{\circ} \mathrm{C}$, a solution of epoxide (1.0 equiv) in THF was added dropwise via syringe. When TLC analysis indicated complete consumption of the epoxide, the reaction was quenched with saturated NaHCO_{3} solution and extracted with Et 2 O . The combined organic layers were washed with brine, dried with MgSO_{4} and concentrated in vacuo to give the crude enyne alcohol.

To a stirred solution of enyne (1.0 equiv) in THF (0.3 M) was added TBAF (1.5 equiv, 1.0 M in THF), and the resulting mixture was stirred at rt for 0.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$ afforded the alkyne alcohol.

Step 7. To a solution of above alcohol (1.0 equiv) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole (2.5 equiv), DMAP (0.1 equiv) and TMSCl (2.0 equiv) in sequence. After being stirred for 0.5 h , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded the siloxane.

S5
3-(Cyclobut-1-en-1-yl)-2,2-dimethylpropanal (S5). It was used without further purification immediately because it was instable.

2-(Cyclopent-1-en-1-yl)-2-methylpropanal (S6). 3.00 g (21.74 mmol) of $\mathbf{S 6}$ was prepared from $3.62 \mathrm{~g}(43.04 \mathrm{mmol})$ of cyclopentanone (51% yield $)$. All spectral data were in agreement with reported values. ${ }^{2}$

2-(Cyclohex-1-en-1-yl)-2-methylpropanal (S7). 4.30 g (28.29 mmol) of $\mathbf{S 7}$ was prepared from $3.0 \mathrm{~g}(30.55 \mathrm{mmol})$ of cyclohexanone (93% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.55(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.4,137.0,124.6$, 51.6, 25.7, 25.2, 23.0, 22.1, 20.3. IR (KBr, cm^{-1}): 2930, 1727, 1137, 919, 555. HRMS (ESI, m/z) calc for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 153.1274, found: 153.1274.

3-(Cyclopent-1-en-1-yl)-2,2-dimethylpropanal (S8). $0.68 \mathrm{~g}(4.47 \mathrm{mmol})$ of $\mathbf{S 8}$ was prepared from $1.33 \mathrm{~g}(6.79 \mathrm{mmol})$ from the corresponding ester (66% yield). All spectral data were in agreement with reported values. ${ }^{1}$

S9

2-(1H-Inden-2-yl)-2-methylpropanal (S9). $1.94 \mathrm{~g}(10.43 \mathrm{mmol})$ of $\mathbf{S 9}$ was prepared from $2.28 \mathrm{~g}(17.27 \mathrm{mmol})$ of 1,3-dihydro- 2 H -inden-2-one (60% yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.35(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 201.3,148.9,144.3,143.2,128.9,126.4,124.6,123.6$, 120.7, 49.1, 38.5, 21.7. IR (KBr, cm^{-1}): 2971, 1722, 1462, 913, 753. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 209.0937, found: 209.0937.

S10
2-(1H-Inden-3-yl)-2-methylpropanal (S10). $4.09 \mathrm{~g}(22.0 \mathrm{mmol})$ of $\mathbf{S 1 0}$ was prepared from $3.0 \mathrm{~g}(22.72 \mathrm{mmol})$ of 2,3-dihydro- 1 H -inden-1-one (97% yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,145.0,144.9,142.8,130.6,126.1,124.8,124.1,121.0,48.4$, 37.7, 21.2. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2972, 1731, 1459, 903, 766. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 209.0937$, found: 209.0938 .

2-(7-Methoxy-1H-inden-3-yl)-2-methylpropanal (S11). 2.40 g (11.11 mmol) of S11 was prepared from $3.12 \mathrm{~g}(19.23 \mathrm{mmol})$ of 4-methoxy-2,3-dihydro-1H-inden-1-one $(58 \%$
yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.2,155.4,144.9,144.6$, 131.8, 130.7, 127.8, 114.1, 107.2, 55.1, 48.4, 35.0, 21.2. IR ($\mathrm{KBr} \mathrm{cm}^{-1}$): 2971, 1727, 1478, 1259, 776. HRMS (ESI, m/z) calc for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 239.1043$, found: 239.1041 .

S12
2-(Cyclobut-1-en-1-yl)-2-methylhex-5-yn-3-ol (S12). $1.07 \mathrm{~g}(6.52 \mathrm{mmol})$ of $\mathbf{S 1 2}$ was prepared from $2.8 \mathrm{~g}(40.0 \mathrm{mmol})$ of cyclobutanone (16% yield) via step 5, method I , and the 2-(cyclobut-1-en-1-yl)-2-methylpropanal intermediate was unstable. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77(\mathrm{t}, \mathrm{J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 3 \mathrm{H})$, $2.31-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,127.9,82.3,75.2,70.2,40.5,29.0$, 25.7, 22.6, 21.5, 20.9. IR (KBr, cm^{-1}): 3308, 2920, 1362, 1061, 857, 632. HRMS (ESI, m / z) calc for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 187.1093, found: 187.1092.

2-(Cyclopent-1-en-1-yl)-2-methylhex-5-yn-3-ol (S13). 0.50 g (2.81 mmol) of $\mathbf{S 1 3}$ was prepared from $1.0 \mathrm{~g}(5.37 \mathrm{mmol})$ of the corresponding aldehyde (52% yield) via step 5, method I. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=9.7,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36-2.15(\mathrm{~m}, 6 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$, $1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,125.1,82.6,74.9,69.9,40.6,32.1$, 31.8, 23.6, 23.0, 22.3, 21.9. IR (KBr, cm^{-1}): 3308, 2964, 1362, 1064, 958, 632. HRMS (ESI, m/z) calc for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 201.1250$, found: 201.1248.

2-(Cyclohex-1-en-1-yl)-2-methylhex-5-yn-3-ol (S14). 0.46 g (2.4 mmol) of $\mathbf{S 1 4}$ was prepared from $1.0 \mathrm{~g}(6.58 \mathrm{mmol})$ the corresponding aldehyde (36% yield) via step 5 method I. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59-5.55(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dt}, J=9.8,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 5 \mathrm{H}), 1.96-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $141.7,122.5,82.8,74.5,69.8,43.1,25.6,24.7,23.3,22.3,22.1,21.5$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3308, 2927, 1384, 1061, 921, 632. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 215.1406, found: 215.1406.

S15
1-(Cyclopent-1-en-1-yl)-2,2-dimethylhex-5-yn-3-ol (S15). 0.41 g (2.14 mmol) of S15 from $0.66 \mathrm{~g}(4.34 \mathrm{mmol})$ of the corresponding aldehyde (49% yield) via step 5, method I. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.21(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ - $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.6,128.4,82.5,76.3,70.3,40.4,38.1,37.6,32.4,24.1,23.8,22.9,22.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3308, 2954, 1384, 1061, 844, 633. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 215.1406$, found: 215.1405.

2-(1H-Inden-2-yl)-2-methylhex-5-yn-3-ol (S16). 0.60 g (2.65 mmol) of $\mathbf{S 1 6}$ was prepared from $1.0 \mathrm{~g}(5.38 \mathrm{mmol})$ of the corresponding aldehyde (49% yield) via step 5, method I. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.4$ Hz, 1H), $7.29-7.22$ (m, 1H), 7.15 (td, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (s, 1H), 3.83 (dd, $J=$
$9.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{q}, J=22.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{dt}, J=16.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.11$ $(\mathrm{m}, 2 \mathrm{H}), 2.04(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,144.6,143.2,127.1,126.3,124.2,123.5,120.4,82.1,76.5,70.5,41.1,38.8$, 24.6, 23.2, 22.8. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3292, 2966, 1390, 1066, 753, 718, 635. HRMS (ESI, m / z) calc for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 249.1250$, found: 249.1247.

S17
2-(1H-Inden-3-yl)-2-methylhex-5-yn-3-ol (S17). 0.62 g (2.74 mmol) of $\mathbf{S 1 7}$ was prepared from $2.0 \mathrm{~g}(10.57 \mathrm{mmol})$ of the corresponding aldehyde (26% yield) via step 5, method II. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ - 4.32 (m, 1H), 3.34 (d, J = $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ - 2.28 (m, 2H), 2.15 (d, J=3.5 Hz, 1H), $2.02(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7$, 145.6, 143.1, 129.8, 125.8, 124.4, 124.1, 122.2, 82.3, 73.9, 70.3, 41.4, 37.4, 23.6, 22.7, 21.8. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3292, 2971, 1391, 1065, 767, 722, 639. HRMS (ESI, m/z) calc for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 249.1250$, found: 249.1248 .

