Ni-Catalyzed Enantioselective Reductive Aryl-Alkenylation of Alkenes: Application to the Synthesis of (+)-Physovenine and (+)-Physostigmine

Yuxiu Li,[‡] Zhengtian Ding,[‡] Aiwen Lei* and Wangqing Kong*

The College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China

Content

1. General information	S3
2. General procedures	S4
3. Additional experiments	S6
4. Characterization data of products	S7
5. Synthetic Applications	S48
6. Copies of the ¹ H, ¹⁹ F and ¹³ C NMR spectra	S50
7. References	S86

1. General Information

¹H and ¹³C NMR data were recorded with Bruker ADVANCE III (400 MHz) or JNM-ECZ400S/L1 (400 MHz) spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (b). ¹⁹F NMR spectra were recorded using CFCl₃ as internal standard. Gas chromatography were determined with a Varian GC 2000 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer. Enantiomeric excesses were determined with a SHIMADZU LC-20ADXR system using chiral stationary phase columns (DAICEL) by comparing the samples with the corresponding racemic samples. Column and elution details were specified in each entry.

Materials and Methods: Unless otherwise stated, starting materials were purchased from commercial suppliers (Adamas-beta[®], Alfa, Aldrich and so on). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with nitrogen and dried over activated molecular sieves of appropriate size. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

2. General Procedures

2.1 General Procedure for Racemic Aryl-Alkenylation Reaction:

To a mixture of **1** (0.1 mmol), NiBr₂ (10 mol%), L**1** (20 mol%), Mn (3 equiv), MgCl₂ (4 equiv) and dry DMSO (2 mL) in a sealed tube was added alkenyl bromide **2** (0.3 mmol) under Argon. The reaction mixture was heated at 60 °C until the reaction was complete (monitored by TLC). The resulting mixture was quenched with sat. NH₄Cl solution (5 mL) and further diluted with water (10 mL). The aqueous layer was extracted with EtOAc (3 x 15 mL) and the combined organic layers were washed with brine (2 x 20 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:40~1:5 (v/v) to afford the desired product **3**.

2.2 General Procedure for Asymmetric Aryl-Alkenylation Reaction:

To a mixture of **1** (0.1 mmol), Ni(COD)₂ (10 mol%), **L15** (20 mol%), Zn (3 equiv) and dry DMA (2 mL) in a sealed tube was added alkenyl bromide **2** (0.3 mmol) under Argon. The reaction mixture was heated at room temperature until the reaction was complete (monitored by TLC). The resulting mixture was quenched with sat. NH₄Cl solution (5 mL) and further diluted with water (10 mL). The aqueous layer was extracted with

EtOAc (3 x 15 mL) and the combined organic layers were washed with brine (2 x 20 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:40~1:5 (v/v) to afford the desired product **3**.

3. Additional experiments

L1

17

^aReactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), NiBr₂ (10 mol%), ligand (20 mol%), Mn (0.3 mmol), MgCl₂ (0.4 mmol) in 2 mL solvent at 60 °C for 12 h, unless noted otherwise. ^bIsolated yields. ^cWithout NiBr₂.

_

DMSO

0

4. Characterization data of products

(E)-3-(3-(4-Methoxyphenyl)allyl)-1,3-dimethylindolin-2-one (3aa)

Me OMe Me Chemical Formula: C₂₀H₂₁NO₂ Exact Mass: 307.1572

3aa was prepared according to general procedure 2.1 using **1a** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3aa** as yellow oil (90% yield). The ¹H NMR data matched those reported in the literature:¹ ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.24 (m, 1H), 7.22 (dd, *J* = 7.3, 0.7 Hz, 1H), 7.16-7.10 (m, 2H), 7.07 (td, *J* = 7.5, 0.9 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.80-6.75 (m, 2H), 6.29 (d, *J* = 15.7 Hz, 1H), 5.74 (ddd, *J* = 15.5, 8.0, 7.1 Hz, 1H), 3.77 (s, 3H), 3.18 (s, 3H), 2.70-2.52 (m, 2H), 1.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 158.8, 143.1, 133.6, 133.0, 130.0, 127.7, 127.2, 122.9, 122.3, 121.8, 113.7, 107.9, 55.2, 48.7, 41.6, 26.1, 22.4.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.7 min (minor), 8.0 min (major).

Optical Rotation: $[\alpha]_D^{33}$ +4.6 (*c* 0.2, ^{*i*}PrOH) for 82% ee.

(*E*)-3-(3-(4-Methoxyphenyl)allyl)-1,3,5-trimethylindolin-2-one (**3ba**)

3ba was prepared according to general procedure 2.2 using **1b** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ba** as yellow oil (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.09 (m, 2H), 7.08-7.02 (m, 2H), 6.81-6.74 (m, 2H), 6.70 (d, *J* = 7.8 Hz, 1H), 6.29 (d, *J* = 15.7 Hz, 1H), 5.77-5.66 (m, 1H), 3.77 (s, 3H), 3.15 (s, 3H), 2.61 (dd, *J* = 7.6, 1.0 Hz, 2H), 2.35 (s, 3H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 158.8, 140.8, 133.7, 132.9, 131.8, 130.2, 127.9, 127.2, 123.8, 122.1, 113.8, 107.6, 55.2, 48.7, 41.7, 26.1, 22.5, 21.2; HRMS: (ESI) calcd for C₂₁H₂₄NO₂⁺[M+H]⁺ 322.1802; found 322.1795.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.3 min (minor), 7.2 min (major).

Optical Rotation: [α]_D³² +38.0 (*c* 0.5, ^{*i*}PrOH) for 90% ee.

