Electronic Supplementary Information

Highly efficient synthesis of hydrogen-bonded aromatic tetramers as macrocyclic receptors for selective recognition of lithium ion

Xuwen Guo, Yizhou Yang, Zhiyong Peng, Yimin Cai, Wen Feng and Lihua Yuan*

College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, Sichuan, China

E-mail: <u>lhyuan@scu.edu.cn</u>

Table of Contents

1. General Methods	S3
2. Synthetic Protocols	S4
Synthetic routes of building blocks	
Synthesis of 1a-c <i>via</i> one pot approach	
Synthesis of 1a-b <i>via</i> fragment coupling approach	
Synthesis of 1a-c via one pot approach with LiClO4 as template	S10
Synthesis of 1a via fragment coupling approach with LiClO4 as template	S11
Synthesis of compound 9	S11
Synthesis of compound 11	S12
3. Spectroscopic Characterization	S14
3.1 ¹ H and ¹³ C NMR spectra of novel compounds	S14
3.2 MALDI-TOF-MS or ESI-HRMS spectra of novel compounds	S25
3.3 2D NOESY spectrum of 1a	S34
4. Host-Guest Complexation of 1a and Different Guests	S34
4.1 NMR spectra of complexation	S34
4.2 Determination of stoichiometry and binding constant	S38
4.3 MALDI-TOF mass spectra of complexes	S46
4.4 Fluorescence emission spectra of complex	S47
4.5 FT-IR spectra of complexes	S47
5. Molecular Modeling	

1. General Methods

All chemicals were obtained from commercial suppliers and were used as received unless other-wise noted. All reactions were conducted with oven-dried glassware under atmosphere or nitrogen. Solvents were dried and distilled following usual protocols. Column chromatography was carried out using silica gel (300-400 mesh). Solvents for extraction and chromatography were reagent grade. CDCl₃, CD₃CN and CD₃OD were from Cambridge Isotope Laboratories (CIL).

Analytical NMR spectra were recorded on Bruker AVANCE AV II-400 MHz or AVANCE AV II-600 MHz, at a constant temperature of 298 K, if not specifically indicated. Chemical shifts are reported in δ values in ppm using tetramethylsilane (TMS) or residual solvent as internal standard and coupling constants (*J*) are denoted in Hz. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, dd = double doublet and m = multiplet. MALDI-TOF MS spectra were recorded on a Bruker Autoflex III MS and AXIMA Performance spectrometer, matrix is α -cyano-4hydroxycinnamic acid (CCA), 2,6-dihydroxyacetophenone (DHAP) and 2,5dihydroxybenzoic acid (DHB). ESI mass spectra were recorded on a Bruker Daltonics MicroTOF-Q II. ESI-MS were obtained on a Thermo-ITQ. UV-vis spectra were measured by SHIMADZU UV-2450. Fourier transform Infrared (FT-IR) data were collected by a Thermal Nicolet NEXUS 670 FT-IR spectrophotometer.

2. Synthetic Protocols

Synthetic routes of building blocks

Compounds **6a-6c** were prepared according to literature procedures. ^[1-3]

Synthesis of compound 4a

Compound **4a** was prepared according to literature procedures.^[4,5]

Compound **3** (3.05 g, 16.4 mmol) and acetone (150 ml) were added into a two-neck flask equipped with a condenser and mechanical stirrer. The mixture was heated to 60 $^{\circ}$ C, and nitric acid (2.0 ml of 69.3% nitric acid, 32.8 mmol) was added dropwise. The solution was kept at 60 $^{\circ}$ C for 6 h and then filtered. The residue was washed with excess acetone to afford compound **4a** as a yellow powder (3.81 g, yield 84.2%).

¹H NMR (400 MHz, 298 K, DMSO-*d*₆) δ 11.15 (s, 1H), 8.15 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 8.7, 2.4 Hz, 1H), 7.21 (d, J = 8.7 Hz, 1H).

Synthesis of compound 4b

Compound **4a** (3.00 g, 10.9 mmol) and potassium carbonate (8.99 g, 65.4 mmol) were dissolved in DMF (100 mL) at 80 °C for 30 min, to which dimethyl sulfate (5.47 g, 43.4 mmol) was added dropwise. The solution was heated to 120 °C for 11 h and filtered. After removing the solvent under vacuum, the crude product was extracted with CH_2Cl_2 and water, NaOH and HCl solution three times (3 × 40 mL), respectively. The organic layer was dried by anhydrous Na₂SO₄. After removing the solvent, the residue was subjected to column chromatography separation (pure CH₂Cl₂). Compound **4b** was provided as a light

yellow solid (2.28 g, yield 69.1 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 8.05 (d, *J* = 2.4 Hz, 1H), 7.73 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 152.63, 139.94, 132.10, 130.95, 123.77, 114.26, 77.34, 77.02, 76.70, 56.76, 1.03, 0.00. ESI-MS (m/z) calcd. for C₁₄H₁₂N₂O₆ [M+H] + 305.0773, found [M+H] + 305.1705.

Synthesis of compound 5

Compound **4b** (300 mg, 0.99 mmol) was hydrogenated in the presence of 20% Pd/C (60 mg) in CH_2Cl_2 (60 mL) for 10 h at room temperature. The solution was filtered in darkness followed by immediate removal of the solvent to afford the reduced diamine **5** as a white powder (239 mg, yield 99 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 6.90 (s, 1H), 6.88 (d, J = 2.1 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 2H); ¹³C NMR (100 MHz, 298 K, CDCl₃/CD₃OD =9:1 (v/v)) δ 146.93, 135.72, 134.45, 117.43, 114.15, 110.76, 77.58, 77.26, 76.94, 55.71, 49.66, 49.45, 49.24, 49.02, 48.81, -0.00; MALDI-TOF-HRMS (m/z) calcd. for C₁₄H₁₆N₂O₂ [M]⁺ 244.1212, found [M]⁺ 244.2848.

Synthesis of 1a-c *via* one pot approach

Compound **4b** (300 mg, 0.99 mmol) was hydrogenated in the presence of 20% Pd/C (60 mg) in CH₂Cl₂ (60 mL) for 10 h at room temperature. The solution was filtered in darkness followed by immediate removal of the solvent. The reduced diamine **5** was used for the immediate macrocyclization reaction. DMF (10 μ L) was added to a solution of compound **6a** (638 mg, 0.986 mmol) and oxalyl chloride (0.3 mL, 3.46 mmol) in CH₂Cl₂. The mixture was stirred for an hour at room temperature. The solvent was evaporated and the resulting

acid chloride was dried in vacuum at room temperature for 30 min to afford compound **6'a**. Compound **6'a** was dissolved in CH₂Cl₂ (30 mL) and added dropwise to a mixture of the above **5** and Et₃N (0.822 mL, 5.92 mmol) in CH₂Cl₂ (100 mL) at -20 °C. The solution was stirred under argon for 8 h. The organic layer was washed with water (30 mL \times 3) and dried over anhydrous Na₂SO₄. The crude product was purified by chromatography on silica gel (eluent: CH₂Cl₂/MeOH = 35: 1) to provide the macrocycle **2a** as a white solid (90 mg, 11%) and (eluent: CH₂Cl₂/MeOH = 20: 1) to provide the macrocycle **1a** as a white solid (397 mg, yield 47 %).