2-(7-Methoxy-1H-inden-3-yl)-2-methylhex-5-yn-3-ol (S18). 0.50 g (1.95 mmol) of $\mathbf{S 1 8}$ was prepared from $1.36 \mathrm{~g}(6.27 \mathrm{mmol})$ the corresponding aldehyde (31% yield) via step 5, method II. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.26(\mathrm{~m}$, 2H), $2.33-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, 3 H), $1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,149.7,144.9,132.7,129.9$, $127.5,115.5,106.9,82.4,74.0,70.3,55.2,41.3,34.6,23.8,22.7,21.8$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$:

3290, 2969, 1477, 1256, 1020, 775. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 279.1356, found: 279.1353 .

1m
((2-(Cyclobut-1-en-1-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (1m). 1.15 g (4.87 mmol) of $\mathbf{1 m}$ was prepared from $1.07 \mathrm{~g}(6.52 \mathrm{mmol})$ of alcohol $\mathbf{S 1 4}$ (75% yield). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.69(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $0.98(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,127.0$, 84.0, 77.7, 69.4, 41.3, 29.1, 25.7, 23.8, 23.8, 19.8, 0.7. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2958, 1250, $1105,929,841,635$. HRMS (ESI, m/z) calc for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 259.1489$, found: 259.1486.

((2-(Cyclopent-1-en-1-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (1a). 0.47 g $(1.89 \mathrm{mmol})$ of $\mathbf{1 a}$ was prepared from $0.37 \mathrm{~g}(2.05 \mathrm{mmol})$ of alcohol $\mathbf{S 1 5}(92 \%$ yield $)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ - $2.16(\mathrm{~m}, 5 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,124.2,84.3$, $77.8,69.3,41.4,32.1,32.0,25.5,23.6,23.6,21.0,0.7$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2956, 1249, 1102, 841, 929, 634. HRMS (ESI, m/z) calc for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 273.1645$, found: 273.1642 .

((2-(Cyclohex-1-en-1-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (1r). 0.56 g (2.12 mmol) of $\mathbf{1 r}$ was prepared from $0.46 \mathrm{~g}(2.40 \mathrm{mmol})$ of alcohol $\mathbf{S 1 6}(88 \%$ yield $)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.52-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (dt, $J=17.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.48(\mathrm{~m}$, $4 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1$, $121.3,84.5,77.4,77.0,77.0,69.2,43.8,25.6,25.4,25.0,23.4,23.4,22.4,20.0,0.8$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2929,1249,1103,840$, 633. HRMS (ESI, m/z) calc for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 287.1802$, found: 287.1800 .

((1-(Cyclopent-1-en-1-yl)-2,2-dimethylhex-5-yn-3-yl)oxy)trimethylsilane
(1n). $0.39 \mathrm{~g}(1.48 \mathrm{mmol})$ of $\mathbf{1 n}$ was prepared from $0.38 \mathrm{~g}(1.98 \mathrm{mmol})$ of alcohol $\mathbf{S 1 7}(75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.38-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.5,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 141.7,127.9,84.0,79.5,69.5,39.6,38.9,37.8$, 32.4, 24.1, 23.7, 23.3, 22.9, 0.7. IR (KBr, cm^{-1}): 2956, 1249, 1096, 841, 635. HRMS (ESI, m/z) calc for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1802$, found: 287.1799.

$1 i$
((2-(1H-Inden-2-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (1i). 0.74 g (2.49 $\mathrm{mmol})$ of $\mathbf{1 i}$ was prepared from $0.60 \mathrm{~g}(2.66 \mathrm{mmol})$ of alcohol $\mathbf{S 1 9}\left(94 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=11.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{~d}, J=22.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=22.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=17.1,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13$ (ddd, $J=17.1,8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=3.9 \mathrm{~Hz}$,

6 H), 0.21 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,144.8,143.3,126.7,126.2$, $123.9,123.4,120.3,83.7,79.1,69.7,42.1,39.0,26.5,23.8,22.9,0.7$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2961, 1249, 1102, 928, 841, 751, 717, 635. HRMS (ESI, m/z) calc for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{OSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 321.1645$, found: 321.1643.

((2-(1H-Inden-3-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (1k). $0.81 \mathrm{~g}(2.72$ $\mathrm{mmol})$ of $\mathbf{1 k}$ was prepared from $0.62 \mathrm{~g}(2.74 \mathrm{mmol})$ of alcohol $\mathbf{S 2 0}(99 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dt}, J=16.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=$ $16.9,8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ (s, 3H), 1.31 (d, $J=3.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,145.6,143.5,129.2,125.7,124.2$, 124.1, 122.2, 83.9, 76.1, 69.5, 42.2, 37.3, 24.6, 23.6, 21.7, 0.7. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2956$, $1249,1104,928,841,755,722,632$. HRMS (ESI, m / z) calc for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 321.1645, found: 321.1638 .

11
((2-(7-Methoxy-1H-inden-3-yl)-2-methylhex-5-yn-3-yl)oxy)trimethylsilane (11). $0.50 \mathrm{~g}(1.52 \mathrm{mmol})$ of $\mathbf{1 1}$ was prepared from $0.46 \mathrm{~g}(1.74 \mathrm{mmol})$ of alcohol $\mathbf{S 2 1}(87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.30-6.25(\mathrm{~m}, 1 \mathrm{H}), 4.46$ (dd, $J=8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,150.4,145.4,132.7,129.3,127.3,115.5$, 106.7, 83.9, 76.2, 69.5, 55.2, 42.2, 34.6, 24.8, 23.6, 21.7, 0.7. IR (KBr, cm^{-1}): 2956,

1477, 1257, 1102, 927, 842, 773, 722, 634. HRMS (ESI, m/z) calc for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 351.1751$, found: 351.1747 .

2.3) Procedures for the preparation of enynes- $10,1 p, 1 \mathrm{j}, 1 \mathrm{q}$

To a suspension of $\mathrm{NaH}(0.11 \mathrm{~g}, 2.64 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in DMF (5 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of diethyl 2-(prop-2-yn-1-yl)malonate (0.5 $\mathrm{g}, 2.52 \mathrm{mmol}$) in DMF (5 mL). The reaction mixture was stirred for 1 h . A solution of 1-(2-iodoethyl)cyclopent-1-ene ($0.67 \mathrm{~g}, 3.03 \mathrm{mmol}$) in DMF (5 mL) was added dropwise, and then the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 2 h . After being cooled to rt , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded $10(0.58 \mathrm{~g}, 82 \%)$ as a colorless oil.

Diethyl 2-(2-(cyclopent-1-en-1-yl)ethyl)-2-(prop-2-yn-1-yl)malonate (10). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30-2.17(\mathrm{~m}, 6 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,143.2,123.9,78.9,71.2,61.5,56.6,35.1,32.4$, 30.0, 25.5, 23.3, 22.6, 14.0. IR (KBr, cm^{-1}): 2936, 1733, 1195, 1022, 643. HRMS (ESI, m / z) calc for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 315.1567$, found: 315.1568.

To a solution of 1-bromo-2-[(trimethylsilyl)ethynyl]benzene ($1.10 \mathrm{~g}, 4.34 \mathrm{mmol}$) in THF (30 mL) was dropped $n-\mathrm{BuLi}(1.74 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane $)$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h before the addition of aldehyde $\mathbf{S 6}(0.5 \mathrm{~g}, 3.62 \mathrm{mmol})$ in THF (10 mL). The resulting mixture was stirred for another 2 h at this temperature before being quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. And the combined organic layers were washed with brine, dried with MgSO_{4} and concentrated in vacuo to give the crude enyne.

To a stirred solution of the crude enyne in THF (15 mL) was added TBAF ($5.4 \mathrm{~mL}, 1.0$ M in THF), and the resulting mixture was stirred at rt for 0.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$ afforded alcohol $(0.69 \mathrm{~g}, 80 \%)$ as a colorless oil.

To a stirred solution of the alcohol $(0.25 \mathrm{~g}, 1.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DMAP ($13 \mathrm{mg}, 0.036 \mathrm{mmol}$), imidazole ($0.176 \mathrm{~g}, 2.59 \mathrm{mmol}$), and TMSCl (0.26 $\mathrm{mL}, 2.07 \mathrm{mmol}$) in sequence. After being stirred for 0.5 h , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded $\mathbf{1 p}(0.31 \mathrm{~g}, 95 \%)$ as a colorless oil.
$J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,145.4,132.0,128.6,127.8,126.5,124.9,121.1$, $82.8,81.0,77.3,42.3,33.1,32.4,24.3,23.6,22.5,-0.2$ IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2955, 1382, 1251, 1067, 885, 760, 607. HRMS (ESI, m/z) calc for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1802$, found: 335.1796.