(E)-5-Methoxy-3-(3-(4-methoxyphenyl)allyl)-1,3-dimethylindolin-2-one (3ca)

3ca was prepared according to general procedure 2.1 using **1c** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ca** as yellow oil (67% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.09 (m, 2H), 6.85 (d, *J* = 2.4 Hz, 1H), 6.81-6.75 (m, 3H), 6.72 (d, *J* = 8.4 Hz, 1H), 6.30 (d, *J* = 15.7 Hz, 1H), 5.73 (dt, *J* = 15.5, 7.5 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.15 (s, 3H), 2.62 (dd, *J* = 7.5, 1.0 Hz, 2H), 1.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 158.8, 155.8, 136.7, 135.0, 133.0, 130.0, 127.2, 121.8, 113.7, 111.6, 110.6, 108.1, 55.8, 55.2, 49.1, 41.6, 26.2, 22.6; HRMS: (ESI) calcd for C₂₁H₂₄NO₃⁺[M+H]⁺ 338.1751; found 338.1743.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 8.4 min (minor), 10.4 min (major).

Optical Rotation: $[\alpha]_D^{33}$ +51.6 (*c* 0.2, ^{*i*}PrOH) for 80% ee.

(E)-5-Fluoro-3-(3-(4-methoxyphenyl)allyl)-1,3-dimethylindolin-2-one (3da)

3da was prepared according to general procedure 2.2 using **1d** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3da** as yellow oil (74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.11 (m, 2H), 7.00-6.92 (m, 2H), 6.82-6.75 (m, 2H), 6.73 (dt, *J* = 8.3, 3.3 Hz, 1H), 6.30 (t, *J* = 13.5 Hz, 1H), 5.70 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.78 (s, 3H), 3.17 (s, 3H), 2.70-2.53 (m, 2H), 1.39 (d, *J* = 11.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 159.2 (d, *J* = 240.3 Hz), 158.9, 139.0, 135.3 (d, *J* = 7.8 Hz), 133.3, 129.8, 127.3, 121.3, 113.9 (d, *J* = 21.8 Hz), 113.8, 111.1 (d, *J* = 24.6 Hz), 108.3 (d, *J* = 8.1 Hz), 55.2, 49.2, 41.6, 26.3, 22.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -120.83; HRMS: (ESI) calcd for C₂₀H₂₁FNO₂+[M+H]⁺ 326.1551; found 326.1550.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 7.0 min (minor), 8.2 min (major).

Optical Rotation: $[\alpha]_D^{32}$ +3.7 (*c* 0.5, ^{*i*}PrOH) for 89% ee.

(E)-3-(3-(4-Methoxyphenyl)allyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (3ea)

3ea was prepared according to general procedure 2.1 using **1e** and **2a** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ea** as yellow oil (67% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.45 (d, *J* = 1.1 Hz, 1H), 7.15-7.08 (m, 2H), 6.88 (d, *J* = 8.2 Hz, 1H), 6.82-6.74 (m, 2H), 6.28 (d, *J* = 15.7 Hz, 1H), 5.67 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.77 (s, 3H), 3.20 (s, 3H), 2.65 (dd, *J* = 7.6, 1.0 Hz, 2H), 1.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 159.0, 146.2, 134.2, 133.8, 129.8, 127.3, 126.1 (d, *J* = 58.0 Hz), 125.7 (q, *J* = 4.1 Hz), 124.6 (d, *J* = 32.6 Hz), 120.9, 119.9 (q, *J* = 3.6 Hz), 113.9, 107.7, 55.3, 48.8, 41.6, 26.4, 22.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -61.27; HRMS: (ESI) calcd for C₂₁H₂₁F₃NO₂+[M+H]+ 376.1519; found 376.1525.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 5.3 min (minor), 5.8 min (major).

Optical Rotation: $[\alpha]_D^{34}$ +17.6 (c 0.5, ^{*i*}PrOH) for 82% ee.

(*E*)-3-(3-(4-Methoxyphenyl)allyl)-1,3,6-trimethylindolin-2-one (**3fa**)

3fa was prepared according to general procedure 2.1 using **1f** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3fa** as yellow oil (64% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 8.7 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.4 Hz, 1H), 6.78 (t, *J* = 5.8 Hz, 2H), 6.65 (s, 1H), 6.29 (d, *J* = 15.7 Hz, 1H), 5.76 (ddd, *J* = 15.5, 8.0, 7.1 Hz, 1H), 3.78 (s, 3H), 3.16 (s, 3H), 2.70-2.48 (m, 2H), 2.38 (s, 3H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 158.8, 143.1, 137.8, 132.9, 130.7, 130.1, 127.2, 122.8, 122.7, 122.1, 113.7, 108.9, 55.2, 48.4, 41.6, 26.1, 22.6, 21.8; HRMS: (ESI) calcd for C₂₁H₂₄NO₂⁺[M+H]⁺ 322.1802; found 322.1804. (E)-6-chloro-3-(3-(4-methoxyphenyl)allyl)-1,3-dimethylindolin-2-one (**3ga**)

3ga was prepared according to general procedure 2.2 using **1g** and **2a** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ga** as yellow oil (44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.10 (m, 3H), 7.03 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.81 (d, *J* = 1.8 Hz, 1H), 6.80-6.76 (m, 2H), 6.28 (d, *J* = 15.7 Hz, 1H), 5.70 (dt, *J* = 15.4, 7.6 Hz, 1H), 3.78 (s, 3H), 3.16 (s, 3H), 2.68-2.49 (m, 2H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 159.0, 144.3, 133.5, 133.4, 131.9, 129.8, 127.3, 123.8, 122.1, 121.3, 113.8, 108.7, 55.3, 48.5, 41.5, 26.2, 22.5; HRMS: (ESI) calcd for C₂₀H₂₁CINO₂⁺[M+H]⁺ 342.1255; found 342.1253.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.6 min (minor), 6.9 min (major).

Optical Rotation: $[\alpha]_D^{33}$ +7.9 (*c* 0.2, ^{*i*}PrOH) for 85% ee.