1a: ¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.61 (s, 4H), 9.46 (s, 2H), 9.19 (s, 4H), 7.33 (dd, J = 8.5, 2.3 Hz, 4H), 6.91 (d, J = 8.4 Hz, 3H), 6.52 (s, 2H), 4.12 (s, 7H), 3.91 (s, 12H), 2.12 (s, 3H), 1.95 (d, J = 46.3 Hz, 3H), 1.79 (d, J = 40.2 Hz, 9H), 1.53 (d, J = 9.7 Hz, 16H), 1.41 (d, J = 17.7 Hz, 18H), 1.27 (dt, J = 13.9, 7.3 Hz, 87H), 0.85 (t, J = 6.7 Hz, 33H); ¹³C NMR (100 MHz, 298 K, CDCl₃:CD₃CN(5:1)) δ 168.67, 166.50, 152.77, 136.87, 132.58, 125.45, 118.62, 115.02, 101.93, 82.82, 82.50, 82.18, 78.58, 60.80, 42.70, 36.97, 36.93, 35.88, 35.75, 35.56, 35.36, 35.23, 35.17, 34.98, 34.90, 34.79, 34.70, 34.59, 34.45, 31.57, 27.75, 19.15, 19.13, 5.03. MALDI-TOF-MS (m/z) calcd. for C₁₀₈H₁₆₄N₄O₁₂ [M+H] + 1711.242, found [M+H] + 1711.113.

2a: ¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.77 (s, 8H), 9.11 (s, 4H), 8.92 (d, J = 2.3 Hz, 8H), 7.30 (dd, J = 8.3, 2.2 Hz, 9H), 6.86 (d, J = 8.5 Hz, 8H), 6.54 (s, 4H), 4.10 (d, J = 6.4 Hz, 16H), 3.86 (s, 24H), 2.08 - 2.00 (m, 10H), 1.47-1.42 (m, 25H), 1.28 - 1.18 (m, 148H), 0.90 - 0.77 (m, 63H), 0.07 (s, 32H). ¹³C NMR (101 MHz, 298 K, CDCl₃ : CD₃OD (9:1)) δ 159.36, 146.66, 141.08, 136.49, 132.81, 126.98, 121.06, 118.55, 114.92, 109.12, 104.94, 95.89, 76.51, 76.19, 75.87, 72.31, 69.49, 54.66, 48.79, 48.58, 48.37, 48.16, 47.94, 47.73, 47.52, 36.59, 30.87, 30.80, 30.10, 29.04, 28.70, 28.58, 28.32, 25.71, 25.64, 21.66, 21.63, 13.05, 13.02, -0.00. MALDI-TOF-MS (m/z) calcd. for C₂₁₆H₃₂₈N₈O₂₄ [M+H]⁺ 3421.962, found [M+H] + 3421.761.

1b was synthesized according to the above general procedure using compound **4b** (300 mg, 0.99 mmol) and **6b** (417 mg, 0.986 mmol). The solution was stirred under argon for 8 h. The organic layer was washed with water (3 ×30 mL) and dried over anhydrous Na₂SO₄. The crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the macrocycle **1b** as a white solid (248 mg, yield 40%).

1b: ¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.66 (s, 4H), 9.33 (s, 2H), 9.12 (s, 4H), 7.35 (s, 4H), 6.86 (d, J = 7.0 Hz, 4H), 6.24 (s, 4H), 3.89 (d, J = 7.9 Hz, 17H), 3.62 (d, J = 8.2 Hz, 4H), 2.16 (d, J = 6.5 Hz, 26H), 2.08 – 1.89 (m, 21H), 1.67 (s, 3H), 1.52 – 1.03 (m, 71H), 0.97 – 0.65 (m, 40H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 162.74, 160.31, 146.93, 137.85, 130.91, 126.38, 120.22, 119.67, 112.91, 109.13, 95.58, 76.53, 76.21, 75.96, 75.89, 71.95, 54.70, 48.52, 48.30, 48.09, 47.88, 47.66, 41.92, 37.73, 28.88, 28.69,

27.79, 22.31, 22.07, 13.01, 10.06, 9.45, 0.00. MALDI-TOF-MS (m/z) calcd. for $C_{76}H_{100}N_4O_{12}$ [M+H] ⁺1261.741, found [M+H] ⁺1261.875.

1c was synthesized according to the above general procedure using compound **4b** (300 mg, 0.99 mmol) and **6c** (362 mg, 0.986 mmol). The reaction mixture containing a small amount of LiClO₄ was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the macrocycle **1c** as a white solid (198 mg, yield 35%).

1c ⊃ **LiCIO**₄: ¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.86 (s, 4H), 9.31 (s, 2H), 9.07 (d, *J* = 2.1 Hz, 4H), 7.37 (s, 14H), 6.92 (d, *J* = 8.1 Hz, 4H), 6.44 (s, 2H), 5.35 (d, *J* = 1.1 Hz, 3H), 4.05 (d, *J* = 6.2 Hz, 7H), 3.95 (s, 10H), 3.73 (s, 2H), 2.41 (s, 15H), 1.99 (p, *J* = 2.4 Hz, 12H), 1.56 (t, *J* = 7.1 Hz, 16H), 1.26 (s, 14H), 1.00 (t, *J* = 7.3 Hz, 24H), 0.86 (s, 7H), 0.09 (s, 2H), 0.07 (s, 32H); ¹³C NMR (100 MHz, 298 K, CDCl₃/CD₃OD=9:1(v/v)) δ 163.88, 161.52, 148.10, 138.95, 132.21, 127.46, 121.55, 120.96, 114.10, 110.27, 108.10, 77.57, 77.25, 76.94, 72.76, 55.75, 49.63, 49.42, 49.20, 48.99, 48.78, 48.56, 40.26, 29.78, 29.40, 22.92, 10.76, 1.07, 1.07, 0.00; MALDI-TOF-HRMS (m/z) calcd. for C₆₈H₈₄N₄O₁₂ [M+Li] + 1155.6236, found [M+ Li] + 1155.1378.