To a solution of 1 H -indene (1.1 equiv) in THF $(0.1 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added n - BuLi (1.2 equiv, 2.5 M in hexane) dropwise. The reaction mixture was stirred for 1 h before the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.0 equiv). The mixture was stirred for 0.5 h before the addition of epoxide (1.0 equiv) in THF and then stirred for another 2 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried with MgSO_{4} and concentrated in vacuo to give the crude enyne.

To a stirred solution of crude enyne in THF (0.3 M) was added TBAF (1.5 equiv, 1.0 M in THF), and the resulting mixture was stirred at rt for $0.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$ afforded the alcohol $\mathbf{S 1 9}$ or $\mathbf{S 2 0}$.

Alcohol $\mathbf{S 1 9}$ or $\mathbf{S 2 0}$ (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, and then treated with imidazole (2.5 equiv), DMAP (0.1 equiv) and TMSCl (2.0 equiv) at $0^{\circ} \mathrm{C}$. After being stirred for 0.5 h , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded the $\mathbf{1} \mathbf{j}$ or $\mathbf{1 q}$ as a colorless oil.

S19
1-(1H-Inden-3-yl)pent-4-yn-2-ol (S19). $0.48 \mathrm{~g}(2.44 \mathrm{mmol})$ of $\mathbf{S} 19$ was prepared from $0.72 \mathrm{~g}(4.69 \mathrm{mmol})$ of the corresponding epoxide (52% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.89(\mathrm{~m}$, $1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,144.4,140.3,131.0,126.1,124.8,123.8,119.1,80.6$, $71.0,68.4,38.0,34.7,26.8$. IR (KBr, cm^{-1}): 3293, 2916, 1460, 1077, 770, 722, 644. HRMS (ESI, m/z) calc for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 221.0937$, found: 221.0935.

1-(1H-Inden-3-yl)-3,3-dimethylhex-5-yn-2-ol (S20). $0.28 \mathrm{~g}(1.17 \mathrm{mmol})$ of $\mathbf{S 2 0}$ was prepared from $0.5 \mathrm{~g}(2.55 \mathrm{mmol})$ of the corresponding epoxide (46% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4$ Hz, 1H), $7.27-7.21$ (m, 1H), 6.40 (s, 1H), 3.83 (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (s, 2H), $2.94-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$
$144.8,144.5,141.6,130.8,126.1,124.8,123.9,119.1,82.3,74.5,70.2,37.9,37.5,30.4$, 29.1, 23.5, 22.0. IR (KBr, cm^{-1}): 3300, 2963, 1427, 1056, 770, 722, 632. HRMS (ESI, m / z) calc for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 263.1406$, found: 263.1403.

1 j
((1-(1H-Inden-3-yl)pent-4-yn-2-yl)oxy)trimethylsilane (1j). $0.55 \mathrm{~g}(2.04 \mathrm{mmol})$ of $\mathbf{1 j}$ was prepared from $0.46 \mathrm{~g}(2.34 \mathrm{mmol})$ of $\mathbf{S 1 9}\left(87 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.01-2.94(\mathrm{~m}$, $1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,144.2,140.9,131.0,125.9,124.50$ 123.7, 119.3, 81.6, 70.3, 70.2, 37.8, 35.3, 27.6, 0.0. IR (KBr, cm^{-1}): 2954, 1251, 1098, 842, 758, 639. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{222} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 293.1332$, found: 293.1334.

((1-(1H-Inden-3-yl)-3,3-dimethylhex-5-yn-2-yl)oxy)trimethylsilane (1q). 0.29 g $(0.93 \mathrm{mmol})$ of $\mathbf{1 q}$ was prepared from $0.26 \mathrm{~g}(1.10 \mathrm{mmol})$ of $\mathbf{S 2 0}\left(85 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27$ (m, $1 \mathrm{H}), 7.21(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.9,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~s}, 2 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.19(\mathrm{~m}, 2 \mathrm{H})$, $2.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}),-0.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,144.3,142.1,131.0,125.9,124.4,123.8,119.2,82.7,77.1$, $70.3,38.6,37.6,31.2,29.2,23.7,22.6, ~ 0.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2960, 1249, 1092, 839, 771, 719, 634. HRMS (ESI, m/z) calc for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1802$, found: 335.1798 .

3. Optimization of EYM Conditions

3.1) Table S1. Optimization of EYM Reaction Conditions ${ }^{\text {a }}$.

Entry	Catalyst [mol \%]	Solvent	$\mathrm{T}\left({ }^{\text {C }}\right.$)	t [h]	Yield [\%] ${ }^{[b]}$ (2a:3)
$1{ }^{\text {e }}$	$\mathrm{PtCl}_{2}(5)$	Toluene	80	1	66 (1:2.4) ${ }^{\text {c }}$
$2{ }^{\text {d }}$	A (5)	DCE	reflux	1.5	86 (1:1.2) ${ }^{\text {c }}$
3	B (5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	4	$30(2 \mathrm{a})^{\text {f }}$
4	C (5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	24	$30(2 \mathrm{a})^{\text {g }}$
5	E (5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	1	81 (2a)
6	D (5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	1	93 (2a)
7	D (5)	Toluene	80	1	79 (2a)
8	D (3)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	1	90 (2a ,87c)
$9{ }^{\text {e }}$	D (5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	12	88 (2a)

Catalysts:

A

B

C

D

E
${ }^{a}$ Reactions were performed with 0.5 mmol of $\mathbf{1 a}, 3-5 \mathrm{~mol} \%$ of catalyst under ethylene in specified solvent (0.03 M) unless otherwise stated. ${ }^{\mathrm{b}}$ NMR yield with anthracene as an internal standard. ${ }^{\mathrm{c}}$ Isolated yield, the ratio was determined by ${ }^{1} \mathrm{H} \mathrm{NMR}$. ${ }^{\mathrm{d}} 5 \mathrm{~mol} \% \mathrm{~A}, 5 \mathrm{~mol} \% \mathrm{P}(\mathrm{OPh})_{3}$, DMAD (1.0 equiv), DCE, $80{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$. ${ }^{\mathrm{e}}$ Reaction was run under argon atmosphere. ${ }^{\mathrm{f}}$ With a 40% yield of recycling starting material $\mathbf{1 a} .{ }^{g}$ With a 10% yield of recycling starting material 1a
3.2) Proposed mechanism of the formation of byproduct 3

Scheme S1. Proposed mechanism of the formation of byproduct 3

3.3) Typical procedure for EYM reaction

Method I: To a solution of enyne (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.03 \mathrm{M}$) was added G-II (3 mol\%), and the solution was refluxed under an atmosphere of ethylene for 4 h . Then the solvent was removed in vacuo. Purification of the residue by flash chromatography afforded the corresponding diene.

Method II: To a solution of enyne (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.03 \mathrm{M}$) was added G-II (3 mol\%), and the solution was refluxed under an atmosphere of ethylene for 4 h . After the solvent was removed, the residue was redissolved in THF (0.5 M), and then treated with TBAF (1.5 equiv, 1 M in THF). After 0.5 h , water was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} concentrated in vacuo. Purification of the residue by flash chromatography afforded the corresponding diene.

Method III: To a solution of enyne (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.03 \mathrm{M}$) was added G-II (3 mol\%), and the solution was refluxed under an atmosphere of ethylene for 4 h . Then the second portion of G-II ($3 \mathrm{~mol} \%$) was added again, and then the reaction was run for another 12h. Then the solvent was removed in vacuo. Purification of the residue by flash chromatography afforded the corresponding diene.

Method IV: To a solution of enyne (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.005 \mathrm{M}$) was added G-II (5 $\mathrm{mol} \%$), and the solution was refluxed under an atmosphere of ethylene for 12 h . After the solvent was removed, the residue was redissolved in THF (0.5 M), and then treated with TBAF (1.5 equiv, 1 M in THF). After stirred for 0.5 h , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography afforded the corresponding diene.

