## **Supplementary Information**

Three-dimensional "Skin-Framework" Hybrid Network as Electroactive Material Platform for High-Performance Solid-state Asymmetric Supercapacitor

Liaoyuan Xia, <sup>a, b\*</sup> Shaoheng Hu, <sup>a, b</sup> Xueqin Zhang,<sup>a, b</sup> Le Huang, <sup>a</sup> Yu Liao, <sup>a</sup> Yan Qing, <sup>a</sup> Yiqiang Wu, <sup>a\*</sup> Wenping Jiang,<sup>a</sup> and Xihong Lu <sup>c\*</sup>

<sup>a</sup> College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China. E-mail: wuyq0506@126.com

<sup>b</sup> Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China. E-mail: xly1516@126.com

<sup>c</sup> MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: luxh6@mail.sysu.edu.cn

### **S1.** Calculations

### 1. 1. Calculation of the areal specific capacitance of the single electrode

(1) The areal specific capacitance of the electrodes was calculated from the CV curves using Equation (1):

$$C_a = \frac{Q}{\Delta U \times S} \tag{1}$$

where  $C_a$  (mF/cm<sup>2</sup>) is the areal specific capacitance, Q is the average charge during electrode charging and discharging,  $\Delta U$  (V) is the working voltage window of the electrode, and S (cm<sup>2</sup>) is the test area of the electrodes.

(2)  $C_a$  was calculated by galvanostatic charging-discharging using Equation (2):

$$C_a = \frac{I \times \Delta t}{\Delta U \times S} \tag{2}$$

where I is the current during electrode discharging (A), and  $\Delta t$  (s) is the DC discharge time of the electrode.

(3) The mass specific capacitance with respect to the three-electrode configuration was derived from galvanostatic charging-discharging based on Equations (3) and (4):

$$C_{s} = \frac{Q(MnO_{2} + MWCNT) - Q(MWCNT)}{\Delta U_{1} \times m_{1}}$$
(3)

$$C_{s} = \frac{Q(AC + MWCNT) - Q(MWCNT)}{\Delta U_{2} \times m_{2}}$$
(4)

where  $C_s$  is the mass specific capacitance, Q is the charge obtained from the galvanostatic charging-discharging based on the MnO<sub>2</sub>-MCN, AC-MCN and MCN electrodes,  $\Delta U_1$  (=0.8 V) and  $\Delta U_2$  (=1.0 V) constitute the voltage range,  $m_1$  is the mass of MnO<sub>2</sub> loaded on the MnO<sub>2</sub>- MCN electrode, and  $m_2$  is the mass of AC loading on the AC-MCN electrode.

# 1. 2. Calculation of volume specific capacitance, power density, and energy density of the MnO<sub>2</sub>-MCN//AC-MCN solid-state ASC device

(1) The volume specific capacitance of the electrodes was calculated from the CV curves and from Equations (5) and (6):

$$C_{cell} = \frac{Q}{\Delta U}$$
(5)

$$C_V = \frac{C_{cell}}{V} = \frac{Q}{V \times \Delta U} \tag{6}$$

where  $C_{cell}$  is the capacitance and CV is the volume specific capacitance of the device, Q is the average charge during electrode charging and discharging,  $\Delta U$  (V) is the working voltage window of the device. V (cm<sup>3</sup>) is the volume of the device, including the volumes of the positive and negative electrode pieces, gel electrolyte, and diaphragm. The area, thickness, and volume of the MnO<sub>2</sub>-MCN//AC-MCN solid-state ASC device were 1.0 cm<sup>2</sup>, 521 µm (see Fig. S9), and 0.521 cm<sup>3</sup>, respectively.

(2) The specific capacitance of the device was calculated from the discharging curve using Equations (7) and (8):

$$C_{cell} = \frac{I \times \Delta t}{\Delta U} \tag{7}$$

$$C_{s} = \frac{C_{cell}}{m} = \frac{I \times \Delta t - C_{MWCNT} m_{MWCNT}}{m \times \Delta U}$$
(8)

where C<sub>cell</sub> is the capacitance and C<sub>s</sub> is the mass specific capacitance of the device; I is the

current during the device discharging (A), and  $\Delta t$  (s) is the DC discharge time of the device;  $\Delta U$  (V) is the working voltage window of the device; m (g) is the mass of the active material, where m includes the MnO<sub>2</sub> and AC.

(3) Equations (9)–(11) were used to calculate the energy density (E, mWh/cm<sup>3</sup>), equivalent series resistance (ESR, i.e., the internal resistance of the capacitor,  $\Omega$ ), and power density (P, mW/cm<sup>3</sup>) of the device, respectively:

$$E = \frac{1}{2 \times 3600} C_{\nu} \Delta U^2 \qquad (9)$$

$$ESR = \frac{iR_{drop}}{2 \times I} \tag{10}$$

$$P = \frac{\Delta U^2}{4 \times ESR \times V} \tag{11}$$

where  $C_v$  is the volume specific capacitance of the device,  $\Delta U$  (V) is the working voltage window, and  $iR_{drop}$  is the voltage drop.