Synthesis of 1a-b via fragment coupling approach

Scheme S3 Synthetic routes of fragment coupling method

Synthesis of compound 7

Compound **4b** (500 mg, 1.65 mmol) and reduced iron powder (276 mg, 4.94 mmol) were added into a mixed solvent of CHCl₃/MeOH (120 mL, v:v = 5:1) with AcOH (5 mL) and then stirred at 65 °C under reflux for 6 hours. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent. The crude product was washed with CH₂Cl₂ and water for three times followed by separation with column chromatography (DCM) to recycle start material **4b** 287 mg and provide the reduced monoamine **7** as a yellow powder (173 mg, yield 38.4 %).

¹H NMR(400 MHz, 298 K, CDCl₃) δ 8.02 (d, *J* = 2.3 Hz, 1H), 7.69 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.11 (d, *J* = 8.7 Hz, 1H), 6.91 (dq, *J* = 5.0, 2.2 Hz, 2H), 6.85 (d, *J* = 8.9 Hz, 1H),

3.99 (s, 3H), 3.90 (s, 5H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 151.72, 147.31, 136.68, 134.06, 132.09, 131.38, 123.62, 116.75, 113.78, 113.07, 110.71, 77.34, 77.02, 76.71, 56.66, 55.64, 1.03, -0.00; ESI-HRMS (m/z) calcd. for C₁₄H₁₄N₂O₄ [M+H] + 275.1032, found [M+H] + 275.1021.

Synthesis of compound 8a-b

Scheme S4 Synthesis of compound 8a-b

DMF (10 µL) was added to a solution of compound **6a** (236 mg, 0.365 mmol) and oxalyl chloride (144 µL, 1.46 mmol) in CH₂Cl₂ (40 mL). The mixture was stirred for an hour at room temperature. The solvent and residual oxalyl chloride was then removed under vacuum to produce yellow oil **6'a**. Compound **6'a** was dissolved in CH₂Cl₂ (30 mL) and added dropwise to a mixture of monoamine **7** (200 mg, 0.730 mmol) and Et₃N (270 µ mL, 2.19 mmol) in dry CH₂Cl₂ (40 mL) at room temperature. The solution was stirred under N₂ for 3 hours. The organic layer was washed with water for three times (3 × 20 mL). The crude product was purified by chromatography on silica gel (CH₂Cl₂/EA = 20:1) to provide the product **8a** as a yellow solid (251 mg, yield 59.5 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.92 (s, 2H), 9.16 (s, 1H), 8.91 (d, *J* = 2.3 Hz, 2H), 8.08 (d, *J* = 2.4 Hz, 2H), 7.85 (dd, *J* = 8.7, 2.4 Hz, 2H), 7.24 (ddd, *J* = 8.5, 2.5, 1.2 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.60 (s, 1H), 4.15 (d, *J* = 6.2 Hz, 4H), 4.00 (s, 6H), 3.94 (s, 6H), 2.08 – 2.01 (m, 2H), 1.52 – 1.13 (m, 48H), 0.83 (q, 12H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 162.52, 160.34, 151.85, 148.21, 139.72, 137.67, 133.70, 132.62, 131.32, 128.75, 123.60, 121.63, 119.28, 116.10, 113.87, 110.29, 96.83, 77.35, 77.04, 76.72, 73.28, 56.68, 55.78, 37.68, 31.84, 31.78, 31.16, 30.01, 29.71, 29.67, 29.55, 29.30, 26.73, 26.70, 22.64, 22.63, 14.08, 14.06, 1.03, -0.00. MALDI-TOF-HRMS (m/z) calcd. for C₆₈H₉₄N₄O₁₂ [M+Na] + 1182.4834, found [M+ Na] + 1183.2583. **8b** was synthesized according to the above general procedure using compound **6b** (154 mg, 0.365 mmol) and monoamine **7** (200 mg, 0.730 mmol). The solution was stirred under N₂ for 3 hours. The organic layer was washed with water for three times (3×20 mL). The crude product was purified by chromatography on silica gel (CH₂Cl₂/EA = 20:1) to provide the product **8b** as a yellow solid (254 mg, yield 74.5 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.89 (s, 2H), 9.15 (s, 1H), 8.91 (d, *J* = 2.3 Hz, 2H), 8.09 (d, *J* = 2.4 Hz, 2H), 7.86 (dd, *J* = 8.7, 2.4 Hz, 2H), 7.27 (d, *J* = 2.3 Hz, 3H), 7.25 (d, *J* = 2.3 Hz, 1H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 8.5 Hz, 2H), 6.60 (s, 1H), 4.20 – 4.11 (m, 4H), 4.00 (s, 7H), 3.94 (s, 6H), 2.02 (p, *J* = 6.2 Hz, 2H), 1.60 (d, *J* = 14.2 Hz, 7H), 1.58 – 1.51 (m, 4H), 1.51 – 1.40 (m, 5H), 1.39 – 1.24 (m, 11H), 0.96 (t, *J* = 7.4 Hz, 7H), 0.87 (t, *J* = 7.0 Hz, 7H).; ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 162.53, 160.38, 151.83, 148.20, 139.69, 137.66, 133.67, 132.59, 131.18, 128.77, 123.55, 121.58, 119.18, 115.92, 113.89, 110.28, 96.72, 77.40, 77.08, 76.76, 72.80, 60.39, 56.68, 55.74, 53.48, 38.79, 30.14, 28.92, 23.53, 23.01, 21.05, 14.20, 14.00, 10.69, 0.00; MALDI-TOF-HRMS (m/z) calcd. for C₅₂H₆₂N₄O₁₂ [M+Na] + 958.0582, found [M+Na] + 958.4551.

Synthesis of 1a-b via fragment coupling approach

Scheme S5 Synthesis of **1a-b** *via* fragment coupling approach

Compound **8a** (100 mg, 0.087 mmol) was hydrogenated in the presence of 20% Pd/C (60 mg) in mixed solvent of CHCl₃ and MeOH (50 mL, v/v=5:1) for 10 h at 50 °C. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent to produce the diamine **8'a**. DMF (10 μ L) was added to a solution of compound **6a** (56.0 mg, 0.087 mmol) and oxalyl chloride (30 μ L, 0.35 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred for an hour at room temperature. The solvent and residual oxalyl chloride was then removed under vacuum to afford yellow oil **6'a**. Compound **6'a** was dissolved in CH₂Cl₂ (20 mL) and added dropwise to a mixture of the above **5** and Et₃N (72 μ L, 0.525

mmol) in dry CH₂Cl₂ (40 mL) at -20 °C. The solution was stirred under argon for 3 hours. The reaction mixture was quenched with MeOH (1 mL), washed with water three times and reprecipitaed with CH₂Cl₂ and CH₃OH. Then the crude product was purified with column chromatography (CH₂Cl₂/CH₃OH = 20:1) to provide the macrocycle **1a** as a white solid (89 mg, yield 60 %).

