1 2	Supplementary material for:
3	Experimental and theoretical investigation of oxidative methane
4	activation on Pt-Pt catalysts
5	Wenjie Qi ^{a,b,*} , Zehao Huang ^a , Lijuan Fu ^a , Hao Li ^c , Zhien Zhang ^{b,1}
6	
7	^a Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,
8	Ministry of Education, Chongqing University of Technology, Chongqing 400050,
9	China
10	^b Key Laboratory of Low-grade Energy Utilization Technologies and Systems,
11	Ministry of Education of PRC, Chongqing University, Chongqing 400044, China
12	^c Department of Chemistry and Institute for Computational and Engineering Sciences,
13	The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX
14	78712, USA
15	1. XRD and metal cluster dispersion [1]

^{*} Corresponding Author E-mail: <u>wenjieqi@cqut.edu.cn</u> (Wenjie Qi); <u>zhienzhang@cqut.edu.cn</u> (Zhien Zhang).

17Fig. S1 XRD patterns of the catalysts samples (a) $Pd_{1.0}Pt_0$, (b) $Pd_{0.75}Pt_{0.25}$, (c) $Pd_{0.5}Pt_{0.5}$,(d)18 $Pd_{0.25}Pt_{0.75}$,(e) $Pd_0Pt_{1.0}$.

20 Table S1 Metal loading, CO uptake and metal cluster dispersion of the different catalysts

-	Sample	Composition	Pd loading (wt%)	Pt loading (wt%)	CO uptake (µmol (g ⁻¹ catalysts))	Pd-Pt dispersion (%) from CO uptake
_	D.1 D4	1.0	2.1	0	0.5	0.(
	$Pa_{1.0}Pt_0$	1:0	2.1	0	9.5	9.6
	$Pd_{0.75}Pt_{0.25}$	0.75:0.25	1.6	0.9	11.3	9.3
	$Pd_{0.50}Pt_{0.50}$	0.5:0.5	1.0	1.7	9.8	7.3
	$Pd_{0.25}Pt_{0.75}$	0.25:0.75	0.6	2.6	10.0	6.2
	$Pd_0Pt_{1.0}$	0:1	0	3.4	15.0	8.8

22

23 2. Kinetically relevant steps in CH₄-O₂ reactions on surfaces of these catalysts.

Reaction orders for methane and oxygen can be calculated by fitting experimental data.

26 (1) On Pd catalyst.

27
$$r_{II-III,Pd} = k_{II-III,app} \left(O_2\right)^{-0.15} \left(CH_4\right)^1 \qquad P_{O2} \le 1.7 kPa \qquad (1)$$

28
$$r_{IV,Pd} = k_{IV,app} \left(O_2\right)^0 \left(CH_4\right)^1$$
 1.7kPa < $P_{O2} < 11kPa$ (2)

29
$$r_{V,Pd} = k_{V,app} \left(O_2\right)^0 (CH_4)^1 \qquad P_{O2} \ge 11kPa$$
 (3)

30

31 (2) On $Pd_{0.75}Pt_{0.25}$ catalyst

32
$$r_{I,Pd_{0.75}} = k_{I,app} (O_2)^{1.1} (CH_4)^{0.1} \qquad 0 < (O_2 / CH_4) < 0.08$$
(4)

33
$$r_{II,Pd_{0.75}} = k_{II,app} \left(O_2 \right)^{-0.82} (CH_4)^{1.82} \qquad 0.08 < \left(O_2 / CH_4 \right) < 1 \qquad (5)$$

34
$$r_{IV,Pd_{0.75}} = k_{IV,app} \left(O_2\right)^0 (CH_4)^1 \qquad P_{O2} > 3 \sim 5kPa \qquad (6)$$

35

36 Fig. S2 First-order constant $(r_{CH4}(CH_4)^{-1})$ for methane oxidation as a single valued function of

37
$$O_2/CH_4$$
 ratio on $Pd_{0.75}Pt_{0.25}$

38 (3) On $Pd_{0.5}Pt_{0.5}$ catalyst

39
$$r_{I,Pd_{0.5}} = k_{I,app} \left(O_2\right)^{1.0} \qquad 0 < (O_2 / CH_4) < 0.1$$
 (7)

40
$$r_{II,Pd_{0.5}} = k_{II,app} \left(O_2\right)^{-0.72} \left(CH_4\right)^{1.72}$$
 $0.1 < \left(O_2 / CH_4\right) < 1$ (8)