4. Characterization of Bicyclic Dienes 2a-2r

((3,3-Dimethyl-1,2,3,4,5,6-hexahydroazulen-2-yl)oxy)trimethylsilane (2a).
Following the typical procedure method I, diene $\mathbf{2 a}(0.81 \mathrm{~g}, 3.23 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 a}(0.93 \mathrm{~g}, 3.69 \mathrm{mmol})$ as a colorless oil in 87% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.75-5.63(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.20(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.70$ $(\mathrm{m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0$, $132.0,127.1,125.3,79.5,50.3,43.3,31.4,28.5,24.7,24.6,18.9,0.2$ IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2956, 1250, 1090, 898, 840, 748. HRMS (ESI, m/z) calc for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 273.1645, found: 273.1644.

Ethyl 1,2,3,6,7,8-hexahydroazulene-1-carboxylate (2b).
Following the typical procedure method I, diene $\mathbf{2 b}(2.01 \mathrm{~g}, 9.95 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 b}(3.0 \mathrm{~g}, 14.85 \mathrm{mmol})$ as a colorless oil in 67% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.82-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.56$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 5 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,137.6,135.4,133.3,124.3,60.3,56.7,37.5$, 31.1, 30.9, 26.9, 24.2, 14.3. IR (KBr, cm^{-1}): 2935, 1728, 1182, 1038, 840. HRMS (ESI, m / z) calc for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 229.1199$, found: 229.1196 .

N-Methoxy- N-methyl-1,2,3,6,7,8-hexahydroazulene-1-carboxamide (2c).

Following the typical procedure method I, diene $\mathbf{2 c}(1.20 \mathrm{~g}, 5.43 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 c}(1.54 \mathrm{~g}, 6.97 \mathrm{mmol})$ as a colorless oil in 78% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.79-5.68(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.52(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.91(\mathrm{~m}$, 1H), $1.87-1.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,138.5,135.4,132.8$, $124.5,61.3,52.7,37.7,32.4,31.0,27.4,24.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2936, 1657, 1384, 1177, 992, 842, 733. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 244.1308$, found: 244.1304.

tert-Butyl ((1,2,3,6,7,8-hexahydroazulen-1-yl)methyl)(tosyl)carbamate (2d).
Following the typical procedure method I, diene $\mathbf{2 d}(0.11 \mathrm{~g}, 0.26 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 d}(0.18 \mathrm{~g}, 0.43 \mathrm{mmol})$ as a colorless oil in 60% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.79-7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.80-5.72$ $(\mathrm{m}, 2 \mathrm{H}), 3.91-3.86(\mathrm{dd}, J=14.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.76(\mathrm{dd}, J=14.0,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12-3.04(\mathrm{~m} .1 \mathrm{H}), 2.61-2.49(\mathrm{~m} .1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.27$ $(\mathrm{m}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.3,144.0,140.8,137.7,134.1,132.6,127.9,124.8,84.1,51.9,49.4,36.2$, $31.3,30.9,27.0,24.4,21.6$. IR (KBr, cm^{-1}): 2978, 2933, 1727, 1354, 1154, 674, 545. HRMS (ESI, m/z) calc for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 440.1866$, found: 440.1867.

2 e

3-((Methoxymethoxy)methyl)-1,2,3,4,5,6-hexahydroazulene (2e).

Following the typical procedure method I , diene $\mathbf{2 e}(0.255 \mathrm{~g}, 1.23 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 e}(0.416 \mathrm{~g}, 2.0 \mathrm{mmol})$ as a colorless oil in 62% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.77-5.69(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.60(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=9.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$
(dd, $J=9.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{brs}, 1 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 6 \mathrm{H}), 2.04-1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.86-1.67(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,133.7$, 132.2, 125.0, $96.6,70.2,55.1,51.5,36.6,31.1,30.8,26.7,24.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3360, 2925, 1439, 1044, 811. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 231.1356$, found: 231.1355 .

(1,2,3,6,7,8-Hexahydroazulen-1-yl)methyl acetate (2f).
Following the typical procedure method I, diene $\mathbf{2 f}(0.14 \mathrm{~g}, 0.68 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 f}(0.21 \mathrm{~g}, 1.02 \mathrm{mmol})$ as a colorless oil in 66% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.78-5.68(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.8,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{brs}, 1 \mathrm{H}), 2.51-2.25(\mathrm{~m}, 6 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.96-7.73(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,139.7,134.2,132.7,124.6$, $66.5,50.4,36.5,31.1,30.7,26.6,24.3,20.9$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2937, 1739, 1365, 1236, 1034, 802. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 229.1199$, found: 229.1197.

2g

tert-Butyl((1,2,3,6,7,8-hexahydroazulen-1-yl)methoxy)diphenylsilane (2g).

Following the typical procedure method I, diene $2 \mathrm{~g}(1.454 \mathrm{~g}, 3.61 \mathrm{mmol})$ was obtained from enyne $1 \mathrm{~g}(0.90 \mathrm{~g}, 2.24 \mathrm{mmol})$ as a colorless oil in 62% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 6 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=$ $9.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{brs}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,135.6,135.6,135.5,134.1,134.0,133.6,132.0,129.5$, $127.5,125.1,66.2,53.9,36.8,31.1,31.0,26.8,26.4,24.5,19.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2930, 1427, 1111, 822, 739, 702, 612, 504. HRMS (ESI, m/z) calc for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$:

2h

tert-Butyl((1,2,3,6,7,8-hexahydroazulen-1-yl)methoxy)dimethylsilane (2h).

Following the typical procedure method I, diene $\mathbf{2 h}(2.30 \mathrm{~g}, 8.26 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 h}(3.12 \mathrm{~g}, 11.2 \mathrm{mmol})$ as a colorless oil in 74% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.75-5.69(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.8,7.2 \mathrm{~Hz}$, 1H), $2.77-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 6 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.66(\mathrm{ddd}, \mathrm{J}=13.5,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,133.4,132.0,125.1,65.6,54.0,36.6,31.2,31.1,26.4,25.9,24.6$, 18.3, -5.3, -5.3. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2929, 1471, 1255, 1101, 836, 776. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 301.1958$, found: 301.1958.

3,3-Dimethyl-1,2,3,4-tetrahydrobenzo[f]azulen-2-ol (2i).
Following the typical procedure method II, diene $\mathbf{2 i}(0.15 \mathrm{~g}, 0.67 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 i}(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ as a white solid in 67% yield. M.P. $77-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{dd}, \mathrm{J}=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2,136.4,136.1,131.5,128.6,128.6,128.2,127.7,127.4,125.3$, 80.4, 49.6, 40.3, 32.4, 25.2, 19.6, 0.1. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3375, 2953, 1461, 1060, 788, 738. HRMS (ESI, m / z) calc for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 249.1250$, found: 249.1245 .

1,2,3,6-Tetrahydrobenzo[e]azulen-2-ol (2j).

Following the typical procedure method II, diene $\mathbf{2 j}(0.18 \mathrm{~g}, 0.91 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 j}(0.27 \mathrm{~g}, 1.0 \mathrm{mmol})$ as a colorless oil in 91% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 1 \mathrm{H})$, $3.12-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.6,136.4,135.7,134.9,128.5,127.7,125.7,125.7,125.5,125.1,70.3$, 46.7, 45.5, 34.9. IR (KBr, cm^{-1}): 3340, 2924, 1487, 1035, 822, 758, 729, 628. HRMS ($\mathrm{ESI}, \mathrm{m} / \mathrm{z}$) calc for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 221.0937$, found: 221.0935 .

2k

1,1-Dimethyl-1,2,3,6-tetrahydrobenzo[e] azulen-2-ol (2k).

Following the typical procedure method II, diene $\mathbf{2 k}(0.07 \mathrm{~g}, 0.31 \mathrm{mmol})$ was obtained from enyne $1 \mathrm{k}(0.145 \mathrm{~g}, 0.49 \mathrm{mmol})$ as a colorless oil in 63% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=9.5,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{dd}, J=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (brs, 1 H), $1.43-1.35(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.2, 138.5, 136.0, 134.0, 127.8, 127.7, 127.1, 125.8, 125.1, 125.1, 80.6, 41.5, 35.0, 29.6, 25.8, 20.0. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3390,2927,1461,1081,768,728,662$. HRMS (ESI, m / z) calc for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 249.1250$, found: 249.1247 .

7-Methoxy-1,1-dimethyl-1,2,3,6-tetrahydrobenzo[e]azulen-2-ol (21).