1b was synthesized according to the above general procedure using compound **8b** (250 mg, 0.267 mmol) and compound **6b** (113 mg, 0.267 mmol). The reaction mixture was quenched with MeOH (1 mL), washed with water three times and reprecipitaed with CH₂Cl₂ and CH₃OH. Then the crude product was purified with column chromatography (CH₂Cl₂/CH₃OH = 20:1) to provide the macrocycle **1b** as a white solid (175 mg, yield 52 %).

Synthesis of 1a-c via one pot approach with LiClO₄ as template

Scheme S6 Synthesis of **1a-1c** *via* one pot approach with LiClO₄ as template.

Compound **4b** (300 mg, 0.99 mmol) was hydrogenated in the presence of 20% Pd/C (60 mg) in CH₂Cl₂ (60 mL) for 10 h at room temperature. The solution was filtered in darkness followed by immediate removal of the solvent. The reduced diamine **5** was used for the immediate macrocyclization reaction. DMF (10 µL) was added to a solution of compound **6a** (638 mg, 0.986 mmol) and oxalyl chloride (300 µL, 3.46 mmol) in CH₂Cl₂ (40 mL). The mixture was stirred for an hour at room temperature. The solvent was evaporated and the resulting acid chloride was dried in vacuum at room temperature for 30 min to afford compound **6'a**. Compound **6'a** was dissolved in CH₂Cl₂ (30 mL) and added dropwise to a mixture of the above **5**, Et₃N (0.411 mL, 2.96 mmol) and LiClO₄ (106 mg, 0.99 mmol) in CH₂Cl₂/CH₃CN (100 mL, 7:3, v/v) at -20 °C. The solution was stirred under argon for 3 hours. The reaction mixture was quenched with MeOH (1 mL), washed with water three times and reprecipitaed with CH₂Cl₂ and CH₃OH. Then the crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the complex **1a** \supset **LiClO**₄ as a white solid (550 mg, 65%).

The complex $1b \supset \text{LiClO}_4$ was synthesized according to the above general procedure using compound 4b (300 mg, 0.99 mmol), 6b (416 mg, 0.986 mmol) and LiClO₄ (106 mg, 0.99 mmol). The reaction mixture was quenched with MeOH (1 mL), washed with water three times and reprecipitaed with CH₂Cl₂ and CH₃OH. Then the crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the complex $1b \supset \text{LiClO}_4$ as a white solid (381 mg, 61%).

The complex $\mathbf{1c} \supset \mathbf{LiClO_4}$ was synthesized according to the above general procedure using compound $\mathbf{4b}$ (300 mg, 0.99 mmol), $\mathbf{6c}$ (362 mg, 0.986 mmol) and $\mathbf{LiClO_4}$ (106 mg, 0.99 mmol). The reaction mixture was quenched with MeOH (1 mL), washed with water three times and reprecipitaed with CH₂Cl₂ and CH₃OH. Then the crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the complex $\mathbf{1c} \supset \mathbf{LiClO_4}$ as a white solid (329 mg, 58%).

Scheme S7 Synthesis of **1a** *via* fragment coupling approach with LiClO₄ as template.

The complex $\mathbf{1a} \supset \mathbf{LiClO_4}$ was synthesized according to the above general procedure using compound $\mathbf{8a}$ (100 mg, 0.087 mmol), $\mathbf{6a}$ (56 mg, 0.087 mmol) and $\mathbf{LiClO_4}$ (9.5 mg, 0.087 mmol). The crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH = 20: 1) to provide the complex $\mathbf{1a} \supset \mathbf{LiClO_4}$ as a white solid (112 mg, 71%).

Trimer **8a** (500 mg, 0.435 mmol) was hydrogenated in the presence of 20% Pd/C (100 mg) in mixed solvent of CHCl₃/MeOH (100 mL, v/v=5:1) for 10 h at 50 °C. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent. The reduced diamine **8'a** (Scheme S7) was used for the direct coupling reaction. Dissolved acetic chloride (0.135 mL, 1.74 mmol) with 10 mL CH₂Cl₂ was added dropwise to a mixture comprising **8'a** and Et₃N (0.72 mL, 5.15 mmol) in CH₂Cl₂ (50 mL). The solution was stirred under N₂ for 3 hours. The organic layer was washed with water for three times (3 × 20 mL). The crude product was purified by chromatography on silica gel (CH₂Cl₂/CH₃OH = 20:1) to provide the product **9** as a white solid (511 mg, yield 80 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.86 (s, 2H), 9.17 (s, 1H), 8.88 (d, *J* = 2.3 Hz, 2H), 8.64 (d, *J* = 2.2 Hz, 2H), 7.76 (s, 2H), 7.39 (dd, *J* = 8.5, 2.3 Hz, 2H), 7.33 (dd, *J* = 8.5, 2.3 Hz, 2H), 6.93 (dd, *J* = 8.5, 3.8 Hz, 4H), 6.57 (s, 1H), 4.13 (d, *J* = 6.2 Hz, 4H), 3.91 (s, 11H), 2.22 (s, 5H), 2.10 – 2.00 (m, 2H), 1.45 (dp, *J* = 13.6, 7.2, 6.5 Hz, 8H), 1.35 (h, *J* = 7.9, 7.2 Hz, 8H), 1.26 (d, *J* = 2.6 Hz, 9H), 1.22 (d, *J* = 6.3 Hz, 18H), 0.92 – 0.79 (m, 14H), 0.07 (s, 5H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 160.19, 147.67, 146.91, 146.89, 134.02, 133.77, 128.29, 127.64, 122.41, 119.63, 118.30, 110.13, 77.34, 77.02, 76.70, 73.15, 55.83, 55.70, 37.65, 31.85, 31.80, 31.13, 30.01, 29.67, 29.57, 29.31, 26.68, 22.65, 22.63, 14.09, 14.07, 1.03, 0.00; ESI-HRMS (m/z) calcd. for C₇₂H₁₀₂N₄O₁₀ [M+Na] + 1207.7650, found [M+Na] + 1207.4383.

