Supporting Information

Development of Moisture-Proof Polydimethylsiloxane/Aluminum Oxide Film

and Stability Improvement of Perovskite Solar Cells Using the Film

Eun Young Choi^{†, ‡}, Ju-Hee Kim^{†, ‡}, Bu-Jong Kim[†], Ji Hun Jang[†], Jincheol Kim^{,†,§} and Nochang*

Park*,†

The relationship between WVTR and lag time

To define the meaning of lag time, we firstly introduce some equations related diffusion. The distribution of water vapor concentration at certain barrier thickness can be expressed using the Fick's second law as shown in the below equation.¹

$$c(x,t) = C1\left(1 - \frac{x}{l}\right) - \frac{2C1}{\pi} \sum_{n=1}^{\infty} -\frac{1}{n} \sin\left(\frac{n\pi x}{l}\right) exp^{[n]}(-\frac{Dn^2 \pi^2 t}{l^2})$$
(1)

If above equation is differentiated by x, we can calculate the flow rate of the vapor. And the total amount of vapor passing through barrier can be expressed by integrating obtained the flow rate as follows:

$$Q(t) = \frac{DtC_1}{l} - \frac{lC_1}{6} - \frac{2lC_1}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \exp\left(-\frac{Dn^2\pi^2 t}{l^2}\right)$$
(2)

, where D means the diffusion coefficient of barrier layer, C1 means the moisture concentration on the surface of barrier, 1 is the thickness of barrier film, t is time and Q describes the total amount of water vapor that ingress. If time is becomes infinitely value, the exponential part of equation converges to zero and the equation can be simplified like below.

$$Q(\infty) = \frac{DC_1}{l} (t - \frac{l^2}{6D})$$
(3)

This equation can be drawn with x axis as time (t) and y axis as quantities of vapor (Q). In this case, the slope of the equation represents flow rate of vapor and intercept of x means the lag time of barrier layer.

In other words, the concentration of moisture vapor penetrating through the barrier increases continuously over time. After a while, the concentration of moisture is in a steady state due to the diffusion of moisture through the barrier. The "lag time" is defined as the time of the steady state and the phenomenon can be seen at the graph of conductance graph. Therefore, we obtained the lag time through the time of steady state at the conductance graph of our Ca samples with various encapsulation method

Figure S1. Structure of Ca cell and encapsulation. (a) Ca cell, (b) Ca cell encapsulated by the AlO_x thin film, and (c)–(d) Ca cell encapsulated by PDMS and AlO_x thin film

Figure S2. Digital photograph of the perovskite cell with encapsulation, before and after the damp heat test (45 °C and 65 % RH)

Figure S3. PDMS thickness mesured by Scanning electron transmission (SEM)

Figure S4. FTIR spectra of PDMS/AlOx barrier

Figure S5. Power conversion efficiency of perovskite photovoltaic cells with AIO_x or PDMS/ AIO_x at 25 °C or 45 °C in 65 % RH condition

Table S1. Summarization of reported literatures about encapsulation barrier.

Material	WVTR	Comments	Reference
	[g m ⁻² d ⁻¹]	Device type, Device structure, stability	in manuscript
CYTOP/ALD	1.05*10-6	Apply for OLED device	[15]
Al ₂ O ₃ /MgO	@ 60 °C- 100%RH	Show no black spot @ 85-85%RH	
ALD Al ₂ O ₃ /graphene	2.0*10-3	Apply for OELD device	[16]
	@ 85 °C- 85%RH	Show no black spot before and after 24h @ RT, ambient	
PDMS/metal foil	5.5*10-4	Apply for OELD device	[18]
(Fe-Ni metal foil)	@25 °C- 40%RH	Half lifetime for 116.5h @ RT, ambient	\
PDMS/Grapphene/PET	1.78*10 ⁻²	Apply for OLED device	[19]
(Graphene : 6 dyad)	@25 °C- 45%RH	Half lifetime for 70.7h @ RT, ambient	
PDMS	Not	Use Carbon as electrode	[20]
	mentioned	Apply for Perovskite device	
		MAPbI ₃ perovskite, conventional structure	
		For 3000h @ RT, ambient	
ALD Al ₂ O ₃	1.84*10-2	Apply for Perovskite device	[17]
	@45 °C- 100%RH	(HC(NH ₂) ₂ PbI ₃) _{0.85} (CH ₃ NH ₃ PbBr ₃) _{0.15} conventional structure	
		For 7500 h @ 50%RH under room temperature	
ALD AlO _x /PDMS	5.1*10-3	Apply for Perovskite device	Our
	@45 °C,	$(HC(NH_2)_2PbI_3)_{0.85}(CH_3NH_3PbBr_3)_{0.15}$	work
	0.570 KII	Conventional structure	

|--|

Table S2. Test conditions for AlOx deposition in the ALD chamber. Groups (A, B, and C) are to

examine the effect of TMA pulse time water pulse time and cycles, respectively.

Group	Chamber Temp. (°C)	TMA precursor Temp. (°C)	TMA precursor pressure (mTorr)	Purging amount of Ar (sccm)	H ₂ O pressure (mTorr)	Process time (s) (TMA-Ar-H ₂ O-Ar)	Total cycle
						0.5 -10-1-15	100
А	95	30	65	100	50	1.0 -10-1-15	100
						3.0 -10-1-15	100
						1-10- 0.5 -15	100
В	95	30	65	100	50	1-10- 1.0 -15	100
						1-10- 3.0 -15	100
						1-10-1.0-15	100
C	95	30	65	100	50	1-10-1.0-15	200
						1-10-1.0-15	400

	Elemental peak	Atomic %	Chemical bonding	Binding energy (eV)	FWHM (eV)	Area CPS. (eV)	Relative Area %
AlO _x	Al 2p	60.35	Al-O	74.45	1.52	43125.95	100
AlO _x	O 1s	39.65	Al-O	531.30	2.16	227732.96	75.41
			Al-OH	532.60	1.96	74277.73	24.59
PDMS/AlO _x	Al 2p	53.37	Al-O	74.45	1.47	19390.37	76.97
			Al-OH	75.20	1.32	5801.23	23.03
PDMS/AlO _x	O 1s	30.52	Al-O	531.30	1.54	86928.67	49.36
			Al-OH	532.60	1.29	76129.25	40.21
			O-Si-O	533.00	1.77	49134.19	10.43

Table S3. XPS parameters of AlO_x and $PDMS/AlO_x$ sample

Reference

¹ G. Nisato, H. Klumbies, J. Fahlteich, L. Müller-Meskamp, P. van de Weijer, P. Bouten, C. Boeffel, D. Leunberger, W. Graehlert, S. Edge, S. Cros, P. Brewer, E. Kucukpinar, J. de Girolamo and P. Srinivasan, *Organic Electronics*, 2014, **15**, 3746-3755