(E)-6-Methoxy-3-(3-(4-methoxyphenyl)allyl)-1,3-dimethylindolin-2-one (3ha)

3ha was prepared according to general procedure 2.1 using **1h** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ha** as yellow oil (74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.12 (m, 2H), 7.10 (d, *J* = 8.1 Hz, 1H), 6.82-6.75 (m, 2H), 6.56 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.41 (d, *J* = 2.3 Hz, 1H), 6.29 (d, *J* = 15.8 Hz, 1H), 5.80-5.68 (m, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.15 (s, 3H), 2.67-2.50 (m, 2H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 159.8, 158.8, 144.3, 132.9, 130.1, 127.2, 125.6, 123.4, 122.1, 113.7, 106.0, 96.0, 55.5, 55.2, 48.2, 41.8, 26.1, 22.6; HRMS: (ESI) calcd for C₂₁H₂₄NO₃+[M+H]⁺ 338.1751; found 338.1747.

(E)-3-(3-(4-Methoxyphenyl)allyl)-1,3,7-trimethylindolin-2-one (**3ia**)

Chemical Formula: C₂₁H₂₃NO₂ Exact Mass: 321.1729

3ha was prepared according to general procedure 2.1 using **1h** and **2a** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ha** as yellow oil (63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.10 (m, 2H), 7.06 (dd, *J* = 6.9, 1.4 Hz, 1H), 7.01-6.90 (m, 2H), 6.82-6.75 (m, 2H), 6.28 (d, *J* = 15.7 Hz, 1H), 5.73 (dt, *J* = 15.5, 7.5 Hz, 1H), 3.78 (s, 3H), 3.46 (s, 3H), 2.63-2.58 (m, 2H), 2.56 (s, 3H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 158.8, 140.84 134.3, 132.9, 131.5, 130.1, 127.3, 122.2, 122.1, 120.8, 119.5, 113.8, 55.2, 47.9, 41.9, 29.5, 22.9, 19.1; HRMS: (ESI) calcd for C₂₁H₂₄NO₂⁺[M+H]⁺ 322.1802; found 322.1809.

(*E*)-1-(3-(4-Methoxyphenyl)allyl)-1,8-dimethyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one (**3ja**)

3ja was prepared according to general procedure 2.1 using **1j** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ja** as yellow oil (74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.14 (t, *J* = 5.7 Hz, 2H), 6.85 (d, *J* = 16.4 Hz, 2H), 6.81-6.75 (m, 2H), 6.30 (d, *J* = 15.8 Hz, 1H), 5.78 (dt, *J* = 15.4, 7.5 Hz, 1H), 3.77 (s, 3H), 3.65 (td, *J* = 6.8, 4.7 Hz, 2H), 2.70 (t, *J* = 6.0 Hz, 2H), 2.65-2.50 (m, 2H), 2.32 (s, 3H), 2.03-1.80 (m, 2H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 158.8, 136.4, 132.8, 132.2, 131.3, 130.2, 127.2, 126.9, 122.3, 121.6, 119.7, 113.8, 55.2, 50.1, 41.4, 38.7, 24.5, 22.1, 21.4, 21.4; HRMS: (ESI) calcd for C₂₃H₂₆NO₂+[M+H]⁺ 348.1958; found 348.1953.

(*E*)-3-(3-(4-Methoxyphenyl)allyl)-1,3-dimethyl-1,3-dihydro-2*H*-pyrrolo[2,3-*b*]pyridin-2-one (**3ka**)

3ka was prepared according to general procedure 2.1 using **1k** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ka** as yellow oil (89% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.17 (dd, *J* = 5.3, 1.5 Hz, 1H), 7.43 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.15 (t, *J* = 5.7 Hz, 2H), 6.95 (dd, *J* = 7.2, 5.3 Hz, 1H), 6.82-6.76 (m, 2H), 6.30 (d, *J* = 15.7 Hz, 1H), 5.77 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.78 (s, 3H), 3.28 (s, 3H), 2.73-2.52 (m, 2H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 159.0, 156.6, 146.7, 133.7, 130.4, 129.7, 128.0, 127.3, 120.9, 117.9, 113.9, 55.3, 48.3, 41.1, 25.3, 21.9; HRMS: (ESI) calcd for C₁₉H₂₁N₂O₂+[M+H]+ 305.1598; found 309.1593.

(E)-3-Hexyl-3-(3-(4-methoxyphenyl)allyl)-1-methylindolin-2-one (**3**Ia)

3Ia was prepared according to general procedure 2.1 using **1I** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3Ia** as yellow oil (82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.22 (m, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.15-7.03 (m, 3H), 6.79 (dd, *J* = 15.0, 8.2 Hz, 3H), 6.26 (d, *J* = 15.7 Hz, 1H), 5.70 (dt, *J* = 15.5, 7.5 Hz, 1H), 3.77 (s, 3H), 3.17 (s, 3H), 2.71-2.53 (m, 2H), 1.95 (td, *J* = 12.8, 4.6 Hz, 1H), 1.81 (td, *J* = 12.8, 4.4 Hz, 1H), 1.32-1.06 (m, 7H), 1.03-0.89 (m, 1H), 0.80 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 158.8, 143.8, 132.8, 132.0, 130.1, 127.6, 127.2, 123.0, 122.3, 121.9, 113.7, 107.8, 55.2, 53.4, 41.4, 36.8, 31.5, 29.4, 26.0, 24.2, 22.5, 14.0; HRMS: (ESI) calcd for C₂₅H₃₂NO₂⁺[M+H]⁺ 378.2428; found 378.2427.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.2 min (minor), 7.0 min (major).

Optical Rotation: $[\alpha]_D^{35}$ +3.8 (c 0.5, ^{*i*}PrOH) for 80% ee.

(E)-3-Isopropyl-3-(3-(4-methoxyphenyl)allyl)-1-methylindolin-2-one (3ma)

Chemical Formula: C₂₂H₂₅NO₂ Exact Mass: 335.1885

3ma was prepared according to general procedure 2.1 using **1m** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ma** as yellow oil (55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.21 (m, 2H), 7.06 (ddd, *J* = 7.6, 4.6, 1.6 Hz, 3H), 6.78 (d, *J* = 7.6 Hz, 1H), 6.76-6.70 (m, 2H), 6.24 (d, *J* = 15.7 Hz, 1H), 5.66-5.53 (m, 1H), 3.75 (s, 3H), 3.14 (s, 3H), 2.73 (dddd, *J* = 13.5, 9.1, 7.5, 1.0 Hz, 2H), 2.25 (hept, *J* = 6.8 Hz, 1H), 0.99 (d, *J* = 6.9 Hz, 3H), 0.77 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 158.7, 144.1, 132.5, 130.9, 130.2, 127.6, 127.1, 123.7, 122.2, 122.0, 113.7, 107.6, 56.6, 55.2, 38.7, 34.6, 25.8, 17.4, 17.3; HRMS: (ESI) calcd for C₂₂H₂₆NO₂⁺[M+H]⁺ 336.1958; found 336.1956.