### S2. Various graphs and curves



Fig. S1 (a) Mass loading and areal specific capacitance of the  $MnO_2$ -MCN electrode as a function of reaction times; (b) areal capacitance; and (c) capacitance retention rate of the  $MnO_2$ -MCN electrode as functions of the current density.

As expected, and as shown in Fig. S1a, when MCN is used as the active material platform, the mass loading of MnO<sub>2</sub> increases proportionally with the reaction time. However, the areal specific capacity of the MnO<sub>2</sub>-MCN electrode initially increases and then decreases with time. This is because MnO<sub>2</sub> nanoparticles substantially aggregates on the MWCNT surface with increasing the reaction time, with adverse effects on the electrochemical performance of the MnO<sub>2</sub>-MCN electrode. Fig. S1b and c show the electrodes area specific capacity and capacity retention as a function of current density at different times. Obviously, the MnO<sub>2</sub>-MCN electrode prepared with reaction time for 6h has a larger area specific capacity and a better capacity retention. The experimental results thus indicate an optimal reaction time of 6h, and this was adopted for further electrochemical investigation in this work.



Fig. S2 Display of large-scale preparation of the MCN hybrid materials.



Fig. S3 Histogram of the specific surface area of the NF, MCN, and  $MnO_2$ -MCN electrode materials.



Fig. S4 XPS full spectra of the MnO<sub>2</sub>-MCN electrode.



**Fig. S5** (a) GCD curves of the MCN and  $MnO_2$ -MCN electrodes collected at a current density of 5 mA/cm<sup>2</sup>; (b) Nyquist plots of the MCN and  $MnO_2$ -MCN electrodes with the equivalent circuit diagram used for fitting the EIS data ( inset); (c) Nyquist plots of the

MCN and  $MnO_2$ -MCN electrodes with the corresponding high-frequency parts; and (d) cycle performance of the  $MnO_2$ -MCN electrode at current density of 10 mA/cm<sup>2</sup>.

As shown in Fig. S5 (b), the equivalent circuit diagram used for the fitting of the EIS data includes the equivalent series resistance ( $R_s$ ), the charge transfer resistance ( $R_{ct}$ ), the diffusion impedance ( $Z_w$ ), and the constant phase element (CPE) to account for the double layer capacitance. It is seen that the MCN electrode had smaller  $R_s$  and  $R_{ct}$  compared with the MnO<sub>2</sub>-MCN electrode. This mainly attributed to the poor electronic conductivity of nano-MnO<sub>2</sub> ( $1 \times 10^{-5}$  to  $1 \times 10^{-6}$  S/cm) loaded onto the MCN platform, resulting in a large  $R_{ct}$  of the MnO<sub>2</sub>-MCN electrode. Further, when the MnO<sub>2</sub> nanoparticles was loaded, the insufficiently developed porous structure of the MnO<sub>2</sub>-MCN electrode combined with the poor liquid absorption ability led to the increase in the  $Z_w$  of the MnO<sub>2</sub>-MCN electrode to become large.



**Fig. S6** (a) GCD curves of the MCN and AC-MCN electrodes collected at a current density of 5 mA/cm<sup>2</sup>; (b) cycle performance of the AC-MCN electrode at a current density of 10 mA/cm<sup>2</sup>; (c) Nyquist plots of the AC-MCN electrode with the equivalent circuit

diagram used for fitting the EIS data (inset); and (d) Nyquist plots of the AC-MCN electrode with the corresponding high-frequency part.

The equivalent circuit diagram used for the fitting of the EIS data is presented in inset of Fig. S6 (c), which includes the equivalent series resistance ( $R_s$ ), the charge transfer resistance ( $R_{ct}$ ), the diffusion impedance ( $Z_w$ ), and the constant phase element (CPE) to account for the double layer capacitance. As shown in Fig. S6 (d), It can be seen that the AC-MCN electrode had a low  $R_s$  (1.32  $\Omega$ ) and  $R_{ct}$  (0.49 $\Omega$ ). This mainly attributed to the good electronic conductivity of MCN electroactive platform.



Fig. S7 (a) CV curves of the  $MnO_2$ -MCN//AC-MCN solid-state ASC device collected at scan rates of 5–100 mV/s; (b) GCD curves of the ASC device within various operation voltage windows at a current density of 10 mA/cm<sup>2</sup>; and (c) cycle performance of the  $MnO_2$ -MCN//AC-MCN solid-state ASC device and (inset) photograph of an LED indicator (3 V) powered by two 1 cm × 1 cm units of the ASC device in series.



Fig. S8 Cross-sectional SEM image of the AC-MCN electrode sheet.



Fig. S9 Cross-sectional SEM image of the MnO<sub>2</sub>-MCN//AC-MCN solid-state ASC device.

### S3. Video

**Video S1** Demonstration of the structural stability of the MWCNT/CNF "skin" in the MCN platform by ultrasonic treatment.

Video S2 Demonstration of the good wettability of the MCN,  $MnO_2$ -MCN and AC-MCN electrodes.