Synthesis of compound 11

Scheme S9 Synthesis of compound 11

Compound **10** was prepared according to literature procedures. ^[6]

Trimer **8a** (500 mg, 0.435 mmol) was hydrogenated in the presence of 20% Pd/C (100 mg) in mixed solvent of CHCl₃/MeOH (100 mL, v/v=5:1) for 10 h at 50 °C. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent. The

reduced diamine **8'a** (Scheme S8) was used for the direct coupling reaction. DMF (10 μ L) was added to a suspension of compound **10** (255 mg, 0.86 mmol) and oxalyl chloride (0.292 mL, 3.41 mmol) in dry CH₂Cl₂ (40 mL). The mixture was stirred for 40 minutes at room temperature. The solvent was evaporated and the resulting acyl chloride **10'** was dried in vacuum at room temperature for 30 minutes. Compound **10'** was dissolved in dry CH₂Cl₂ (40 mL) and the solution was added dropwise to a mixture comprising **8'a** and Et₃N (0.72 mL, 5.15 mmol) in CH₂Cl₂ (50 mL). The solution was stirred under N₂ for 3 hours. The organic layer was washed with water for three times (3 × 20 mL). The crude product was purified by chromatography on silica gel (CH₂Cl₂/CH₃OH = 20:1) to provide the product **11** as a yellow solid (720 mg, yield 70 %).

¹H NMR (400 MHz, 298 K, CDCl₃) δ 9.97 (s, 1H), 9.90 (s, 1H), 9.19 (d, J = 2.7 Hz, 1H), 8.91 (d, J = 2.3 Hz, 1H), 8.86 (d, J = 2.2 Hz, 1H), 8.31 (dd, J = 9.1, 3.0 Hz, 1H), 7.42 (ddd, J = 19.5, 8.5, 2.3 Hz, 2H), 7.13 (d, J = 9.2 Hz, 1H), 6.95 (dd, J = 8.6, 4.8 Hz, 2H), 6.58 (s, 1H), 4.20 (dt, J = 6.8, 3.4 Hz, 2H), 4.14 (d, J = 6.2 Hz, 2H), 3.93 (d, J = 2.7 Hz, 6H), 2.04 (dhept, J = 12.6, 6.4 Hz, 2H), 1.75 (s, 2H), 1.61 – 1.51 (m, 2H), 1.48 (dd, J = 14.7, 7.5 Hz, 4H), 1.43 (d, J = 6.8 Hz, 2H), 1.38 – 1.33 (m, 4H), 1.23 (t, J = 10.7 Hz, 21H), 0.93 (t, J = 7.5 Hz, 3H), 0.84 (dp, J = 6.7, 3.3 Hz, 9H); ¹³C NMR (100 MHz, 298 K, CDCl₃) δ 162.41, 161.21, 160.98, 160.23, 147.73, 147.63, 141.79, 134.07, 133.68, 128.75, 128.35, 128.03, 127.44, 123.53, 123.08, 122.09, 119.64, 119.58, 116.29, 112.77, 110.22, 110.10, 77.34, 77.03, 76.71, 73.57, 55.73, 38.64, 37.65, 31.86, 31.81, 31.13, 30.02, 29.68, 29.58, 29.32, 28.77, 26.73, 26.68, 23.44, 22.98, 22.66, 22.64, 14.10, 14.08, 13.99, 10.58, -0.00. ESI-HRMS (m/z) calcd. for C₉₈H₁₃₆N₆O₁₆ [M] ⁺ 1654.0012, found [M] ⁺ 1654.0068.

References

[1] Yuan, L.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D.; Guo, H.; Gong, B., J. Am. Chem. Soc.
 2004, 126, 11120.

[2] Yang, Y.; Feng, W.; Hu, J.; Zou, S.; Gao, R.; Yamato, K.; Kline, M.; Cai, Z.; Gao, Y.; Wang, Y.;

Li, Y.; Yang, Y.; Yuan, L.; Zeng, X. C.; Gong, B., J. Am. Chem. Soc. 2011, 133, 18590.

[3] Hu, J.; Chen, L.; Ren, Y.; Deng, P.; Li, X.; Wang, Y.; Jia, Y.; Luo, J.; Yang, X.; Feng, W.; Yuan, L., *Org. Lett.* 2013, 15, 4670.

[4] D. Oberoi, P. Dagar, U. Shankar, G. Vyas, A. Kumar, S. Sahu and A. Bandyopadhyay, *New J. Chem.*, 2018, **42**, 19090-19100.

[5] Liu, Q.; Borjigin, H.; Paul, D. R.; Riffle, J. S.; McGrath, J. E.; Freeman, B. D. *J. Memb. Sci.* 2016, **518**, 88.

[6] J. Hu, L. Chen, J. Shen, J. Luo, P. Deng, Y. Ren, H. Zeng, W. Feng and L. Yuan, *Chem. Commun.*, 2014, **50**, 8024-8027.

3. Spectroscopic Characterization

3.1 ¹H and ¹³C NMR spectra of novel compounds

Figure S4. ¹H NMR spectrum of **5** (400 MHz, 298 K, CDCl₃).

S16

Figure S10. ¹H NMR spectrum of compound 8b (400 MHz, 298 K, CDCl₃).

Figure S14. ¹H NMR spectrum of **1b** (400 MHz, 298 K, CDCl₃).

Figure S16. ¹H NMR spectrum of $1c \supset LiClO_4$ (400 MHz, 298 K, CDCl₃).

Figure S24. Stacked ¹H NMR spectra (400 MHz, CDCl₃, 298 K) of **11** at different concentrations (0.5~20 mM).

3.2 MALDI-TOF-MS or ESI-HRMS spectra of novel compounds

6.8 Ref MSMS Mode Mass Accuracy Tof2_mix

6.8 Ref MSMS Mode Mass Accuracy Tof2_mix Performance

Data: 10b-DHB-R0001.G15[c] 10 Apr 2019 11:40 Cal: tof 10 Apr 2019 11:24

 Shimadzu Biotech Axima Performance 2.9.4.1: Mode Reflectron, Power: 100, Blanked, P.Ext. @ 1101 (bin 73)

 %Int.
 323 mV[sum= 32305 mV]

 Profiles 1-100 Unsmoothed -Baseline 15

Figure S29. MALDI-TOF mass spectrum of 8b (Matrix: DHB).

6.8 Ref MSMS Mode Mass Accuracy Tof2_mix

Performance

Data: 12-DHB-R0001.G16[c] 10 Apr 2019 11:43 Cal: tof 10 Apr 2019 11:24 Shimadzu Biotech Axima Performance 2.9.4.1: Mode Reflectron, Power: 94, Blanked, P.Ext. @ 1101 (bin 73) %Int. 171 mV[sum= 17143 mV] Profiles 1-100 Unsmoothed -Baseline 15

Figure S32. Partial MALDI-TOF mass spectrum of **1a** (insert: experimental isotope distribution (blue) and computer simulation (red)). (Matrix: CCA(NaCl))

Figure S33. Partial MALDI-TOF mass spectrum of 1a. (Matrix: DHAP)

Figure S34. Partial MALDI-TOF mass spectrum of **1b** (insert: experimental isotope distribution (blue) and computer simulation (red)). (Matrix: DHAP)

Figure S35. Partial MALDI-TOF mass spectrum of 1b. (Matrix: CCA(NaCl))

6.8 Ref MSMS Mode Mass Accuracy Tof2_mix Performance Data: M1C-DHB-R0001.G17[c] 10 Apr 2019 11:45 Cal: tof 10 Apr 2019 11:24 Shimadzu Biotech Axima Performance 2.9.4.1: Mode Reflectron, Power: 72, Blanked, P.Ext. @ 1101 (bin 73) %Int. 200 mV[sum= 20000 mV] Profiles 1-100 Unsmoothed -Baseline 15

Figure S36. MALDI-TOF mass spectrum of $1c \supset LiClO_4$ (Matrix: DHB).