(*E*)-3-Benzyl-3-(3-(4-methoxyphenyl)allyl)-1-methylindolin-2-one (**3na**)

3na was prepared according to general procedure 2.1 using **1n** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3na** as yellow oil (82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.22 (dd, *J* = 7.3, 0.7 Hz, 1H), 7.19-7.14 (m, 1H), 7.14-7.10 (m, 2H), 7.08-6.98 (m, 4H), 6.85 (dd, *J* = 7.2, 2.2 Hz, 2H), 6.81-6.72 (m, 2H), 6.56 (d, *J* = 7.7 Hz, 1H), 6.33 (d, *J* = 15.7 Hz, 1H), 5.80-5.66 (m, 1H), 3.76 (s, 3H), 3.20 (d, *J* = 13.0 Hz, 1H), 3.09 (d, *J* = 13.0 Hz, 1H), 2.93 (s, 3H), 2.86-2.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 158.8, 143.6, 135.9, 133.1, 130.7, 130.0, 129.8, 127.8, 127.5, 127.3, 126.3, 123.8, 121.9, 121.7, 113.7, 107.7, 55.2, 54.8, 43.1, 40.5, 25.8; HRMS: (ESI) calcd for C₂₆H₂₆NO₂+[M+H]+ 384.1958; found 384.1962.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 9.9 min (major), 10.4 min (minor).

Optical Rotation: $[\alpha]_D^{32}$ -9.8 (c 0.5, ^{*i*}PrOH) for 76% ee.

peak number

retention time

area

height

(E)-3-(Methoxymethyl)-3-(3-(4-methoxyphenyl)allyl)-1-methylindolin-2-one (**3oa**)

30a was prepared according to general procedure 2.1 using **10** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **30a** as yellow oil (63% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, *J* = 7.3, 0.7 Hz, 1H), 7.30-7.26 (m, 2H), 7.16-7.04 (m, 3H), 6.86-6.72 (m, 3H), 6.29 (d, *J* = 15.7 Hz, 1H), 5.69 (ddd, *J* = 15.5, 8.2, 7.0 Hz, 1H), 3.77 (s, 3H), 3.72 (q, *J* = 9.0 Hz, 2H), 3.25 (d, *J* = 4.8 Hz, 3H), 3.22 (d, *J* = 3.4 Hz, 1H), 3.18 (s, 3H), 2.72 (ddd, *J* = 13.5, 6.9, 1.2 Hz, 1H), 2.61 (ddd, *J* = 13.6, 8.2, 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 158.8, 143.9, 133.1, 130.6, 129.9, 128.1, 127.2, 123.4, 122.3, 121.0, 113.7, 107.9, 76.1, 59.5, 55.2, 54.0, 37.5, 26.2; HRMS: (ESI) calcd for C₂₁H₂₄NO₃+[M+H]+ 338.1751; found 338.1752.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 9.9 min (major), 10.7 min (minor).

Optical Rotation: $[\alpha]_D^{34}$ +5.6 (*c* 0.5, ^{*i*}PrOH) for 89% ee.

(*E*)-1-Benzyl-3-(3-(4-methoxyphenyl)allyl)-3-methylindolin-2-one (**3pa**)

3pa was prepared according to general procedure 2.1 using **1p** and **2a** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3pa** as yellow oil (84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.22 (m, 1H), 7.12 (ddd, *J* = 18.0, 11.9, 5.0 Hz, 6H), 7.04 (td, *J* = 7.6, 1.0 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 2H), 6.82-6.74 (m, 2H), 6.35 (d, *J* = 15.8 Hz, 1H), 5.74-5.54 (m, 1H), 5.17 (d, *J* = 15.8 Hz, 1H), 4.60 (d, *J* = 15.8 Hz, 1H), 3.79 (s, 3H), 2.85-2.59 (m, 2H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 158.9, 142.3, 135.7, 133.5, 133.2, 130.0, 128.7, 127.8, 127.4, 127.3, 127.0, 122.9, 122.5, 121.9, 113.8, 109.2, 55.3, 49.0, 43.7, 42.0, 23.4; HRMS: (ESI) calcd for C₂₆H₂₆NO₂⁺[M+H]⁺ 384.1958; found 384.1959.

(*E*)-3-Cinnamyl-1,3-dimethylindolin-2-one (**3ab**)

Chemical Formula: C₁₉H₁₉NO Exact Mass: 277.1467

3ab was prepared according to general procedure 2.1 using **1a** and **2b** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ab** as yellow oil (60% yield). The ¹H NMR data matched those reported in the literature:¹ ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.14 (m, 7H), 7.11-7.03 (m, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 5.95-5.82 (m, 1H), 3.18 (s, 3H), 2.72-2.58 (m, 2H), 1.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 143.1, 137.2, 133.6, 133.5, 128.4, 127.8, 127.2, 126.1, 124.2, 122.9, 122.4, 108.0, 77.3, 77.0, 76.7, 48.6, 41.6, 26.1, 22.5.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 8.5 min (minor), 10.2 min (major).

Optical Rotation: $[\alpha]_D^{33}$ +4.6 (c 0.2, ^{*i*}PrOH) for 83% ee.