Following the typical procedure method II, diene $\mathbf{2 1}(0.18 \mathrm{~g}, 0.70 \mathrm{mmol})$ was obtained from enyne $1 \mathbf{1 l}(0.33 \mathrm{~g}, 1.0 \mathrm{mmol})$ as a white solid in 70% yield. M.P. $119-121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=9.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}$, $1 \mathrm{H}), 3.86$ (s, 3H), 2.86 (brs, 2H), 2.61 (dd, $J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (s, 1H), 1.46 $1.31(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,146.3,136.4,135.6,127.5,126.8$, 126.3, 125.0, 117.6, 109.6, 80.7, 55.7, 41.6, 25.9, 25.2, 20.0. IR (KBr, cm^{-1}): 3410, 2931, 1471, 1265, 1107, 790, 726, 643. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 279.1356, found: 279.1356 .

((3,3-Dimethyl-2,3,4,5-tetrahydro-1H-inden-2-yl)oxy)trimethylsilane (2m).
Following the typical procedure method I, diene $\mathbf{2 m}(0.40 \mathrm{~g}, 1.69 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 m}(0.47 \mathrm{~g}, 2.00 \mathrm{mmol})$ as a colorless oil in 85% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.84(\mathrm{dt}, J=9.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.63(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43 (ddt, $J=15.1,7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.1, 127.6, 124.7, $123.9,80.6,47.8,39.8,24.7,23.4,19.6,19.0,0.1$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2956, 1462, 1250, 1093, 840, 750. HRMS (ESI, m/z) calc for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 259.1489$, found: 259.1485.

3,3-Dimethyl-2,3,4,5,6,7-hexahydro-1H-benzo[7]annulen-2-ol (2n).

Following the typical procedure method II, diene $\mathbf{2 n}(0.105 \mathrm{~g}, 0.55 \mathrm{mmol})$ was obtained from enyne $1 \mathbf{n}(0.264 \mathrm{~g}, 1.00 \mathrm{mmol})$ as a colorless oil in 55% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ - $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=11.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-1.94(\mathrm{~m}, 5 \mathrm{H}), 1.86-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{brs}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7$, $131.3,130.1,123.5,74.1,45.1,37.3,35.4,33.7,31.2,28.0,26.2,21.8$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3404, 2924, 1448, 1043, 722. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 215.1406$, found: 215.1405.

Diethyl 1,3,4,7,8,9-hexahydro-2H-benzo[7]annulene-2,2-dicarboxylate (20).
Following the typical procedure method I, diene $\mathbf{2 0}(0.15 \mathrm{~g}, 0.54 \mathrm{mmol})$ was obtained from enyne $10(0.28 \mathrm{~g}, 1.00 \mathrm{mmol})$ as a colorless oil in 54% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.78-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~s}$, 2H), $2.24-2.15(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,135.6,131.5,130.0,124.6,61.1,53.5,35.9$, 35.0, 31.0, 29.6, 28.2, 27.7, 14.0. IR (KBr, cm^{-1}): 2934, 1731, 1446, 1250, 1095, 864. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 315.1572, found: 315.1571.

6,6-Dimethyl-6,7,8,9-tetrahydro-5H-cyclohepta $[a]$ naphthalen-5-ol (2p).

Following the typical procedure method II, diene $\mathbf{2 p}(0.083 \mathrm{~g}, 0.35 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 p}(0.25 \mathrm{~g}, 0.80 \mathrm{mmol})$ as a colorless oil in 43% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=$
$11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.16$ - $2.05(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 147.1,135.7,134.1,133.4,128.2,128.0,127.6,126.8,126.6,123.2,77.8$, 41.0, 36.1, 27.7, 27.6, 24.9, 21.0. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3464, 2928, 1484, 1298, 1043, 739, 613. HRMS (ESI) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 263.1406$, found:263.1411

2q

((3,3-Dimethyl-2,3,4,7-tetrahydro-1H-dibenzo[a,c][7]annulen-2yl)oxy)trimethylsilane (2q).

Following the typical procedure method III, diene $\mathbf{2 q}(0.195 \mathrm{~g}, 0.23 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 q}(0.231 \mathrm{~g}, 0.74 \mathrm{mmol})$ as a colorless oil in 84% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=$ $7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.70$ $(\mathrm{m}, 1 \mathrm{H}), 3.20-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,138.5,132.8,132.2,129.5,127.5,126.9,126.4,125.7$, $125.5,74.4,37.1,34.3,34.1,27.1,0.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2956, 1448, 1082, 839, 756, 718. HRMS (ESI, m / z) calc for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1802$, found: 335.1800 .

(Z)-3,3-Dimethyl-2,3,4,5,6,7-hexahydro-1H-cyclopenta[8]annulen-2-ol (2r).

Following the typical procedure method IV, diene $2 \mathbf{r}(0.133 \mathrm{~g}, 0.69 \mathrm{mmol})$ was obtained from enyne $\mathbf{1 r}(0.528 \mathrm{~g}, 2.0 \mathrm{mmol})$ as a colorless oil in 34% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{q}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=15.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,130.0,128.1,126.5,79.8,50.3,42.5,27.8,25.6,25.0,24.9,23.2,19.0$ IR (KBr,
cm^{-1}): 3391, 2925, 1448, 1060, 745. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 215.1406, found:215.1405

5. Syntheses of Skeletally Diverse, Privileged Scaffolds from 2g and 2h.

To a stirred solution of diene $\mathbf{2 g}(0.72 \mathrm{~g}, 1.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated methylene blue $(0.050 \mathrm{~g})$, and the mixture was irradiated with a 300 W tungsten lamp while bubbled with O_{2} until no starting material left. Then $\mathrm{Et}_{3} \mathrm{~N}(1.24 \mathrm{~mL}, 9.0$ mmol) was added ${ }^{4}$ and the mixture was stirred at rt overnight. The solvent was removed in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=20: 1 \sim 4: 1)$ afforded the $\mathbf{5 b}(0.28 \mathrm{~g}, 0.65 \mathrm{mmol}, 36 \%)$ as a white solid and $\mathbf{5 a}(0.19 \mathrm{~g}, 0.44 \mathrm{mmol}$, 24%) as a colorless oil.
rac-(1S,8aS)-1-(((tert-Butyldiphenylsilyl)oxy)methyl)-8a-hydroxy-2,3,6,7,8,8a-hexahydroazulen-5(1H)-one (5b). M.P. $103-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.68-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{dd}, J=10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J=16.9,10.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.53$ (dddd, $J=18.1,7.6,3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}$, $1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3,163.0,135.5,135.5,133.0$, $133.0,129.8,127.8,127.8,125.5,81.8,63.4,55.3,41.7,32.3,31.7,26.8,24.8,19.1$. IR (KBr, cm-1): 3406, 2930, 1656, 1427, 1111, 832, 702, 504. HRMS (ESI, m/z) calc for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 457.2169$, found: 457.2168.
rac-(1S,8aR)-1-(((tert-Butyldiphenylsilyl)oxy)methyl)-8a-hydroxy-2,3,6,7,8,8a-hexahydroazulen-5(1H)-one (5a). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 6 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{brs}, 1 \mathrm{H}), 3.87$ $(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=15.1,8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddt}, J=18.3,9.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{ddd}, J=14.2,5.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{ddd}, J=14.3,9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,164.4,135.5,135.5,132.4,132.2,123.0,129.9,127.8$, $125.9,81.1,62.9,51.5,43.6,36.9,31.9,26.7,24.5,19.0,18.9 . \operatorname{IR}(\mathrm{KBr}, \mathrm{cm}-1): 3439$, 2929, 1655, 1471, 1255, 1093, 837, 776. HRMS (ESI, m/z) calc for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 457.2169$, found: 457.2164.