Figure S37. Partial MALDI-TOF mass spectrum of 2a (insert: experimental isotope distribution (blue) and computer simulation (red)).(Matrix: CCA(NaCl))

Figure S38. Partial MALDI-TOF mass spectrum of 2a. (Matrix: DHAP)

Figure S39. Partial MALDI-TOF mass spectrum of 2b (insert: experimental isotope distribution (blue) and computer simulation (red)). (Matrix: DHAP)

Figure S40. Partial MALDI-TOF mass spectrum of 2b. (Matrix: CCA(NaCl))

Figure S41. Partial MALDI-TOF mass spectrum of **2b** and biphenyl-cyclo[10]aramide (insert: experimental isotope distribution (blue) and computer simulation (red)). (Matrix: DHAP)

3.3 2D NOESY spectrum of 1a

Figure S42. 2D NOESY spectrum of 1a in $CDCl_3/CD_3CN = 5/1$ (v/v) at 298 K (600 MHz, 10 mM; mixing time: 0.4 s).

Figure S43. Expanded 2D NOESY spectrum of 1a in $CDCl_3/CD_3CN = 5/1$ (v/v) at 298 K (600 MHz, 10 mM; mixing time: 0.4 s).

4. Host-Guest Complexation of 1a and Different Guests

4.1 NMR spectra of complexation

Figure S44. ¹H NMR spectrum of $1a \supset LiClO_4$ (400 MHz, 298 K, CDCl₃ / CD₃CN = 5:1 (v/v)).

Figure S45. Stacked ¹H NMR spectra of $1a \supset \text{LiClO}_4$ (1 mM) in aromatic area (400 MHz, 298 K, CDCl₃ / CD₃CN = 5:1 (v/v)).

10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.4 8.2 8.0 f1 (ppm) 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 8.6 7.8 Figure S46. Stacked ¹H NMR spectra of $1a \supset \text{LiClO}_4$ (1 mM) at aromatic area (400 MHz, 298

K, CDCl₃ / CD₃CN = 1:1 (v/v)).

Figure S47. Determination of the binding constant of $1a \supset \text{LiClO}_4$ in CDCl₃ / CD₃CN (1/1, v/v) at 298 K.

presence of excess of Li⁺, Na⁺ and K⁺.

4.2 Determination of stoichiometry and binding constant

Determination of stoichiometry and binding constant of 1a \supset di-n-butylammonium hexafluorophosphate

Figure S49. Job plots for $1a \supset$ di-n-butylammonium hexafluorophosphate in CHCl₃/CH₃CN (5/1, v/v) were obtained by UV-vis spectroscopy indicating a 1:1 stoichiometry.

Figure S50. Stacked UV-vis spectra of **1a** (50 μ M) titrated with di-n-butylammonium hexafluorophosphate in CHCl₃/CH₃CN (5/1, v/v) from 0 equiv. to 3.0 equiv. at 298 K.

Figure S51. Determination of the binding constant of $1a \supset$ di-n-butylammonium hexafluorophosphate in CHCl₃/CH₃CN (5/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (50 µM) titrated with di-n-butylammonium hexafluorophosphate.

Determination of stoichiometry and binding constant of 1a ⊃ LiClO4

Figure S52. Job plots for $1a \supset LiClO_4$ in CHCl₃/CH₃CN (5/1, v/v) were obtained by UV-vis spectroscopy indicating a 1:1 stoichiometry.

Figure S53. Stacked UV-vis spectra of **1a** (50 μ M) titrated with LiClO₄ in CHCl₃/CH₃CN (5/1, v/v) from 0 equiv. to 3.0 equiv. at 298 K.

Figure S54. Determination of the binding constant of $1a \supset \text{LiClO}_4$ in CHCl₃/CH₃CN (5/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (50 µM) titrated with LiClO₄.

Figure S55. Determination of the binding constant of $1a \supset \text{LiClO4}$ in CHCl₃/CH₃CN (1/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (50 μ M) titrated with LiClO4.

Figure S56. Determination of the binding constant of $1a \supset \text{LiClO4}$ in CHCl₃/CH₃CN (1/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (100 µM) titrated with LiClO₄.

Determination of stoichiometry and binding constant of 1a ⊃ NaClO₄

Figure S57. Job plots for $1a \supset NaClO_4$ CHCl₃/CH₃CN (1/1, v/v) were obtained by UV-vis spectroscopy indicating a 1:1 stoichiometry.

Figure S58. Determination of the binding constant of $1a \supset NaClO4$ in CHCl₃/CH₃CN (1/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (100 µM) titrated with NaClO₄.

Determination of stoichiometry and binding constant of 1a ⊃ KClO₄

Figure S59. Job plots for $1a \supset KClO_4 CHCl_3/CH_3CN(1/1, v/v)$ were obtained by UV-vis spectroscopy. The stoichiometry cannot be determined due to the weak association.

Figure S60. Determination of the binding constant of $1a \supset KClO4$ in CHCl₃/CH₃CN (1/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 1a (100 µM) titrated with KClO₄.

Determination of stoichiometry and binding constant of 9 ⊃ LiClO₄

Figure S61. Job plots experiment for the complexation of $9 \supset \text{LiClO}_4$ in CHCl₃/CH₃CN (5/1, v/v) based on the absorbance at 330 nm, indicating a 1:1 stoichiometry. The total concentration is 50 μ M.

Figure S62. Determination of the binding constant of $9 \supset$ LiClO₄ in CHCl₃/CH₃CN (5/1, v/v) at 298 K. Fitting result based on the absorbance at 330 nm. 9 (50 µM) titrated with LiClO₄.

Determination of stoichiometry and binding constant of 11 ⊃ LiClO₄

Figure S63. Job plots experiment for the complexation of $\mathbf{11} \supset \text{LiClO}_4$ in CHCl₃/CH₃CN (5/1, v/v) based on the absorbance at 330 nm, indicating a 1:1 stoichiometry. The total concentration is 50 μ M.