(E)-1,3-Dimethyl-3-(3-(p-tolyl)allyl)indolin-2-one (**3ac**)

3ac was prepared according to general procedure 2.1 using **1a** and **2c** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ac** as yellow oil (75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (td, *J* = 7.6, 1.3 Hz, 1H), 7.23-7.20 (m, 1H), 7.11-7.02 (m, 5H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.31 (d, *J* = 15.6 Hz, 1H), 5.90-5.75 (m, 1H), 3.17 (s, 3H), 2.69-2.57 (m, 2H), 2.29 (s, 3H), 1.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 143.1, 136.9, 134.5, 133.5, 129.1, 127.8, 126.0, 123.1, 122.9, 122.3, 107.9, 48.6, 41.6, 26.1, 22.5, 21.1; HRMS: (ESI) calcd for C₂₀H₂₂NO⁺[M+H]⁺ 292.1696; found 292.1703.

(*E*)-3-(3-(4-Chlorophenyl)allyl)-1,3-dimethylindolin-2-one (**3ad**)

Exact Mass: 311.1077

3ad was prepared according to general procedure 2.1 using **1a** and **2d** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ad** as yellow oil (75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (td, *J* = 7.7, 1.3 Hz, 1H), 7.24-7.17 (m, 3H), 7.13-7.03 (m, 3H), 6.82 (m, 1H), 6.29 (d, *J* = 15.8 Hz, 1H), 5.90-5.79 (m, 1H), 3.18 (s, 3H), 2.64 (dd, *J* = 7.6, 1.1 Hz, 2H), 1.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 143.1, 135.7, 133.5, 132.8, 132.5, 128.6, 127.9, 127.3, 125.0, 122.9, 122.5, 108.1, 48.6, 41.6, 26.2, 22.6; HRMS: (ESI) calcd for C₁₉H₁₉CINO⁺[M+H]⁺ 312.1150; found 312.1149.

(*E*)-3-(3-(4-Fluorophenyl)allyl)-1,3-dimethylindolin-2-one (**3ae**)

3ae was prepared according to general procedure 2.1 using **1a** and **2e** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ae** as yellow oil (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 1H), 7.24-7.20 (m, 1H), 7.18-7.11 (m, 2H), 7.08 (td, *J* = 7.5, 0.9 Hz, 1H), 6.97-6.88 (m, 2H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.30 (d, *J* = 15.8 Hz, 1H), 5.78 (dt, *J* = 15.4, 7.5 Hz, 1H), 3.18 (s, 3H), 2.70-2.58 (m, 2H), 1.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 163.3, 143.1, δ 133.4 (d, *J* = 3.3 Hz), 133.4, 132.5, 127.9, 127.6 (d, *J* = 7.9 Hz), 123.9 (d, *J* = 2.2 Hz), 122.9, 122.4, 115.3 (d, *J* = 21.5 Hz), 108.0, 48.7, 41.6, 26.2, 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -115.06; HRMS: (ESI) calcd for C₁₉H₁₉FNO⁺[M+H]⁺ 296.1145; found 296.1439.

(E)-1,3-Dimethyl-3-(3-(4-(trifluoromethyl)phenyl)allyl)indolin-2-one (3af)


```
Chemical Formula: C<sub>20</sub>H<sub>18</sub>F<sub>3</sub>NO
Exact Mass: 345.1340
```

3af was prepared according to general procedure 2.1 using **1a** and **2f** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3af** as yellow oil (43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 2H), 7.30-7.26 (m, 2H), 7.25 (d, *J* = 2.4 Hz, 1H), 7.24-7.21 (m, 1H), 7.08 (td, *J* = 7.5, 1.0 Hz, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.36 (d, *J* = 14.8 Hz, 1H), 5.95 (dq, *J* = 15.9, 7.9 Hz, 1H), 3.18 (s, 3H), 2.72-2.65 (m, 2H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 173.8, 158.3, 143.2, 133.4, 132.5, 128.1, 127.2, 126.3, 125.5 (q, *J* = 3.8 Hz), 123.2, 122.9, 122.6, 108.2, 48.7, 41.7, 26.3, 22.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4; HRMS: (ESI) calcd for C₂₀H₁₉F₃NO⁺[M+H]⁺ 346.1413; found 346.1419. (E)-1,3-Dimethyl-3-(3-(4-(methylsulfonyl)phenyl)allyl)indolin-2-one (3ag)

3ag was prepared according to general procedure 2.1 using **1a** and **2g** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ag** as yellow oil (41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.76 (m, 2H), 7.36-7.32 (m, 2H), 7.31-7.27 (m, 1H), 7.23 (ddd, *J* = 7.4, 1.3, 0.5 Hz, 1H), 7.09 (td, *J* = 7.5, 1.0 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 6.04 (ddd, *J* = 15.7, 8.0, 7.1 Hz, 1H), 3.18 (s, 3H), 3.02 (s, 3H), 2.75-2.65 (m, 2H), 1.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 143.0, 142.6, 138.7, 133.2, 131.9, 128.9, 128.1, 127.6, 126.8, 122.8, 122.6, 108.1, 48.5, 44.5, 41.6, 26.2, 22.7; HRMS: (ESI) calcd for C₂₀H₂₂NO₃S⁺[M+H]⁺ 378.1134; found 378.1126.

(*E*)-1,3-Dimethyl-3-(3-(m-tolyl)allyl)indolin-2-one (**3ah**)

3ah was prepared according to general procedure 2.1 using **1a** and **2h** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ah** as yellow oil (70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (td, *J* = 7.7, 1.2 Hz, 2H), 7.24-7.21 (m, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.07 (td, *J* = 7.5, 0.9 Hz, 1H), 7.04-6.97 (m, 3H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.31 (d, *J* = 15.7 Hz, 1H), 5.95-5.83 (m, 1H), 3.19 (s, 3H), 2.71-2.55 (m, 2H), 2.29 (s, 3H), 1.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 143.1, 137.9, 137.2, 133.8, 133.6, 128.3, 128.0, 127.8, 126.9, 123.9, 123.2, 122.9, 122.4, 108.0, 77.3, 77.0, 76.7, 48.6, 41.6, 26.2, 22.5, 21.3; HRMS: (ESI) calcd for C₂₀H₂₂NO⁺[M+H]⁺ 292.1696; found 292.1698.