41
$$r_{IV,Pd_{0.5}} = k_{IV,app} \left(O_2\right)^0 (CH_4)^1 \qquad P_{O2} > 4 \sim 6kPa \qquad (9)$$

42

43 Fig. S3 First-order constant $(r_{CH4}(CH_4)^{-1})$ for methane oxidation as a single valued function of

44

46 (4) On $Pd_{0.25}Pt_{0.75}$ catalyst

47
$$r_{I,Pd_{0.25}} = k_{I,app} \left(O_2\right)^{1.0} \qquad 0 < (O_2 / CH_4) < 0.1 \tag{10}$$

48
$$r_{II,Pd_{0.25}} = k_{II,app} \left(O_2\right)^{-0.72} \left(CH_4\right)^{1.72} \qquad 0.1 < \left(O_2 / CH_4\right) < 1.1 \quad (11)$$

49
$$r_{IV,Pd_{0.25}} = k_{IV,app} \left(O_2\right)^{0.1} (CH_4)^1 \qquad P_{O2} > 5 \sim 7kPa \qquad (12)$$

50

51

52 Fig. S4 First-order constant $(r_{CH4}(CH_4)^{-1})$ for methane oxidation as a single valued function of

53 O₂/CH₄ ratio on Pd_{0.25}Pt_{0.75}

54

55 (5) On Pt catalyst

56
$$r_{I,Pt} = k_{I,app} \left(O_2 \right)^{1.1} (CH_4)^{-0.1} \qquad 0 < (O_2 / CH_4) < 0.12$$
 (13)

57
$$r_{II,Pt} = k_{II,app} \left(O_2\right)^{2.38} \left(CH_4\right)^{-1.38} \qquad 0.1 < \left(O_2 / CH_4\right) < 2 \sim 3 \qquad (14)$$

$$r_{III,Pt} = k_{III,app} (CH_4)^1 \qquad 2 \sim 3 < (O_2 / CH_4)$$
(15)

Fig. S5 First-order constant $(r_{CH4}(CH_4)^{-1})$ for methane oxidation as a single valued function of

$$O_2/CH_4$$
 ratio on Pt

63 3. Arrhenius plots of first order rate constants for methane combustion on Pd,

Pt and Pd-Pt catalysts

67 Fig.S6. Arrhenius plots of the methane first oder rate coeffient versus 1000/T for methane

68 combustion on different catalysts. (a) Oxygen pressure at 2 kPa for Pd_{0.75}Pt_{0.25},Pd_{0.5}Pt_{0.5},

69 Pd_{0.25}Pt_{0.75} and Pt_{1.0}., and 0.5 kPa for Pd_{1.0}; (b) Oxygen preesure at 20 kPa for all catalysts. R-

square for these experimental data are larger than 0.93.

70 71

72 4. Binding energies of the adsorption O on different metal surface with different

- 73 **O coverage**
- 74

75

Fig. S7 Binding energies of the adsorption O on different metal surface with different O coverage

78 5. Structures of reactant, transition states and product for O₂ dissociation on

79 the Pt(111) and Pd(111) covered with different O coverage.[2]

80

81

Fig. S8 (a) Reaction coordinate and structures of reactant, transition state, and product for O₂
dissociation on a bare Pt (111) facet. (b) Reaction coordinate and structures of reactant,
transition state, intermediate, and product for O₂ dissociation on the (111) facet of Pt nearly
saturated with chemisorbed oxygen atoms. a,b, and c are used to differentiate the O atoms
involved in the steps

Fig. S9 (a) Reaction coordinate and structures of reactant, transition state, and product for O₂
dissociation on a bare Pd (111) facet. (b) Reaction coordinate and structures of reactant,
transition state, intermediate, and product for O₂ dissociation on the (111) facet of Pd nearly
saturated with chemisorbed oxygen atoms. a,b, and c are used to differentiate the O atoms
involved in the steps

96	6.	Structures of reactant, transition states and product for CH ₄ dissociation on
97		(a) MeO(111), (b) 1/4 ML O, (c)3/4 ML O and (d) 1 ML O coverage on
98		Me(111) surfaces, (e) PdO(101)/Pt(100) and (f) PdO(101).

Fig. S10 Structures of reactant, transition states and product for CH_4 dissociation on (a) MeO(111), (b) 1/4 ML O, (c)3/4 ML O and (d) 1 ML O coverage on Me(111) surfaces, (e) PdO(101)/Pt(100) and (f) PdO(101).(a),(d), (e), (f) were from our previous study[2].

105 7. Parameters include bond length of transition states, activation energies and
106 binding energies for CH₄ dissociation on the different oxygen potential
107 surfaces.

