Supplementary Information for

Comprehensive quali-quantitative profiling of neutral and sialylated *O*-glycome by mass spectrometry based on oligosaccharide metabolic engineering and isotopic labeling

Lijing Nan^a, Jiao Li^{a,b}, Wanjun Jin^{a,b}, Ming Wei^{a,b}, Mengjun Tang^{a,b}, Chengjian Wang^{a,b}, Guiping Gong^{a,b}, Linjuan Huang^{a,b}, Ying Zhang^{a*}, Zhongfu Wang^{a,b*}

^aKey Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
^bCollege of Food Sciences and Technology, Northwest University, Xi'an 710069, China

Table of Contents

¹ H NMR spectra of Ac ₃ GalNAc- <i>a</i> -Bn ^{d0}	Fig. S1A			
¹³ C NMR spectra of Ac ₃ GalNAc-α-Bn ^{d0}	Fig. S1B			
¹ H NMR spectra of Ac ₃ GalNAc-α-Bn ^{d5}	Fig. S1C			
¹³ C NMR spectra of Ac ₃ GalNAc-α-Bn ^{d5}	Fig. S1D			
Reaction scheme for the linkage-specific de	rivatization of Bn-O-glycans with			
terminal sialic acids	Fig. S2			
ESI-MS/MS fragmentation of Bn-O-glycans from SMMC-7721 cells Fig. S3A-I				
ESI-MS/MS fragmentation of Bn-O-glycans fr	om L02 cells Fig. S4A-B			
ESI-MS profiles of specificity derivatize a 2,3/	a 2,6-Neu5Ac-Lac Fig. 85			
Comprehensive quali-quantitative profiling	of Bn-O-glycome in L02 and			
SMMC-7721 cells by MS	Table S 1			
Comprehensive quali-quantitative descrimination linkage specificity of Bn-O-				
glycans with/without sialic acids ends in L02 and SMMC-7721 cells				

Table S 2

Fig.S 1A ¹H NMR spectra of Ac₃GalNAc-α-Bn^{d0}

Fig.S 1B ¹³C NMR spectra of Ac₃GalNAc-α-Bn^{d0}

Fig.S 1D ¹³C NMR spectra of Ac₃GalNAc-α-Bn^{d5}

Fig.S 2 Reaction scheme for sialic acid specific derivatization of Bn-*O*-glycans with terminal sialic acids

Fig.S 3A Comparative sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 955.25/960.33 was fragmented by CID, respectively.

Fig.S 3B Comparative sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1200.33/1205.33 was fragmented by CID, respectively.

Fig.S 3C Comparative sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1404.42/1409.42 was fragmented by CID, respectively.

Fig.S 3D Comparative sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1561.33/1566.42 was fragmented by CID, respectively.

Fig.S 3E Sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1578.17/1583.25 was fragmented by CID, respectively.

Fig.S 3F Sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1649.25/1654.42 was fragmented by CID, respectively.

Fig.S 3G Sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1677.42/1682.33 was fragmented by CID, respectively.

Fig.S 3H Sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1765.42/1770.50 was fragmented by CID, respectively.

Fig.S 3I Sequencing of d0- and d5-Bn-labeled *O*-glycans from SMMC-7721 by ESI-MS/MS. Peaks at m/z 1939.33/1944.50 was fragmented by CID, respectively.

Fig.S 4A Sequencing of d0-Bn-labeled O-glycans from L02 by ESI-MS/MS. Peaks atm/z 1043.33wasfragmentedbyCID.

Fig.S 4B Sequencing of d0-Bn-labeled *O*-glycans from L02 by ESI-MS/MS. Peaks at m/z 1346.33 was fragmented by CID.

Fig.S 5 ESI-MS spectra of $\alpha 2,3/\alpha 2,6$ -Neu5Ac-Lac when $\alpha 2,6$ -Neu5Ac-Lac after dimethylamidated. Reaction condition, 1 h, 60°C, in the presence of EDC + HOBt+dimethylamine in DMSO. The $\alpha 2,3$ -Neu5Ac-Lac were lactonized. Permethylation was conducted for the dimethylamidated $\alpha 2,6$ -Neu5Ac-Lac and the lactonized $\alpha 2,3$ -Neu5Ac-Lac. With the two-step derivatization, a mass difference of 13 Da between $\alpha 2,3$ -sialic acid and $\alpha 2,6$ -sialic acid can be obtained.