(*E*)-1,3-Dimethyl-3-(3-(o-tolyl)allyl)indolin-2-one (**3ai**)

Chemical Formula: C₂₀H₂₁NO Exact Mass: 291.1623

3ai was prepared according to general procedure 2.1 using **1a** and **2i** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3ai** as yellow oil (70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.22 (m, 3H), 7.14 (dd, *J* = 7.3, 2.3 Hz, 1H), 7.10-7.04 (m, 4H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.49 (d, *J* = 15.6 Hz, 1H), 5.70 (dt, *J* = 15.4, 7.6 Hz, 1H), 3.18 (s, 3H), 2.68 (d, *J* = 7.8 Hz, 2H), 2.17 (s, 3H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 143.1, 136.6, 135.2, 133.5, 132.0, 130.0, 127.8, 127.1, 125.9, 125.8, 125.7, 122.9, 122.3, 108.0, 48.8, 41.9, 26.1, 22.7, 19.7; HRMS: (ESI) calcd for C₂₀H₂₁NONa⁺[M+Na]⁺ 314.1515; found 314.1511. (E)-1,3-Dimethyl-3-(3-(naphthalen-1-yl)allyl)indolin-2-one (3aj)

Chemical Formula: C₂₃H₂₁NO Exact Mass: 327.1623

3aj was prepared according to general procedure 2.2 using **1a** and **2j** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3aj** as yellow oil (72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (dt, *J* = 3.9, 2.8 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.47-7.39 (m, 2H), 7.38-7.23 (m, 5H), 7.14-7.07 (m, 1H), 7.00 (d, *J* = 15.5 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 5.81 (dt, *J* = 15.3, 7.6 Hz, 1H), 3.17 (s, 3H), 2.88-2.66 (m, 2H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 143.2, 135.3, 133.5, 133.3, 131.6, 131.0, 128.3, 127.8, 127.6, 127.5, 125.8, 125.7, 125.5, 124.1, 123.8, 122.9, 122.4, 108.0, 77.3, 77.0, 76.7, 48.9, 42.0, 26.1, 22.7; HRMS: (ESI) calcd for C₂₃H₂₂NO⁺[M+H]⁺ 328.1696; found 328.1696.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 5.7 min (minor), 6.5 min (major).

Optical Rotation: [α]_D³³ +47.7 (*c* 0.2, /PrOH) for 84% ee.

S37

(E)-3-(3-(Benzo[d][1,3]dioxol-5-yl)allyl)-1,3-dimethylindolin-2-one (**3ak**)

Exact Mass: 321.1365

3ak was prepared according to general procedure 2.1 using **1a** and **2k** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3ak** as yellow oil (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 1H), 7.21 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.71 (d, *J* = 1.7 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.63 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.25 (d, *J* = 15.7 Hz, 1H), 5.90 (s, 2H), 5.69 (dt, *J* = 15.4, 7.5 Hz, 1H), 3.18 (s, 3H), 2.68-2.55 (m, 2H), 1.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 147.9, 146.9, 143.2, 133.7, 133.3, 131.8, 127.9, 123.0, 122.5, 120.8, 108.2, 108.1, 105.5, 101.0, 48.8, 41.7, 26.2, 22.6; HRMS: (ESI) calcd for C₂₀H₂₀NO₃⁺[M+H]⁺ 322.1438; found 322.1443.

(*E*)-3-(3-(9-Ethyl-9*H*-carbazol-2-yl)allyl)-1,3-dimethylindolin-2-one (**3al**)

3al was prepared according to general procedure 2.1 using **1a** and **2l** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3al** as yellow oil (64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 6.8, 0.8 Hz, 1H), 7.91 (d, *J* = 1.5 Hz, 1H), 7.44 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 7.38-7.33 (m, 2H), 7.29-7.24 (m, 3H), 7.20 (ddd, *J* = 8.0, 7.2, 1.0 Hz, 1H), 7.12-7.05 (m, 1H), 6.84-6.79 (m, 1H), 6.52 (d, *J* = 15.7 Hz, 1H), 5.91 (ddd, *J* = 15.5, 8.0, 7.1 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.19 (s, 3H), 2.78-2.56 (m, 2H), 1.45 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.8, 174.6, 171.6, 170.8, 165.8, 165.2, 159.9, 159.1, 157.1, 155.5, 154.4, 154.4, 154.3, 153.7, 152.6, 151.8, 150.2, 149.6, 139.9, 139.7, 139.4, 80.2, 73.2, 68.9, 57.6, 53.8, 45.2; HRMS: (ESI) calcd for C₂₇H₂₆N₂ONa⁺[M+Na]⁺ 417.1937; found 417.1929. 3-(2-(1*H*-Inden-2-yl)ethyl)-1,3-dimethylindolin-2-one (**3am**)

Chemical Formula: C₂₀H₁₉NO Exact Mass: 289.1467

3am was prepared according to general procedure 2.1 using **1a** and **2m** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3am** as yellow oil (70% yield). H NMR (400 MHz, CDCl₃): δ 7.28-7.18 (m, 3H), 7.18-7.11 (m, 2H), 7.08 (td, *J* = 7.7, 0.9 Hz, 1H), 7.05-7.00 (m, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.32 (d, *J* = 0.7 Hz, 1H), 3.15 (d, *J* = 13.9 Hz, 1H), 3.11 (s, 3H), 2.95 (dd, *J* = 18.1, 15.1 Hz, 2H), 2.74 (d, *J* = 22.8 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 144.8, 144.4, 143.3, 143.1, 133.6, 129.8, 127.9, 125.9, 123.8, 123.2, 122.7, 122.4, 120.2, 108.1, 49.3, 42.0, 39.5, 26.1, 24.2; HRMS: (ESI) calcd for C₂₀H₂₀NO⁺[M+H]⁺ 290.1539; found 290.1546.