To a stirred solution of diene $\mathbf{2 h}(1.0 \mathrm{~g}, 3.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(0.60 \mathrm{~g}, 7.2 \mathrm{mmol})$ and m-CPBA ($0.84 \mathrm{~g}, 3.66 \mathrm{mmol}$, contains ca. 25% water). After being stirred for 10 min , the mixture was filtered through a pad of basic aluminium oxide and washed with $\mathrm{PE} / \mathrm{EtOAc}=20: 1$. The filtrate was concentrated in
vacuo. Purification of the residue by column chromatography (aluminium oxide, basic. $\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded the α-epoxide $\mathbf{6 a}(0.19 \mathrm{~g}, 0.65 \mathrm{mmol}, 18 \%)$ as a colorless oil and β-epoxide $\mathbf{6 b}(0.29 \mathrm{~g}, 0.99 \mathrm{mmol}, 27 \%)$ as a colorless oil.
tert-butyldimethyl(((3S,3aR,8aR)-2,3,5,6-tetrahydro-1H,4H-3a,8a-epoxyazulen-3yl)methoxy)silane (6a). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89-5.81$ (ddd, $J=11.6,7.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.68$ (dd, $J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86-3.80(\mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59-3.53$ (dd, $J=10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.98(\mathrm{~m}, 1 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 136.5,125.7,75.2,69.8,63.7$, $46.8,31.8,31.1,30.4,25.9,23.2,22.6,-5.4$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2925, 2354, 1542, 810. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 317.1907$, found: 317.1913.

tert-butyldimethyl(((3S,3aS,8aS)-2,3,5,6-tetrahydro-1H,4H-3a,8a-epoxyazulen-3-

 yl)methoxy)silane (6b). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88-5.80(\mathrm{ddd}, J=11.6,7.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.71(\mathrm{dd}, J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.68(\mathrm{dd}, J=10.1,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67-3.62(\mathrm{dd}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 2 \mathrm{H})$, $2.10-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 136.8,125.4,75.8,70.0,64.2$, $47.3,32.9,31.4,29.2,25.9,23.8,22.0,18.1,-5.6$. IR (KBr, cm^{-1}): 2917, 1577, 1031, 419. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 317.1907$, found: 317.1902.To a stirred solution of β-epoxide $\mathbf{6 b}(0.294 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(0.16 \mathrm{~mL}, 48 \%\right.$ boron fluoride in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ dropwise. After being stirred for 0.5 h , the mixture was quenched with aqueous NaOH solution $(5 \mathrm{~mL}, 1 \mathrm{M})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=50: 1)$ afforded the spiro compound $7(0.12 \mathrm{~g}, 40 \%)$ as a colorless oil.
rac-(2S,5S)-2-(((tert-Butyldimethylsilyl)oxy)methyl)spiro[4.5]dec-6-en-1-one (7). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92(\mathrm{dt}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=10.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}$,
$1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.89$ (ddd, $J=12.8,5.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H})$, $1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 220.8,130.1,128.9,61.3,51.1,51.0,35.9,28.6,25.8,24.7$, $21.8,18.4,18.2,-5.5,-5.6$. IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: 2927, 1737, 1463, 1255, 1092, 836, 775. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 317.1907, found: 317.1903.

A stirred solution of diene $\mathbf{2 g}(0.20 \mathrm{~g}, 0.50 \mathrm{mmol})$ in n-hexane equipped in quartz reaction tube was degassed with argon for 5 min and then irradiated with 365 nm UV lamp ($8 \mathrm{~W} \times 4$) for 12 h . TLC showed no starting materials left, the solvent was removed in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=100: 1)$ afforded two inseparable diastereoisomers $8(0.12 \mathrm{~g}, 60 \%)$ as a colorless oil.
rac-tert-Butyl(((4aS,7aS)-2,3,4a,5,6,7-hexahydro-1H-
cyclobuta[1,2:1,4]di[5]annulen-1-yl)methoxy)diphenylsilane (8). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.75-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.54-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.74-$ $3.64(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.9$ $(\mathrm{m}, 3 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.28-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.8,156.3,135.6,134.2,134.1,129.5,127.6,124.3,123.6,65.0,64.7,60.8$, $60.5,47.0,45.4,44.0,42.5,32.5,32.0,31.6,26.9,26.8,26.6,26.5,24.6,24.0,23.8$, 23.4, 23.1, 19.2. HRMS (ESI, m/z) calc for $\mathrm{C}_{2} 7 \mathrm{H}_{34} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}: 425.2271$, found: 425.2276.

6. Construction of the Core Skeleton of Pseudolaric Acid F.

To a stirred solution of $\mathbf{5 b}(0.435 \mathrm{~g}, 1.0 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was added DMAP $(0.122 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 4.0 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.28 \mathrm{~mL}, 3.0 \mathrm{mmol})$ successively, and the mixture was heated to reflux for 5 h . After being cooled to rt , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo to give the crude acetylation product.

The above crude acetylation product was dissolved with THF (10 mL), AcOH (0.17 $\mathrm{mL}, 3.0 \mathrm{mmol}$) and TBAF ($1.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added successively. The mixture was heated at $50^{\circ} \mathrm{C}$ for 2 h . After being cooled to rt , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=4: 1 \sim 1: 1)$ afforded the alcohol $9(0.238 \mathrm{~g}, 99 \%)$ as a colorless oil.
rac-(3S,3aS)-3-(Hydroxymethyl)-7-oxo-2,3,4,5,6,7-hexahydroazulen-3a(1H)-yl
acetate (9). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97-5.91(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62$ (dd, $J=11.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.84$ - $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1$, $169.7,161.0,125.9,89.0,61.8,50.2,40.6,32.4,28.5,25.9,21.8,18.6$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3439, 2950, 1734, 1661, 1236, 1049, 960. HRMS (ESI, m/z) calc for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 261.1097$, found: 261.1099 .

To a stirred solution of alcohol $9(0.219 \mathrm{~g}, 0.92 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at rt was added CDI ($0.448 \mathrm{~g}, 2.76 \mathrm{mmol}$), and the mixture was stirred for 12 h . When TLC showed no starting material left, the solvent was removed in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=2: 1 \sim 1: 1)$ afforded the product $10(0.246 \mathrm{~g}, 0.74$ $\mathrm{mmol}, 81 \%$) as a yellow oil.
rac-((1S,8aS)-8a-Acetoxy-5-0x0-1,2,3,5,6,7,8,8a-octahydroazulen-1-yl)methyl 1 H -imidazole-1-carboxylate (10). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{dd}, \mathrm{J}=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=17.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.12$ - $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{ddd}, J=$ 24.1, 11.8, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,169.2,158.8,148.3$, $136.9,130.8,125.6,116.9,88.1,67.0,46.0,39.9,32.0,28.6,26.0,21.5,18.7$. IR (KBr , cm-1): 2921, 1762, 1736, 1665, 1377, 1239, 1004, 769. HRMS (ESI, m/z) calc for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 355.1264$, found: 355.1265 .

To a stirred solution of $(\mathrm{PhSe})_{2}(188 \mathrm{mg}, 0.60 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ at rt was added with $\mathrm{NaBH}_{4}(23 \mathrm{mg}, 0.62 \mathrm{mmol}) .{ }^{5}$ The mixture was stirred for 10 min and then transferred to a stirred solution of starting material $\mathbf{1 0}$ ($100 \mathrm{mg}, 0.301 \mathrm{mmol}$) in DMF $(5 \mathrm{~mL})$. The reaction mixture was stirred for 0.5 h and TLC showed no starting material left. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then quenched with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8: 1 \sim 4: 1)$ afforded the product 11 (90 $\mathrm{mg}, 0.213 \mathrm{mmol}, 71 \%$) as a colorless oil..
rac-(3S,3aS)-7-Oxo-3-((((phenylselanyl)carbonyl)oxy)methyl)-2,3,4,5,6,7-hexahydroazulen-3a(1H)-yl acetate (11). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.62$ (m, 2H), $7.44-7.37$ (m, 3H), 5.95 (s, 1H), 4.42 (dd, $J=11.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, J $=11.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=17.0,12.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46$ (m, 2H), $2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,169.2,166.7,159.6$, 135.7, 129.3, 129.2, 125.7, 125.6, 88.1, 66.5, 46.2, 40.1, 32.1, 28.6, 25.8, 21.7, 18.7. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2926,1734,1666,1367,1236,1119,1020,741,690$. HRMS (ESI, m/z) calc for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Se}[\mathrm{M}+\mathrm{Na}]^{+}: 445.0525$, found: 445.0519 .

To a stirred solution of compound $11(90 \mathrm{mg}, 0.213 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ at rt was added with AIBN ($18 \mathrm{mg}, 0.107 \mathrm{mmol}$) and (TMS) $)_{3} \mathrm{SiH}(0.154 \mathrm{~mL}, 0.426 \mathrm{mmol})$ successively. The resulting mixture was heated to reflux for 12 h . After being cooled to rt, the mixture was concentrated in vacuo. Purification of the residue by flash
chromatography $(\mathrm{PE} / \mathrm{EtOAc}=8: 1 \sim 4: 1)$ afforded the tricyclic compound $\mathbf{1 0}(26 \mathrm{mg}$, $0.098 \mathrm{mmol}, 46 \%)$ as a white solid.
rac-(4S,4aS,9aR)-1,8-Dioxohexahydro-1H-4,9a-ethanocyclohepta[c]pyran-
$\mathbf{4 a (5 H})$-yl acetate (12). M.P. $108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.52-4.45$ $(\mathrm{m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H})$, $3.05(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.5,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.72-1.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,173.8,169.5,88.6,73.0$, $55.1,44.3,43.1,42.5,37.0,30.8,26.5,21.7,18.2$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2921, 1736, 1697, 1229, 1180, 1028, 945. HRMS (ESI) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 289.1046$, found: 289.1039.

