Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Pinhole-free TiO₂/Ag_(O)/ZnO Configuration for Flexible Perovskite Solar Cells with Ultralow Optoelectrical Loss

Eunwook Jeong, ‡^{a,b} Soohyun Bae, ‡^c* Jong Bae Park,^d Seung Min Yu,^d Donghwan Kim,^c Hae-Seok Lee,^e

Jongjoo Rha,^a Young-Rae Chob* and Jungheum Yun^{a*}

^a Surface Technology Division, Korea Institute of Materials Science, Changwon, Gyeongnam 51508, Republic of Korea; Fax: +82-55-280-3570; Tel: +82-55-280-3515; E-mail: jungheum@kims.re.kr,

^b Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; Tel: +82-51-510-2389; E-mail: yescho@pusan.ac.kr

^c Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; Tel: +82-2-3290-3713; E-mail: ramun16@korea.ac.kr

^d Jeonju Center, Korea Basic Science Institute, Jeonju, Jeonbuk 54907, Republic of Korea

^e KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea

*Corresponding authors: E-mail: jungheum@kims.re.kr, ramun16@korea.ac.kr, yescho@pusan.ac.kr

Fig. S1. Comparison of the chemical features of Ag and $Ag_{(O)}$. (a) X-ray photoelectron profiles of Ag 3d core level spectra and (b) Ag MNN Auger spectra measured from ca. 20-nm Ag and $Ag_{(O)}$ layers deposited on Si wafers.

Fig. S2. Comparison of the crystallographic features of Ag and $Ag_{(O)}$. XRD patterns of 2 θ scan measured for ca. 9-nm Ag and $Ag_{(O)}$ TEs sandwiched between ca. 15-nm SiO₂ layers.

Fig. S3. Cross-sectional FE-SEM images of the pinhole distribution in TAZ (left) and TAOZ (right), which are composed of 20-nm top TiO_2 ETLs, either 7.5-nm Ag or $Ag_{(O)}$ TEs, respectively, and 15-nm bottom ZnO layer.

Fig. S4. Planar FE-SEM images of 10-nm top TiO_2 ETLs in different OMO configurations: $\text{TiO}_2/\text{Ag}/\text{TiO}_2$ (TAT), $\text{TiO}_2/\text{Ag}/\text{ZnO}$ (TAZ), $\text{TiO}_2/\text{Ag}_{(O)}/\text{TiO}_2$ (TAOT), and $\text{TiO}_2/\text{Ag}_{(O)}/\text{ZnO}$ (TAOZ) using 7.5-nm Ag and $\text{Ag}_{(O)}$ TEs and 5-nm bottom oxides.

Fig. S5. Current leakage distribution through nanoscopic pinholes in 10-nm top TiO_2 ETLs. (a) 2D morphological scan images of 10-nm top TiO_2 ETLs of $TiO_2/7.5$ -nm Ag/5-nm ZnO (TAZ) and $TiO_2/7.5$ -nm Ag_(O)/5-nm ZnO (TAOZ) determined using tapping-mode AFM. (b) 2D and (c) 3D current scan images of the ETLs determined using conductive-mode AFM.

Fig. S6. Optical characteristics of OMOs. (a) Reflection and (b) absorbance spectra of TAT, TAOT, TAZ, and TAOZ using 7.5-nm Ag or $Ag_{(O)}$ TEs, corresponding to the conditions given in Fig. 5b. The absorbance spectra were determined by the formula absorbance = 100 - (transmittance + reflectance).

Fig. S7. Transmittance spectra of PET and OMOs using 7.5-nm Ag or $Ag_{(O)}$ TEs, corresponding to the conditions given in Fig. 5b. The transmittance spectra of OMOs include the transmittance loss due to their PET substrates.

Fig. S8. Transmittance spectra of 20-nm $TiO_2/7.5$ -nm $Ag_{(O)}/ZnO$ (TAOZ) with bottom ZnO layers of various thicknesses. The transmittance of the PET substrates was subtracted from the transmittance spectra of the TAOZ configuration.

Fig. S9. Transmittance spectra of 7.5-nm Ag and $Ag_{(O)}$ layers deposited on PET substrates without oxides. The transmittance of the PET substrates was subtracted from the transmittance spectra of the Ag and $Ag_{(O)}$ single films.