Figure S64. Determination of the binding constant of $11 \supset$ LiClO₄ in CHCl₃/CH₃CN (5/1, v/v) at 298 K. Fitting result based on the absorbance at 340 nm. **11** (50 µM) titrated with LiClO₄.

4.3 MALDI-TOF mass spectra of complexes

Figure S65. Partial MALDI-TOF mass spectrum of **1a** ⊃ LiClO₄ (insert: experimental isotope distribution (blue) and computer simulation (red)). (Matrix: DHAP)

Figure S66. Partial MALDI-TOF mass spectrum of 1a ⊃ LiClO₄. (Matrix: CCA(NaCl))

4.4 Fluorescence emission spectra of complex

Figure S67. Fluorescence emission spectra of 1a (100 μ M) titrated with different equiv. LiClO₄ in CHCl₃ / CH₃CN = 5:1 (v/v). (λ ex : 378 nm, λ em Max :465 nm)

4.5 FT-IR spectra of complexes

Fourier transform infrared spectrometry (FT-IR) analyses of biphenylcyclo[4]aramide **1a** carried in the absence and presence of LiClO₄ produced $v_{C=O}$ shifts consistent with the formation of solid phase host-guest complexes.

Figure S68. Stacked FT-IR spectra of **1a** and **1a** \supset LiClO₄.

5. Molecular Modeling

The structure of biphenyl-cyclo[4]aramide was optimized by the density functional theory (DFT) method at the B3LYP/6-31G (d, p) level by employing the Gaussian09 program^[7].

Figure S69. Top view (a) and side view (b) of optimized geometry of biph-C[4] at the B3LYP/6-31G (d, p) level. (gray = C, white = H, red = O, and blue = N); (c) Selected interatomic distances (Å) of complexes. For simplicity, all side chains are replaced with methyl groups.

atoms	interatomic distances (Å)
01-02	4.57306
01-03	4.57189
02-04	4.57193
03-04	4.57307
01-04	6.46649
N1-N2	7.30292
N1-N3	7.21325
N2-N4	7.21349
N3-N4	7.30292

Table S1Selected interatomic distances (Å) of complexes calculated applying B3LYP/6-31G (d,
p) level DFT functional.

Biphenyl-cyclo[4]aramide (Stoichiometry C48H44N4O12) E(RB3LYP): -2976.48666489 a.u. Number of negative frequencies: 0 Cartesian coordinates:

Center	Atomic		Forces (Hartree	es/Bohr)
Number	Number	Х	Y	Z
1	6	0. 000006309	0.000062134	0. 000005432
2	6	0.000037533	-0.000100350	0.000074107
3	6	-0.000029727	-0.000003082	0.000037071
4	6	0.000010677	-0.000083205	-0.000035214
5	6	0.000007716	0.000033780	-0.000014487
6	6	0.000001652	0.000048767	-0.000086446
7	6	-0.000027398	0.000008532	-0.000034341
8	6	0.000033528	0.000094086	-0.000078589
9	6	0.00000844	-0.000062717	-0.000007403
10	6	0.000008252	-0.000046711	0.000086521
11	6	0.000010968	-0.000038647	0.000005087
12	6	0.000027134	0.000070317	0.000037276
13	7	0.000043248	-0.000022475	0.000049185
14	7	0.000029115	0.000044983	-0.000028763
15	8	-0.000028396	-0.000019400	0.000106885
16	8	-0.000041367	0.000020163	-0.000107792
17	6	-0.000062042	0.000067595	-0.000035808

18	8	0.000042458	-0.000035214	0.000022516
19	6	-0.000027120	0.000024719	0.000030619
20	6	0.000010284	-0.000030145	-0.000033765
21	6	0.000021885	0.000010045	0.000018392
22	6	-0.000048325	0.000014128	0.000046510
23	6	0.000012393	-0.000008646	0.000020182
24	6	0.000047243	0.000007603	0.000021147
25	6	0.000066383	0.000056922	0.000003738
26	7	-0.000014697	-0.000068237	0.000025333
27	8	-0.000017501	-0.000027309	0.000006108
28	8	0.00003053	0.000021376	-0.000105258
29	6	-0.000049063	0.000006484	0.000057494
30	8	-0.000039192	-0.000012522	-0.000078123
31	6	0.000053136	-0.000003369	0.000038012
32	6	-0.000022321	0.000038424	-0.000002553
33	6	-0.000066132	-0.000061447	0.000004192
34	6	-0.000025670	-0.000015391	-0.000019291
35	8	0.000036562	0.000026122	-0.000016844
36	6	0.000045205	-0.000015304	-0.000047856
37	6	-0.000004370	0.000009235	-0.000020416
38	6	-0.000050770	-0.000007416	-0.000021673
39	6	0.000025715	-0.000023737	-0.000028865
40	6	-0.000004926	0.000029615	0.000034297
41	6	0.000061802	-0.000062649	0.000026049
42	7	-0.000033735	0.000043921	-0.000048429
43	8	-0.000011564	0.000038786	-0.000012064
44	6	-0.000019071	-0.000033342	0.000013591
45	6	-0.000036166	-0.000054264	-0.000032365
46	6	0.000028207	-0.000006813	0.000036021
47	6	-0.000037997	-0.000097115	0.000079068
48	6	-0.000002303	0.000066483	0.000007331
49	6	-0.000004732	0.000043631	-0.000088550
50	6	0.000029961	0.000001850	-0.000039382
51	6	-0.000023622	0.000064283	0.000030520
52	6	0.000002977	-0.000046263	0.000089251
53	6	-0.000007814	-0.000066030	-0.000005134
54	6	-0.000042209	0.000103250	-0.000074139
55	6	0.000019760	-0.000012912	-0.000056938
56	8	0.000043791	-0.000017480	0.000107838
57	6	-0.000023282	-0.000014823	-0.000060213
58	8	0.000032408	0.000016401	-0.000108297
59	6	-0.000019231	0.000013162	0.000057953
60	6	0.000023831	0.000013406	0.000059849
61	8	-0.000016205	0.00000756	0.000105896
62	8	0.000030189	-0.00000816	0.000081509
63	6	0.000048550	-0.000004586	-0.000057401
64	6	-0.000053867	0.000001655	-0. 000040199
65	1	-0.000011026	-0.000013454	0.000013545
66	1	-0.000012851	0.000005391	-0.000010142