7. X-ray Crystal Structures

Fig. S1 X-ray crystallographic structure of 2 i (CCDC 1907870).

Table 2. Crystal data and structure refinement for 2 i .

Identification code	a
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$
Formula weight	226.30
Temperature/K	273.15
Crystal system	trigonal
Space group	R3
a/Å	20.961(8)
b/Å	20.961(8)
c/ \AA	7.086(3)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.00
$\gamma /{ }^{\circ}$	120.00
Volume/ $\mathbf{A}^{\mathbf{3}}$	2696.0(18)
Z	9
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.254
μ / mm^{-1}	0.076
F(000)	1098.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.11 \times 0.1$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.88 to 58.2
Index ranges	$-28 \leq \mathrm{h} \leq 15,-21 \leq \mathrm{k} \leq 27,-9 \leq 1 \leq 9$
Reflections collected	5824
Independent reflections	$2880\left[\mathrm{R}_{\text {int }}=0.0519, \mathrm{R}_{\text {sigma }}=0.0935\right]$
Data/restraints/parameters	2880/1/157
Goodness-of-fit on \mathbf{F}^{2}	0.936
Final R indexes [I>=2 $\boldsymbol{\sigma}$ (I)]	$\mathrm{R}_{1}=0.0714, \mathrm{wR}_{2}=0.1619$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1082, \mathrm{wR}_{2}=0.1846$
Largest diff. peak/hole / e \AA^{-3}	0.43/-0.18
Flack parameter	-1(3)

Fig. S2 X-ray crystallographic structure of 5b (CCDC 1907871).

Table 3. Crystal data and structure refinement for $5 \mathbf{b}$.

Identification code	mon
Empirical formula	C27H34O3Si
Formula weight	434.63
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	42.742(3)
b/Å	10.4771(9)
c/Å	10.9037(9)
$\underline{\alpha} /{ }^{\circ}$	90
$\underline{\beta}{ }^{\circ}$	93.609(6)
$\gamma{ }^{\circ}$	90
Volume/Å3	4873.1(7)
Z	8
pcalcg/cm3	1.185
$\mu / \mathbf{m m}-1$	0.121
F(000)	1872.0
Crystal size/mm3	$0.3 \times 0.3 \times 0.2$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	6 to 51.992
Index ranges	$-52 \leq \mathrm{h} \leq 45,-12 \leq \mathrm{k} \leq 10,-13 \leq 1 \leq 11$
Reflections collected	10004
Independent reflections	4772 [Rint $=0.0366$, Rsigma $=0.0567]$
Data/restraints/parameters	4772/0/333
Goodness-of-fit on F2	1.105
Final R indexes [I>=2 σ (I)]	$\mathrm{R} 1=0.0697, \mathrm{wR} 2=0.1464$
Final R indexes [all data]	$\mathrm{R} 1=0.0939, \mathrm{wR} 2=0.1574$
Largest diff. peak/hole / e \AA-3	0.44/-0.40

Fig. S3 X-ray crystallographic structure of 12 (CCDC 1907872).

Table 4. Crystal data and structure refinement for 12.

Identification code	1 mg
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
Formula weight	266.28
Temperature/K	185.1(6)
Crystal system	triclinic
Space group	P-1
\underline{a} / \AA	7.3423 (10)
b/ $/ \AA$	8.4321(9)
c/ $/ \AA$	10.4623(11)
$\underline{\alpha} /{ }^{\circ}$	85.681(8)
$\beta /{ }^{\circ}$	85.985(10)
$\gamma{ }^{\circ}$	78.332(10)
Volume/ $\AA^{\mathbf{3}}$	631.54(13)
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.400
$\boldsymbol{\mu} / \mathbf{m m}^{-1}$	0.106
F(000)	284.0
Crystal size/mm ${ }^{3}$	$0.7 \times 0.4 \times 0.2$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.108 to 54.99
Index ranges	$-4 \leq \mathrm{h} \leq 9,-10 \leq \mathrm{k} \leq 10,-13 \leq 1 \leq 13$
Reflections collected	4909
Independent reflections	2890 [$\left.\mathrm{R}_{\text {int }}=0.0272, \mathrm{R}_{\text {sigma }}=0.0428\right]$
Data/restraints/parameters	2890/0/173
Goodness-of-fit on \mathbf{F}^{2}	1.034
Final R indexes [$\mathrm{I}>=\mathbf{2 \sigma}$ (I)]	$\mathrm{R}_{1}=0.0443, \mathrm{wR}_{2}=0.1051$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0525, \mathrm{wR}_{2}=0.1100$
	0.30/-0.22

8. Theoretical Calculations

8.1 Computational methods

All of the structures were optimized at the B3LYP/6-311++G(d,p) level of DFT. ${ }^{6}$ The frequency calculations were performed to confirm the characteristics of the calculated structures as minima. The Gibbs Free Energies (GFEs) are all calculated in gas phase without any solvent. All the optimizations were performed with the Gaussian 09 software package. ${ }^{7}$

8.2 DFT calculated results

8.3 Cartesian coordinates

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$			
$\mathrm{E}=-78.61553852(\mathrm{G}=-78.586288)$			
C	0.000000	0.664397	0.000000
H	0.922912	1.235124	0.000000
H	-0.922864	1.235183	0.000000
C	0.000000	-0.664397	0.000000
H	-0.922912	-1.235124	0.000000
H	0.922864	-1.235183	0.000000

F

E $=-389.5201430(G=-389.346557)$			
C	-3.077439	-0.052312	0.359555
C	-1.878717	-1.019804	0.203072
C	-0.824983	-0.175474	-0.494274
C	-1.158736	1.118867	-0.463581
C	-2.469883	1.369653	0.242028
H	-3.627111	-0.204158	1.290904
H	-2.136616	-1.920372	-0.365405
H	-1.511467	-1.367284	1.178493
H	-0.545094	1.917310	-0.867610
H	-3.123380	2.058788	-0.302333
H	-2.299005	1.822314	1.228453
H	-3.780738	-0.212737	-0.462331
C	0.418505	-0.772317	-1.090411
H	0.970755	-0.001211	-1.635742
H	0.131129	-1.534757	-1.825970
C	1.357536	-1.438837	-0.064647
H	2.166632	-1.945046	-0.599439
H	0.814748	-2.211840	0.489244
C	1.970743	-0.458599	0.958247
H	1.169771	0.069726	1.487474
H	2.522417	-1.026569	1.715406
C	2.871963	0.524798	0.361984
C	3.619065	1.324395	-0.138277
H	4.279634	2.033626	-0.573328

G

$\mathrm{E}=-468.1907883(\mathrm{G}=-467.964650)$

C	-3.669404	0.789927	0.744205
C	-2.297974	0.224326	1.187659
C	-1.877706	-0.654325	0.021447
C	-2.642652	-0.417923	-1.049281
C	-3.692198	0.638567	-0.798983
H	-3.830158	1.818971	1.072639
H	-2.357010	-0.331161	2.130202
H	-1.562886	1.024548	1.348384
H	-4.680895	0.357762	-1.175935
H	-3.425609	1.577327	-1.303868
H	-4.468507	0.182263	1.177851
C	-0.728130	-1.616738	0.120191
H	-0.643061	-2.178966	-0.816430
H	-0.948884	-2.351196	0.906203
C	0.630140	-0.963176	0.450386
H	1.369964	-1.755194	0.605983
H	0.561324	-0.421453	1.400170
C	1.129548	-0.000993	-0.641652
H	1.193215	-0.550706	-1.591114
H	0.397507	0.796066	-0.794453
C	2.483100	0.604934	-0.335445
C	2.633839	1.915562	-0.102997
H	1.782796	2.588117	-0.099299
H	3.609597	2.355043	0.070086
H	-2.512273	-0.899884	-2.012995
C	3.629517	-0.328188	-0.334725
H	3.576650	-1.134033	-1.066286
C	4.682479	-0.282329	0.485403
H	5.491840	-0.998680	0.402304
H	4.763042	0.463311	1.269302

