Electronic Supplementary Information

Redox activity of nickel and vanadium porphyrins: also a possible mechanism behind petroleum genesis and maturation?

G. Munoz, B. K. Guenessee, D. Bégué, B. Bouyssiere, I. Baraille, G. Vallverdu, H. Santos Silva

February 1, 2019

Contents

List of Figures

1	Total electronic density mapped by the molecular electrostatic potential surfaces.	2
2	PorVO molecule showing the localization of the unpaired electron over the VO region	3
3	Reaction path of methanol into methanal conversion catalyzed by one VO porphyrin	4
4	Geometries of the transition states.	5
5	Reaction coordinate scan of the PorVO—H dissociation in both S_0 and T_0 spin states	6
6	Molecular orbital 95 (HOMO), relative to vanadium d_{xy}	7
7	Structure de PorNi + ligand: (a) SH ⁻ ; (b) $CH_3CH_2COO^-$; (c) Pyridine	8
8	2D PES scand of the PorNi-H ₂ system.	9
9	3D PES scand of the PorNi-H ₂ system.	9
10	H_2 adsorption geometry on top of PorNi	10

Figure 1 Total electronic density mapped by the Molecular Electrostatic Potential surfaces of (a) PorH₂, (b) PorFe, (c) PorNi, (d) PorVO (top) and (e) PorVO (side). The scale of color varies from -2.10^{-2} (red) to $2.10^{-2} e$ (blue).

Figure 2 PorVO molecule showing the localization of the unpaired electron over the VO region (total spin density mapped by the molecular electrostatic potential). The spin density varies from 0 (red) to 0.5 (blue).

Figure 3 Reaction path of methanol into methanal conversion catalyzed by one VO porphyrin. 1*a* is constituted of PorVO (D_0) + CH₃OH (S_0) and 1*b* is PorVO (Q_0) + CH₃OH (S_0). TS_{1*a*-2*a*} is a D_0 state. 2*a* is constituted of PorVOH(T_0) + •CH₂OH (D_0) and 2*b* is PorVOH(S_0) + •CH₂OH (D_0). TS_{2*a*-3*a*} is a Q_0 state whereas TS'_{2*a*-3*a*} is a D_0 state. Finally, 3*a* is composed of PorVOH₂ in Q_0 state and CH₂O in S_0 state whereas 3*b* is PorVOH₂ in D_0 state and CH₂O in S_0 . The BDE(n.c) marked levels stand for the required energy barriers when no catalyst is present. It means that, to abstract the first hydrogen of the CH₃ group, one would need 91.8 kcal.mol⁻¹ to do so, whereas one needs 49.2 kcal.mol⁻¹ to have it abstracted using a porphyrin molecule. Further on, to abstract the hydrogen of the hydroxyl group, without catalyst, one would need to give 31.7 kcal.mol⁻¹ of extra energy (the showed number was renormalized to have 2*a* as reference) instead of 1.9 only kcal.mol⁻¹ when a porphyrin is involved. The gray labels indicate the reaction path passing by another pristine PorVO porphyrin to abstract the hydroxyl hydrogen. TS_{2*a*-4*a*} is a T_0 state whereas TS'_{2*a*-4*a*} is the S_0 equivalent. They result both 4*a* or 4*b* which are composed of either PorVOH (T_0) and CH₂O (S_0) or PorVOH (S_0) and CH₂O (S_0), respectively.

Figure 4 Geometries of the transition states in their lowest energy spin states. (a) TS_{1a-2a} , (b) TS_{2a-3a} and (c) TS_{2a-4a} .

Figure 5 Reaction coordinate scan of the PorVO—H dissociation in both S_0 and T_0 spin states. S_0 fails to describe this dissociation curve since it tries to share a single electron in two different atoms far apart (oxygen and hydrogen). The T_0 spin state describes the dissociation curve appropriately and indicates a dissociation energy of ~ 52 kcal.mol⁻¹. The reference is the PorVO system separated from the H[•] by an infinite distance.

Figure 6 Molecular orbital 95 (HOMO), relative to vanadium d_{xy} .

Figure 7 Structure de PorNi + ligand: (a) SH⁻; (b) $CH_3CH_2COO^-$; (c) Pyridine.

Figure 8 2D PES scand of the PorNi-H $_2$ system.

Figure 9 3D PES scand of the PorNi-H₂ system.

Figure 10 H_2 adsorption geometry on top of PorNi.