Temperature dependent structure and dynamics in smectite interlayers: ²³Na MAS NMR spectroscopy of Na-hectorite

Raju Nanda^{1,2}, *Geoffrey M. Bowers*³, *Narasimhan Loganathan*¹, *Sarah D. Burton*⁴, *R. James Kirkpatrick*^{1,5}

¹Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA

² Present address: Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel, 52900

³Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City,

MD, 20686, USA

⁴William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA

⁵Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA

Supporting Information

Table S1. Fitted peak maxima, full-widths at half-height (FWHH), and relative peak intensities of ²³Na MAS NMR spectra of Na-hectorite collected at the indicated temperatures and relative humidities (R.H.s).

<i>T</i> (⁰ C)	δ(ppm)	FWHH (ppm)	Relative Intensity/%			
0% R.H.						
40	-19.1	8.7	92.8			
	-28.7	5.4	7.2			
-60	-19.4	7.9	86.2			
	-29.0	6.6	13.8			
-80	-19.5	7.8	87.7			
	-29.2	6.7	12.3			
-100	-19.4	7.8	86.4			

	-29.3	6.9	13.6				
-120	-19.3	8.2	85.8				
	-29.3	6.5	14.2				
29% R.H.							
40	-6.4	4.0	64.6				
	-21.7	4.7	8.1				
	-26.8	13.5	27.4				
0	-6.1	4.9	63.2				
	-21.9	4.8	10.1				
	-27.5	12.2	26.7				
-20	-5.9	5.6	71.6				
	-21.8	5.6	11.7				
	-28.3	12.6	16.7				
-40	-5.9	6.6	61.8				
	-21.9	4.8	10.8				
	-27.4	12.6	27.5				
-60	-5.2	8.3	72.7				
	-21.6	5.2	14.1				
	-28.1	10.8	13.2				
-80	-0.1	4.1	30.8				
	-6.5	4.0	14.7				
	-11.4	6.5	15.5				
	-21.7	5.9	19.2				
	-28.4	12.0	19.9				
-100	1.1	7.5	38.0				
	-6.7	3.5	9.5				
	-11.7	7.5	16.7				
	-21.6	5.7	21.6				
	-28.3	9.7	14.2				
-120	1.1	7.6	26.2				
	-6.6	4.8	21.5				
	-11.9	8.2	9.8				
	-21.8	5.7	21.3				
	-27.2	12.9	21.3				
	43%	R.H.					
40	-5.3	3.4	73.0				
	-19.4	6.7	27.4				
20	-5.5	4.0	65.8				
	-19.6	6.7	34.2				
0	-4.4	2.8	26.7				
	-6.5	3.7	45.3				
	-19.7	6.5	28.0				
-20	-4.1	3.2	27.8				
	-6.7	4.2	44.0				
	-19.8	6.4	28.2				
-40	-4.0	4.0	31.8				

	-7.0	5.5	40.2				
	-19.8	6.2	28.0				
-60	-4.1	4.0	8.6				
	-6.3	9.9	53.0				
	-19.9	6.9	38.4				
-80	-0.1	4.1	22.3				
	-5.8	5.2	22.2				
	-11.1	5.9	18.0				
	-20.0	7.2	37.1				
-100	0.6	5.8	25.5				
	-6.3	4.1	15.0				
	-11.6	6.8	22.6				
	-20.4	6.7	37.0				
-120	1.0	7.0	26.3				
	-6.3	5.5	17.3				
	-12.0	8.7	22.3				
	-20.6	6.1	33.2				
	-27.4	7.0	1.0				
	70%	R.H.					
40	-2.7	1.9	76.2				
	-21.1	6.2	23.8				
20	-2.2	2.0	83.9				
	-19.8	6.5	16.1				
0	-2.2	2.4	79.8				
	-19.4	5.5	20.2				
-20	-2.0	2.9	74.2				
	-19.7	6.0	25.8				
-40	-1.7	3.9	74.4				
	-21.1	6.2	25.6				
-60	-1.2	3.8	36.2				
	-3.9	9.6	35.0				
	-20.0	6.0	28.9				
-80	-0.2	2.7	42.5				
	-5.5	11.4	26.1				
	-20.0	6.4	31.4				
-100	0.4	5.0	45.2				
	-6.0	6.0	32.0				
	-20.1	5.2	22.8				
-120	1.1	6.6	50.8				
	-6.2	7.5	33.9				
	-20.0	5.3	15.3				
100% R.H.							
40	-0.9	1.1	82.9				
	-20.1	6.0	17.2				
20	-0.4	1.1	83.6				
	-19.8	6.3	16.4				

-20	0.1	1.5	85.9
	-19.9	5.1	14.2
-60	0.2	3.3	83.9
	-20.3	5.1	16.2
-80	0.2	2.7	82.2
	-19.7	5.1	17.8
-100	0.4	4.0	84.1
	-19.7	5.1	15.9
-120	1.2	6.5	70.9
	-5.6	7.3	17.2
	-19.9	5.0	12.0

Figure S1: A representative example of the fitting of the ²³Na MAS NMR spectra discussed in this paper using the DMfit. This spectrum is for Na-hectorite exposed to 29% R.H. at -80^oC and if fit with five Lorentzian components. The blue and red lines are the experimental and fitted spectra, respectively.