$E=-468.1953317(G=-467.969134)$

C	-2.773207	-1.353817	0.585531	H	0.321961	2.656974	-0.264841
C	-1.389395	-1.860014	0.123016	H	2.581658	2.256130	0.072785
C	-0.737309	-0.633252	-0.482633	H	3.646345	0.160617	0.082535
C	-1.410686	0.491948	-0.149629	H	0.738356	-1.989696	1.114455
C	-2.607548	0.175076	0.730118	H	1.910975	-0.857111	-1.481976
H	-3.116096	-1.833596	1.504662	H	2.703142	-1.959060	-0.369104
H	-1.456792	-2.690265	-0.589429	H	2.574330	-0.152434	1.423363
H	-0.793840	-2.232445	0.968285	H	0.363846	-2.517250	-0.501099
H	-3.506579	0.719764	0.426675	C	-1.927712	-1.210416	-0.002634
H	-2.401542	0.466630	1.768591	H	-2.133893	-1.677900	-0.977087
H	-3.514861	-1.567034	-0.189269	H	-2.083833	-1.993729	0.748362
C	0.507883	-0.763148	-1.313648	C	-1.926475	1.222106	-0.187355
H	0.821197	0.210298	-1.697762	H	-2.130737	1.531627	-1.221755
H	0.270268	-1.373670	-2.195566	H	-2.085524	2.106343	0.438302
C	1.691520	-1.441792	-0.587698	C	-2.811549	0.031531	0.236550
H	2.513691	-1.558956	-1.301406	H	-3.761216	-0.009472	-0.301536
H	1.395690	-2.453147	-0.289049	H	-3.044047	0.112593	1.302332
C	2.214637	-0.699623	0.660180				
H	1.383670	-0.562402	1.363678				
H	2.952520	-1.334257	1.161712				
C	2.835088	0.638909	0.369539				
H	2.168895	1.410867	-0.010136				
C	4.120654	0.938144	0.547759				
H	4.826475	0.208362	0.934609				
H	4.513407	1.922866	0.319727				
C	-1.059854	1.852694	-0.524538				
H	-0.200512	1.971181	-1.179012				
C	-1.708056	2.959922	-0.134001				
H	-2.573353	2.923639	0.518172				
H	-1.384607	3.941878	-0.458452				

I

$E=-389.5743570(G=-389.394064)$

C	-0.506699	0.681770	-0.075966
C	0.612057	1.621514	-0.098795
C	1.921174	1.392958	0.096120
C	-0.513955	-0.665010	0.017883
C	2.587410	0.066654	0.345849
C	0.637401	-1.626896	0.081063
C	1.994788	-1.125482	-0.423504

9. References

(1) J. Tormo, A. Moyano, M. A. Pericàs and A. Riera, J. Org. Chem., 1997, 62, 4851.
(2) R. A. Bunce and C. L. Schilling III, J. Org. Chem., 1995, 60, 2748.
(3) T. J. Michnick and D. S. Matteson, Synlett, 1991, 8, 631.
(4) (a) H. S. Bansal and A. J. Pearson, Tetrahedron Lett. 1986, 27, 283; (b) M. A. Avery, J. Med. Chem. 2010, 53, 7864.
(5) A. Meyer, J. Waser and B. M. Trost, J. Am. Chem. Soc. 2008, 130, 16424.
(6) (a) A . D. Becke, J. Chem. Phys. 1993, 98, 5648; (b) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 1989, 157, 200; (c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 1988, 37, 785.
(7) M. J. Frisch, et al. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
10. NMR Spectra Data

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-143.204
-128.089
-84.207
-68.433
-63.913

S7

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

仓ٍ

:
S7

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]S9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S9

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

\cdots	v．m	ーツr＊
$\stackrel{-}{\square}$	－¢\％	in ${ }^{\circ}$
m	いテへ	－¢－－
$\stackrel{(2)}{\sim}$	－ずす	MNNNO
1	V／	I 1

$\stackrel{\circ}{\underset{7}{7}} \stackrel{\circ}{\circ}$

${ }^{13} \mathrm{C}$ NMR （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

[^1]

${ }^{13} \mathrm{C}$ NMR

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
S14

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S14

${ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S15

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S15

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCb}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S20

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\author{

}
${ }^{1} \mathrm{H}$ NMR

Th
1a

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1a

1b

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{N}{N}$
-140.273
-127.924
-83.425
-68.880
-60.535

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1c

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$-14 . .330$
-127.226

-16.457

1d

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-24.537
-26.399
-96.411
-84.358
-69.349
-68.245
-55.130
-40.390
<32.120
<32.031
-23.349

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1f

-170.940
-142.526
$-127 . .23$
m
\because
$\stackrel{\sim}{\square}$
$\stackrel{1}{1}$

$\dot{\sim} \mathrm{N}_{\infty}^{\infty} \mathrm{m}^{\circ}$.
| ๗ัN|||
${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ig

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDC}_{3}$)

${ }^{1 j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{j}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1k

${ }^{1} \mathrm{H}$ NMR
（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

ON\％	Coseor					
	ソ \％－	$\underset{\infty}{\infty}$	$\stackrel{7}{7}$	in	令m	W్రి
욱ำ		¢	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ci }}{0}$	ざゥ	வัヘ்ู̇
$1 /$	\V1／					V／1

k
（ $125 \mathrm{MHz}, \mathrm{CDCb}$ ）

[^3]
${ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllll} & 200 & 190 & -80 & 170 & 160 & -50 & 1 \leqslant 0 & 130 & 120 & 110 & 100 & 90\end{array}$																			

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-126.993

0
0
0
0
0
0
1

20	200	-90	180	170	160	150	-40	130	120	120	100	90	80	70	80	50	40

In

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\underset{i}{\infty}}{\stackrel{+}{i}}$
1n

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDC}$)

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10 Co

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^4]1p

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1p

${ }^{13}$ C NMR
($125 \mathrm{MHz}, \mathrm{CDC}_{3}$)

1q

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^5]
${ }^{1}$ H NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDC}_{3}$)

2
${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b

m
\vdots
\vdots
10
$!$
\square
\square -14.324
${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDC}$)

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	N	$\stackrel{\sim}{\sim}$	¢0\%	어우웅
	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$		mimisis
//	1			1 V1/

$2 f$

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }_{2}$

${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^6]2 g

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^7]
2h

${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2h

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDC}_{6}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

n
\because
$\ddot{\circ}$
$\ddot{1}$
$2 i$

[^8]
${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2k

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2k

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCb}$)

[^9]
${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDC}_{3}$)

21

-80.665
-55.738
-41.592

$<\begin{array}{r}25.912 \\ -25.223 \\ 20.021\end{array}$

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2n
${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Min
ic

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{\rightharpoonup}{亏}}{\stackrel{\text { ® }}{\text { I }}}$

5a

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5b

${ }^{1} \mathrm{H}$ NMR
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6a

${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

+i	∞ $\underset{1}{\infty}$ 0 0 $\stackrel{1}{1}$ $\stackrel{1}{1}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\sim}{\infty} \\ & \stackrel{\infty}{0} \\ & \stackrel{1}{\mid} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\omega} \\ & \stackrel{1}{\infty} \\ & \stackrel{\infty}{\oplus} \\ & \stackrel{1}{1} \end{aligned}$			$\begin{aligned} & \stackrel{\sim}{\Omega} \\ & \stackrel{1}{\circ} \\ & \stackrel{-}{1} \end{aligned}$	N ∞ ∞	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \dot{\infty} \\ & \stackrel{\infty}{\infty} \\ & \mid \end{aligned}$	\%	

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]:

[^1]:

[^2]: 210 | 200 | 190 | 180 | 170 | 160 | 150 | $1 \leqslant 0$ | 130 | 120 | 110 | 100 | 30 | 30 | 70 | 60 | 50 | $\leqslant 0$ | 30 | 20 | 10 | 0 |
 | :--- |

[^3]:

[^4]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & -70 & 160 & 150 & 140 & 130 & 120 & 120 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & -0 & 0 & \mathrm{ppm}\end{array}$

[^5]:

[^6]: $\begin{array}{llllllllllllllllllllllllllllll}21 \hat{0} & 200 & 190 & 180 & 170 & -60 & 150 & 140 & 13 \hat{人} & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^7]: 2 g

[^8]: $\begin{array}{lllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & -60 & 150 & -40 & 130 & 20 & 110 & -00 & 90 & 80 & 70 & 60 & 50 \\ \leqslant 0 & 30 & 20 & 10 & 0\end{array}$

[^9]: $\begin{array}{llllllllllllllllllllll} \\ 210 & 200 & -90 & -80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 80 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

