The conversion of α -pinene to *cis*-pinane using a nickel catalyst

supported on discarded fluid catalytic cracking catalyst with an ionic

liquid layer

Shunyou Hu^a, Linlin Wang^{a, b}*, Xiaopeng Chen^{a,b}, Xiaojie Wei^{a, b}, Zhangfa Tong^{a, b}, Lijiang Yin^a

a. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China. E-mail: wanglinlin1971@sina.com; Fax: +86-771-323-3718; Tel: +86-771-3272702

b. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning 530004, P. R. China

Scheme S1 Schematic illustration of the set up for the hydrogenation of α -pinene.

Fig. S1 EDS mapping of the SCILL catalyst for Ni, N, F.

Fig. S2 FTIR spectra of ionic liquid and different ionc liquid loading of the catalyst.

Scheme S2 Ni/DF3C with various of ionic liquid loading.

Fig. S3 The effect of tempreture (A) and H₂ pressure (B) on the catalytic performance.

Catalyst	Ionic liquid	MLs	Conversion (%)	Selectivity (%)
Ni/DF3C	Free	0	99.47	87.94
SCILL	[EMIM][BF ₄]	\sim 1	99.14	88.73
SCILL	[C ₂ OHmim][BF ₄]	\sim 1	99.06	98.26

Table S1. The effect of different kinds of ionic liquid coating on the catalytic performance.

Fig. S4 TGA of the used SCILL catalyst after 20 runs.