1,3-Dimethyl-3-((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl)indolin-2-one (**3an**)

3an was prepared according to general procedure 2.1 using **1a** and **2n** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3an** as yellow oil (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 2H), 7.30-7.24 (m, 3H), 7.23-7.15 (m, 2H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.64-6.52 (m, 1H), 6.39 (d, *J* = 15.7 Hz, 1H), 6.16 (ddd, *J* = 15.0, 10.4, 0.5 Hz, 1H), 5.46 (dt, *J* = 15.2, 7.6 Hz, 1H), 3.19 (s, 3H), 2.59 (d, *J* = 7.7 Hz, 2H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 143.2, 137.4, 134.3, 133.7, 131.4, 128.7, 128.6, 128.6, 127.9, 127.4, 126.3, 123.0, 122.5, 108.1, 48.7, 41.6, 26.3, 22.7; HRMS: (ESI) calcd for C₂₁H₂₂NO⁺[M+H]⁺ 304.1696; found 304.1689.

(*E*)-3-(3-(4-chlorophenyl)allyl)-1,3,5-trimethylindolin-2-one (**3bd**)

3bd was prepared according to general procedure 2.2 using **1b** and **2d** and was purified by silica gel column chromatography (PE/EA = $40/1 \sim 5/1$) to obtain **3bd** as yellow oil (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 2H), 7.13-7.08 (m, 2H), 7.08-7.04 (m, 1H), 7.04-7.00 (m, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.30 (d, *J* = 15.7 Hz, 1H), 5.97-5.74 (m, 1H), 3.15 (s, 3H), 2.63 (dt, *J* = 7.1, 1.2 Hz, 2H), 2.35 (s, 3H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 140.7, 135.7, 133.5, 132.7, 132.3, 131.9, 128.5, 128.1, 127.3, 125.1, 123.7, 107.7, 48.7, 41.7, 26.2, 22.6, 21.2; HRMS: (ESI) calcd for C₂₀H₂₀CINONa⁺[M+Na]⁺ 348.1126; found 348.1116.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 5.1 min (minor), 5.6 min (major).

Optical Rotation: $[\alpha]_{D^{33}}$ +51.4 (*c* 0.5, ^{*i*}PrOH) for 77% ee.

(*E*)-3-(3-(benzo[d][1,3]dioxol-5-yl)allyl)-1,3,5-trimethylindolin-2-one (**3bk**)

Exact Mass: 335.1521

3bk was prepared according to general procedure 2.2 using **1b** and **2k** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3bk** as yellow oil (75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.09-7.02 (m, 2H), 6.73-6.66 (m, 3H), 6.66-6.60 (m, 1H), 6.26 (d, *J* = 15.5 Hz, 1H), 5.90 (s, 2H), 5.74-5.62 (m, 1H), 3.15 (s, 3H), 2.60 (d, *J* = 7.5 Hz, 2H), 2.36 (s, 3H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 147.8, 146.8, 140.8, 133.7, 133.1, 131.9, 128.0, 123.7, 122.6, 120.7, 108.1, 107.7, 105.5, 100.9, 48.7, 41.6, 26.2, 22.6, 21.2; HRMS: (ESI) calcd for C₂₁H₂₁NO₃Na⁺[M+Na]⁺ 358.1414; found 358.1390.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 80/20 as eluent, 254 nm, 1 mL/min. tR = 5.1 min (minor), 5.9 min (major).

Optical Rotation: $[\alpha]_D^{31}$ +11.4 (*c* 0.1, ^{*i*}PrOH) for 81% ee.

3-((1*H*-inden-2-yl)methyl)-1,3,5-trimethylindolin-2-one (**2bm**)

3bm was prepared according to general procedure 2.2 using **1b** and **2m** and was purified by silica gel column chromatography (PE/EA = 40/1~5/1) to obtain **3bm** as yellow oil (62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.20 (m, 1H), 7.19-7.11 (m, 2H), 7.08-7.06 (m, 1H), 7.06-7.00 (m, 2H), 6.62 (d, *J* = 7.9 Hz, 1H), 6.31 (s, 1H), 3.14 (d, *J* = 13.1 Hz, 1H), 3.09 (s, 3H), 2.97 (d, *J* = 22.1 Hz, 1H), 2.90 (d, *J* = 14.5 Hz, 1H), 2.76 (d, *J* = 22.1 Hz, 1H), 2.37 (s, 3H), 1.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 144.9, 144.6, 143.4, 140.8, 133.7, 131.9, 129.6, 128.2, 125.0, 123.8, 123.5, 123.2, 120.2, 107.8, 49.3, 42.0, 39.6, 26.2, 24.4, 21.2; HRMS: (ESI) calcd for C₂₁H₂₂NO⁺[M+H]⁺ 304.1696; found 304.1688.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 4.9 min (minor), 5.6 min (major).

Optical Rotation: [α]_D³³ +56.2 (*c* 0.2, /PrOH) for 73% ee.

(E)-3-(3-(4-methoxyphenyl)allyl)-1,3,4-trimethylindolin-2-one (3qa)

¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, *J* = 7.8 Hz, 1H), 7.06-6.98 (m, 2H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.76-6.69 (m, 2H), 6.67-6.61 (m, 1H), 6.26 (d, *J* = 15.6 Hz, 1H), 5.53-5.40 (m, 1H), 3.74 (s, 3H), 3.14 (s, 3H), 2.90-2.74 (m, 2H), 2.44 (s, 3H), 1.50 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 180.1, 158.8, 143.5, 134.0, 132.1, 130.2, 130.1, 127.6, 127.2, 125.0, 122.3, 113.7, 105.7, 55.2, 50.0, 39.7, 26.2, 21.5, 18.4; HRMS: (ESI) calcd for C₂₁H₂₃NO₂H+ [M+H]+ 322.1802; found 322.1797.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 8.2 min (minor), 9.2 min (major).

S47

5. Synthetic Applications²

Scheme S1. Formal total synthesis of (+)-physovenine and (+)-physostigmine.