67	1	-0.000027378	0.000065278	-0.000017274
68	1	-0.000011694	-0.000004380	0.000011685
69	1	-0.000011124	0.000014879	-0.000010875
70	1	-0.000024463	-0.000061331	0.000018718
71	1	0.000014466	0.000009943	-0.000018300
72	1	0.000015024	-0.000010182	0.000017365
73	1	-0.00000895	-0.000013071	-0.000011538
74	1	0.000001593	0.000038438	-0.000014264
75	1	-0.000014374	0.000011226	-0.000017550
76	1	0.000003933	-0.000015236	0.000003235
77	1	0.000011737	-0.000004763	-0.000014574
78	1	-0.000009470	-0.000008724	-0.00000686
79	1	-0.000003831	-0.000014011	0.00002309
80	1	0.000005017	-0.000006198	0.00000020
81	1	-0.000012057	-0.000001648	-0.000011040
82	1	-0.000001743	-0.000037749	0.000014202
83	1	0.000001005	0.000011931	0.000011755
84	1	-0.000013354	-0.000012808	0.000019446
85	1	0.000018909	0.000064556	-0.000012566
86	1	0.000012127	0.000002809	-0.000010566
87	1	0.000011289	-0.000014424	0.000010407
88	1	0.000017843	-0.000067030	0.000011290
89	1	0.000010990	0.000013142	-0.000013374
90	1	0.000013052	-0.000003718	0.000009026
91	1	-0.000004821	-0.000000628	-0.000008270
92	1	-0.000003026	-0.000012482	0.000007552
93	1	0.000009877	0.000019482	0.000009047
94	1	0.000004507	0.000000546	-0.000007734
95	1	-0.000006939	0.000023913	0.000010831
96	1	0.000003213	-0.000015354	0.000007791
97	1	0.000005402	-0.00000006	0.000008379
98	1	-0.000009902	-0.000020268	-0.000009133
99	1	0.000002955	0.000013032	-0.000007700
100	1	-0.000003814	0.000000129	0.000007843
101	1	-0.000003079	0.000014940	-0.000007928
102	1	0.000007159	-0.000023072	-0.000010914
103	1	-0.000004087	0.000014343	-0.000003116
104	1	0.000009003	0.000008230	0.00000963
105	1	-0.000011901	0.00003667	0.000014816
106	1	0.000004049	0.000015314	-0.000002468
107	1	0.000012502	0.000002477	0.000011328
108	1	-0.000005777	0.000006675	0. 00000080

References:

[7] Gaussian 09, Revision B.01, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.;
Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.;
Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.;
Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.;
Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.;
Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.J.; Foresman, B.; Ortiz, J.V.; Cioslowski, J.;
Fox, D. J. Gaussian, Inc., Wallingford CT, **2010**.

Supplementary Table S2:

Table S2The binding constants of reported macrocyclic receptors serving as Li⁺ ionophores.

Number	References	Contents
1	J. A. Chen, J. L. Lai, G. H. Lee, Y.	Solvent: CH ₃ CN;
	Wang, J. K. Su, H. C. Yeh, W. Y.	Complexation model: only lithium cation;
	Lin and M. K. Leung, Org. Lett.,	Stoichiometry (Host:Guest) : 1:2;
	2001, 3 , 3999-4002.	The binding constant between ureyleno crown
		ether 3 and Li^+ was found to be 3.0 \times 10^7
		$(L/mol)^2$.
2	Y. Luo, N. Marets and T. Kato,	Solvent: $CDCl_3$: $CD_3CN = 1 : 1 (v/v)$;
	Chem. Sci., 2018, 9, 608-616.	Complexation model: only lithium cation;
		Stoichiometry (Host:Guest) : 1:1;
		The binding constant between CE derivatives 1
		and Li^+ was found to be 2359 M^{-1} and the
		binding constant between CE derivatives 2 and
		Li^+ was found to be 610 M ⁻¹ .
3	Z. Grote, M. L. Lehaire, R.	Solvent: D ₂ O;
	Scopelliti and K. Severin, J. Am.	Complexation model: only lithium cation;
	Chem. Soc., 2003, 125, 13638-	Stoichiometry (Host:Guest) : 1:1;
	13639.	The binding constant between
		metallamacrocycle 2 and Li^+ was found to be

		$(8.4 \pm 0.6) \times 10^2 \text{ M}^{-1}$ and the binding constant
		between metallamacrocycle 3 and Li^+ was
		found to be $(2.3 \pm 0.4) \times 10^3 \text{ M}^{-1}$.
4	K. Roy, C. Wang, M. D. Smith, P.	Solvent: CD ₃ CN;
	J. Pellechia and L. S. Shimizu, J.	Complexation model: only lithium cation;
	Org. Chem., 2010, 75 , 5453-5460.	Stoichiometry (Host:Guest) : 1:1;
		The binding constant between pyridyl
		macrocycle 2 and Li^+ was found to be 6600 M ⁻
		¹ and the binding constant between pyridyl
		macrocycle 3 and Li^+ was found to be $10^6 M^{-1}$.
5	C. Ren, V. Maurizot, H. Zhao, J.	Solvent: H ₂ O/CHCl ₃ system;
	Shen, F. Zhou, W. Q. Ong, Z. Du,	Complexation model: only lithium cation;
	K. Zhang, H. Su and H. Zeng, J.	Stoichiometry (Host:Guest) : 1:1;
	Am. Chem. Soc., 2011, 133 ,	The binding constant between pentamer 2 and
	13930-13933	Li^+ was found to be $(2.28\pm0.10)\times10^8~M^{-1}.$
6	Q. He, N. J. Williams, J. H. Oh, V.	Solvent: THF- <i>d</i> ₈ /D ₂ O (9/1, v/v);
	M. Lynch, S. K. Kim, B. A. Moyer	Complexation model: ion pair;
	and J. L. Sessler, Angew. Chem.	Stoichiometry (Host:Guest) : 1:1;
	Int. Ed., 2018, 57, 11924-11928.	¹ H NMR spectroscopic titration of ion-pair
		receptor 2 with LiCl was found $K_a = (8.3 \pm 0.3)$
		$\times 10^2 \mathrm{M}^{-1}$.
7	K. Kang, J. A. Lohrman, S.	Solvent: CHCl ₃ : CH ₃ CN = $1 : 1 (v/v)$;
	Nagarajan, L. Chen, P. Deng, X.	Complexation model: ion pair;
	Shen, K. Fu, W. Feng, D. W.	Stoichiometry (Host:Guest) : 1:1;
	Johnson, L. H. Yuan, Org. Lett.,	The binding constant between convergent
	2019, 21 , 652-655.	ditopic receptor $1a$ and Li^+ was found to be (5.5
0		$\pm 0.4) \times 10^4 \text{ M}^{-1}.$
8	This work.	Solvent: CHCl ₃ : CH ₃ CN = $1 : 1 (v/v)$;
		Complexation model: only lithium cation;
		Stoichiometry (Host:Guest) : 1:1;
		The binding constant between biphenyl-
		cyclo[4]aramide $1a$ and Li^+ was found to be
		$(1.92 \pm 0.05) \times 10^4 \text{M}^{-1}.$