	Permethylation of Bn-O-glycans					
No.	Glycan composition	<i>m/z</i> ([M+Na] ⁺)	Intensity ratios ^a	Proposed structure		
			(Mean±SD, n=3)			
1		955.25	1.26±0.11	٠		
	N1H1S1	(960.33)		Bn		
2	N2H2	1043.33	-	Bn		
3	N2H1S1	1200.33	0.29±0.01			
		(1205.33)				
4	N1H182	1316.33	0.70±0.01	Bn		
	NIH182	(1321.33)				
5	N1H1S1G1	1346.33	-	♦ Bn		
6	N2H2S1	1404.42	2.72±0.63	← { Bn		
		(1409.42)				
7	N2H1S2	(1566.42)	-	Bn		
8	N2H2F1S1	1578.17	0 88+0 23			
		(1583.25)	0.00-0.25	♦ { Bn		
9	N3H2S1	(1654.42)	-	●-■ ● ● Bn		
10	N1H1S3	(1682.33)	-	♦ ● ● ■ Bn		
11	N2H2S2	1765.42	0.06+0.08	♦- ○- ■ ●- ○ -■ Bn		
		(1770.50)	0.90±0.08			
12	N2H2F1S2	1939.33	0 21+0 07			
		(1944.50)	0.31±0.07	● ● Bn		

Table S1. Comprehensive quali-quantitative profiling of Bn-*O*-glycome in L02 and SMMC-7721 cells by MS.

Structure formulas: yellow square, N-acetylgalactosamine (GalNAc, N); blue square, N-acetylglucosamine (GlcNAc, N); yellow circle, galactose (Gal, H); red triangle, fucose (Fuc, F); purple diamond, sialic acid (Neu5Ac, S); white gray diamond, sialic acid (Neu5Gc, G). ^a Intensity ratios of Bn^{d0}-*O*-glycans to Bn^{d5}-*O*-glycans (n=3). – means *O*-glycans were detected only in L02 or SMMC-7721 cells.

	Cl	Two-step derivati	zation of Bn-O-glycans	
No.	Glycan composition	<i>m/z</i> ([M+Na] ⁺)	Intensity ratios ^a (Mean±SD, n=3)	Proposed structure
1		955.25	0.81±0.06	
	N1H1S1	(960.33)		• вп
		968,33	1.19±0.09	Bn
		(973.42)		
2	N2H2	1043.42	-	Bn
3	N2H1S1	1200.50	0.38±0.10	Bn
	N2H151	(1205.42)		
4		1316.42	1.35±0.14	Bn
	N1H1S2	(1321.42)		▼ Bii
	NIHI52	1329.42	0.84±0.01	Bn
		(1334.42)		•
5	N1H1S1G1	1359.33	-	Bn
<i>.</i>	N2H2S1	1404.42	2.32±0.30	Bn
0		(1409.42)		
7	N2H1S2	(1566.50)	-	● ● Bn
		(1579.50)	-	Bn
8	N2H2F1S1	-	-	-
9	N3H2S1	(1654.42)	-	Bn
10	N1H1S3	(1695.50)	-	Bn
11	N2H2S2	1765.58	1.07±0.14	Bn
		(1770.58)		•
12	N2H2F1S2	1939.67	0.81±0.17	
		(1944.67)		Bn

Table S2. Comprehensive quali-quantitative descrimination linkage specificity of Bn-*O*-glycans with/without sialic acids ends in L02 and SMMC-7721 cells.

Structure formulas: yellow square, N-acetylgalactosamine (GalNAc); blue square, N-acetylglucosamine (GlcNAc);

yellow circle, galactose (Gal); red triangle, fucose (Fuc); gray diamond, $\alpha 2,3$ -Neu5Gc; pink diamond, $\alpha 2,3$ -Neu5Ac; green diamond, $\alpha 2,6$ -Neu5Ac; purple diamond, $\alpha 2,8$ -Neu5Ac. ^a Intensity ratios of Bn^{d0}-*O*-glycans to Bn^{d5}-*O*-glycans (n=3). – means *O*-glycans were detected only in L02 or SMMC-7721 cells.