Procedure for the synthesis of the aldehyde intermediate 4: To a solution of **3ca** (100 mg, 0.3 mmol) in CH₂Cl₂/MeOH (3 mL/3 mL), O₃ was bubbled at -78 °C until the reaction was complete (monitored by TLC). Argon was bubbled into the solution for 5 min to remove the excess O₃. PPh₃ was added at -78 °C and the mixture was kept stirring for another hour. The reaction mixture was passed through a short pad of silica gel, and eluted with EtOAc. The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel (PE/ethyl acetate = 5/1 to 2/1) to afford the aldehyde intermediate **4** as a white solid (42.1 mg, 60% yield).

Procedure for the synthesis of 5: To a solution of LiAlH₄ (260 μ L, 0.65 mmol, 2.5 mol/L in THF) in dry THF (3 mL), the aldehyde intermediate **4** (15.1 mg, 0.065 mmol) was added under Ar, the mixture was stirred at room temperature for 40 min. The reaction was quenched by EtOAc and saturated aqueous NaHCO₃ successively. The phases were separated, the aqueous layer was extracted with EtOAc, and the combined organic extracts were dried with Na₂SO₄ and concentrated. The residue was

purified by silica gel column chromatography (PE/acetone/NEt₃ = 10/1/0.1) to afford **5** as a pale yellow oil (13.0 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 6.74-6.62 (m, 2H), 6.29 (d, *J* = 8.3 Hz, 1H), 5.03 (s, 1H), 4.03-3.86 (m, 1H), 3.75 (s, 3H), 3.47 (ddd, *J* = 10.9, 8.6, 5.4 Hz, 1H), 2.88 (s, 3H), 2.13 (ddd, *J* = 11.8, 5.3, 1.5 Hz, 1H), 2.09-1.99 (m, 1H), 1.45 (s, 3H); [α]_D³⁰ +24 (*c* 0.25, EtOH), literature value [α]_D²² -81.2 (*c* 0.6, EtOH) for the opposite enantiomer.³

Procedure for the synthesis of 6: To a solution of the aldehyde intermediate **4** (15.1 mg, 0.065 mmol) and TEA (90 µL, 0.65 mmol) in anhydrous THF (3 mL), MeNH₂·HCl (43.9 mg, 0.65 mmol) and MgSO₄ (50 mg) was added under Ar, the mixture was stirred at room temperature for 16 h. Then LiAlH₄ (260 µL, 0.65 mmol, 2.5 mol/L in THF) was added and the mixture was refluxed at 80 °C for 1.5 h. The reaction was quenched by EtOAc and saturated aqueous NaHCO₃ successively. The phases were separated, the aqueous layer was extracted with EtOAc, and the combined organic extracts were dried with Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (PE/acetone/NEt₃ = 8/1/0.1) to afford **6** as a pale yellow oil (12.8 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 6.65 (dt, *J* = 4.0, 2.4 Hz, 2H), 6.36 (d, *J* = 8.2 Hz, 1H), 4.05 (s, 1H), 3.75 (s, 3H), 2.89 (s, 3H), 2.73 (dt, *J* = 9.5, 5.4 Hz, 1H), 2.68-2.60 (m, 1H), 2.54 (s, 3H), 1.95 (dd, *J* = 7.4, 5.4 Hz, 2H), 1.43 (s, 3H); [α]_D³⁰ +62 (*c* 0.2, MeOH), literature value [α]_D²² -98 (*c* 1.0, MeOH) for the opposite enantiomer.³

6. Copies of the ¹H, ¹⁹F and ¹³C NMR spectra

3aa

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

S52

3da

lyx-6-109-1-S-4-F&PMP

—-120.83

Me PMP =0 Ń Me Chemical Formula: C₂₀H₂₀FNO₂ Exact Mass: 325.1478

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3ha

S60

3ka

S61

3la

3ma

3na

3oa

3ра

 \int 1111 5 5 5 5 Me _____PMP ≻o Ν. Bn Chemical Formula: C₂₆H₂₅NO₂ Exact Mass: 383.1885 0.98-0.974 1.37 5.91 1.03 1.03 1.93 1.93 0.95 -79.0 3.00-3.03H -98-9.0 8.5 8.0 7.5 7.0 6.5 5.5 5.0 4.0 3.5 f1 (ppm) 6.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0-0.5 -1.0 -1 -168.94 -168.94 -142.27 -142.27 -133.51 -133.51 -133.25 -133.25 -133.25 -123.66 -133.25 -122.66 -127.43 -127.03 -127.03 -127.04 -127.0 lyx-6-109-3-S-N-Bn& 55.33
49.02
43.66
41.95 -- 23.43 - 180. ì Me // PMP -0 ٠Ń Bn Chemical Formula: C26H25NO2 Exact Mass: 383.1885 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50 40 30 20 10 0 -10

3ab

11111 Ме Chemical Formula: C₁₉H₁₉NO Exact Mass: 277.1467 7.36 1.05 0.97 F76.0 <u>F86.0</u> 2.01H 3.06_T 3.00_H 4.0 3.5 f1 (ppm) 4.5 1.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.03.0 2.5 2.0 1.0 0.5 0.0 -0.5 -1.0 77.32 CDCI3 77.00 CDCI3 76.68 CDCI3 lyx-6-13-1-S&Ph 143.07 137.20 133.51 133.51 133.51 128.37 128.37 128.37 128.37 127.15 127.15 122.91 122.91 122.36 107.96 - 26.14 - 22.51 0 М̀е Chemical Formula: C₁₉H₁₉NO Exact Mass: 277.1467

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3ae

lyx-6-155-02-S&4-F-Ph

=0 Me Chemical Formula: C₁₉H₁₈FNO Exact Mass: 295.1372

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3ah

220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

3am

S79

3an

3bd

3bk

3bm

7. References

(a) Gao, S.; Liu, H.; Wu, Z.; Yao, H.; Lin, A. *Green Chem.* 2017, *19*, 1861; (b) Liu,
X.; Gu, Z. *Org. Chem. Front.* 2015, *2*, 778.

2. (a) Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 1322. (b) T.

Wang, W. Yao, F. Zhong, G. Pang, Y. Lu. Angew. Chem. Int. Ed. 2014, 53, 2964.

3. Q. Yu, W. Luo, Y. Li, *Heterocycles*, **1993**, 36, 1279.