		Bond length (Å)			Activation Binding en		energies	
		Transition states				energies	(eV)	
						(kJ mol ⁻¹)	[Site]	
	Catalyst		Me (H	Me-H	H-O		CH ₃	Н
) -C					
	Pd(111)	1.607	2.233	1.665		83	-2.253	-3.812
0 ML	Pt(111)	1.634	2.336	1.670		78	-2.435	-3.720
0	Pd/PtPd(111)	1.598	2.231	1.673		79	-2.319	-3.805
	Pt/PtPd(111)	1.582	2.343	1.667		75	-2.513	-3.744
1/4	Pd(111)	1.401	2.430	2.153	1.385	105	-2.314	-4.022
ML O	Pt(111))	1.350	2.333	2.086	1.424	118	-2.586	-3.981
	Pd(111)	1.601	2.730	2.553	1.029	135	-1.640	-4.381
3/4	Pt(111)	1.312	2.352	2.123	1.521	147	-2.197	-4.628
ML O	Pd/PtPd(111)	1.623	2.803	2.532	1.123	139	-1.562	-4.210
	Pt/PtPd(111)	1.289	2.413	2.231	1.483	152	-2.180	-4.395
	Pd(111)	2.925	1.478		1.135	163	-1.164	-4.730
1 ML	Pt(111)	3.251	1.574		1.423	175	-0.921	-4.656
0	Pd/PtPd(111)	2.932	1.468		1.186	159	-1.212	-4.742
U	Pt/PtPd(111)	3.158	1.564		1.398	178	-0.889	-4.642
PdO (1	PdO (101) /Pt(100)		2.311	1.926	1.336	110	-2.451	-2.252
2 lay /Pt(100)	ver PdO (101)	1.320	2.155	1.913	1.276	67	-2.688	-1.956
PdO(10	1)	1.331	2.241	1.852	1.284	61	-2.704	-1.942

109 8. Derivation of methane combustion rates limited by O₂ pressure on *-* site

110 **pairs**

111
$$2r_1 = k_{1.2f} \theta_{O_2} \theta_* = 2k_{2.1} P_m \theta_*^2$$
(16)

112
$$2r_1 = k_{1.2f} K_{1.1} P_0 \theta_*^2 = 2k_{2.1f} P_m \theta_*^2$$
(17)

 $\theta_* = 1 \tag{18}$

114
$$r_1 = 0.5k_{1.2f}K_{1.1}P_0 \tag{19}$$

115 9. Derivation of methane combustion rates limited by C-H bond activation on

116 O*-* site pairs

117
$$2r_2 = k_{1.2f} K_{1.1} P_0 \theta_*^2 = 2k_{2.2f} P_m \theta_* \theta_0$$
(20)

118
$$\frac{\theta_*}{\theta_O} = \frac{2k_{2.2f}P_m}{k_{1.2f}K_{1.1}P_O}$$
(21)

119
$$\theta_* = \frac{1}{1 + \frac{\theta_O}{\theta_*}} = \frac{1}{1 + \frac{k_{1.2f}K_{1.1}P_O}{2k_{2.2f}P_m}}$$
(22)

120
$$r_2 = \frac{2k_{2.2f}^2}{k_{1.2f}K_{1.1}} \frac{P_m^2}{P_O}$$
(23)

12110. Derivation of methane combustion rates limited by C-H bond activation on122 O^*-O^* site pairs123 $r_3 = k_{2.3f} P_m \theta_*^2$ 124 $\theta_o = 1$ 125 $r_3 = k_{2.3f} P_m$ 125(26)

126 11. Derivation of methane combustion rates limited by C-H bond activation on
127 Pd-O site pairs

- $r_4 = k_{2.4f} P_m \theta_{V_0} \theta_*$
- 129 $\theta_* \approx \theta_{V_o} = 1$ (28)

(27)

130
$$r_4 = k_{2.4f} P_m$$
 (29)

131

132 **References:**

133 [1] W. Qi, J. Ran, X. Du, R. Wang, J. Shi, J. Niu, P. Zhang, M. Ran, Kinetics Consequences of
134 Methane Combustion on Pd, Pt and Pd-Pt Catalysts, Rsc Advances, 6 (2016) 109834-109845.

135 [2] W. Qi, J. Ran, Z. Zhang, J. Niu, P. Zhang, L. Fu, B. Hu, Q. Li, Methane combustion reactivity
136 during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure,

137 Applied Surface Science, 435 (2017) 776-785.