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Table S1 The RNA sequences used in this study.

Name Sequence (5'— 3" Length (nt)
L-22a ACUGCCCCAGUUAGCCCCGCUA 22
L-22b CCCGCCCAAAUUAGCCCCGCUA 22
L-22¢ ACUGCCCCAGUUAAACCCGCCC 22
L-22d CCCGCCCAAAUUAAACCCGACC 22
L-8 CCUAAUCA 8
L-21 CCUAAUCACGGUCAAGGACCG 21
L-24 ACUGCCCCAGUUUUAGCCCCGCUA 24
L-23a ACUGCCCCAGUUAGCCCCGCUAU 23
L-18 GGCCCCCGAGCCCCaCUuC 18
L-15 GACCUCGGCCCCGCC 15
L-12 GAGUCCGCCCCG 12
L-23b CUGAGUUGUGUUCUGCUGUUGUU 23
L-23c UGCUGUUGUUCUGAGUUGUGUUC 23
L-31a CCCUUAUAAUUUCCUCCUCCAUAGUUUCCUU 31

L-31b

UCCUUCCCUUAUAAUUUCCUCCUCCAUAGUU

31
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Table S2 The DNA sequences used in this study.

Name Sequence (5'—3") Length (nt)
DNA21 CGGTCAAGGACCGTGATTAGG 21
DNA19 CGGTCAAGGACCGTGATTA 19
DNA17 CGGTCAAGGACCGTGAT 17
DNAI15 CGGTCAAGGACCGTG 15
DNA13 CGGTCAAGGACCG 13
DNA10a-8 TGATTAGGAA 10
DNA10a-6 TGATTAAAAA 10
DNA10a-4 TGATATAAAA 10
DNA10a-2 TGCAATAAAA 10
DNA10a-0 ACCAATAAAA 10
DNAS8a GCTAATTT 8
DNA10b GGCTAATTTG 10
DNA12 GGGCTAATTTGG 12
DNA22 GGTCGGGTTTAATTTGGGCGGG 22
DNASb TGATTAGG

DNAG6 TGATTA 6
DNAS TGATT
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Fig. S1 The secondary structures of RNAs were simulated by Mfold software ((Mg?*] =2 mM, 25°C).

The mfold structures of L-22a, L-22b, L-22¢ and L-22d are shown.
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Fig. S2 Non-denaturing PAGE (15%) for intramolecular ligation of L-22d without any secondary
structure.

Since the single-stranded L-22d RNA cannot be clearly stained by SYBR Gold, its complementary DNA
sequence was added to assist the dyeing. Accordingly, the bands shown here are duplexes. Lane 1, only DNA22;
lane 2, L-22d + DNA22; lane 3-8: L-22d treated with Rnl2 for 5 min, 10 min, 30 min, 60 min, 120 min and 180
min, respectively (then, DNA22 as the complementary DNA of L-22d was added). [RNA] =1 uM, [DNA] =1
uM and [Rnl2] = 0.4 U/uL in 1xbuffer at 25°C.
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Fig. S3 Denaturing PAGE (12%) analysis for intramolecular cyclization of L-22a by Rnl2.

Lane 1, only L-22a; lane 2-7: L-22a treated with Rnl2 for 5 min, 10 min, 30 min, 60 min, 120 min and 180 min,
respectively. [RNA] =1 uM and [Rnl2] = 0.04 U/uL in 1xbuffer at 25°C.
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Fig. S4 Schematic diagram of RNA ligation by forming pseudo nick structures.

At first, the adenylated Rnl2 binds to the duplex structure at 3’-end, and then the 5’-phosphate is adenylated. If
the 5’-end can form a duplex structure which is stable enough, the ligation happens efficiently. Otherwise, the
ligation hardly happens.

The RNA involving double-stranded structure (or pseudo duplex) at 3’-end is required to be bound by
adenylated Rnl2 (Rnl2-AMP). Only in this case, the 5'-phosphoate can be adenylated. In other words, duplex
structure at 3'-end is essential for 5'-adenylation. If the stable nick-like structure exists, the ligation occurs
efficiently. If non-stable nick-like structure forms, the ligation hardly happens, and only the RNA-adenylate
intermediate (AppRNA) forms in the case that nick-like structure is unstable enough.
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Fig. S5 Dependence of the ligation efficiency on the length of duplex part (DNA/RNA heteroduplex) in
the 5'-phosphate side of joining site (as well as in Fig. 3).

(A) The sequences of RNA (blue) and DNA (red). (B) Denaturing PAGE (12%) analysis for the ligation at 25°C
for 12 h. Lane 1, L-21 only. Lane 2, ligation of L-21 with DNAS. Lane 3, ligation of L-21 with DNA6. Lane 4,
ligation of L-21 and DNAS8b. [RNA] =1 uM, [DNA] =2 uM and [Rnl2] = 0.4 U/uL in 1xbuffer.

Here, all the ligations are believed to occurred, although we don’t know the exact yields. The intermolecular
ligation products of ssSRNA (L-21) and ssDNA (DNAS5 or DNAG6) showed similar mobility with the substrate of
L-21 on the PAGE gel (compare lane 2 and lane 3 with lane 1), because these products involve very stable

hairpin structures.
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Fig. S6 Effects of temperature on cyclization of L-12, L-15 and L-18.

Lanes 1, 5and 9, L-12, L-15 and L-18 only. Lanes 2, 6 and 10, L-12, L-15 and L-18 treated with Rnl2 at 4°C
for 12 h. Lanes 3, 7 and 11, L-12, L-15 and L-18 treated with Rnl2 at 25°C for 2 h. Lanes 4, 8 and12, L-12, L-
15 and L-18 treated with Rnl2 at 37°C for 12 h. [RNA] =1 uM and [Rnl2] = 0.4 U/uL in 1x buffer. 12%
denaturing PAGE was used.
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Fig. S7 High resolution melting curve analysis of L-18, L-21 and L-24.

—d(RFU)/dT: the rate of change of the relative fluorescence units (RFU) with time (T). The RNAs were
measured at 1 uM in 10 pL solution containing 1xEvaGreen and 1xRnl2 buffer.
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Fig. S8 Concentration effects on the ligation of L-23b and L-8 involving highly unstable stems.

(A) Schematic diagram of connection between L-23b and L-8. Only L-8 was 5'-terminal phosphorylated. (B)
Denaturing PAGE (12%) for the ligation product. [L-8] = 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 4.0 uM in lanes
3-10, respectively ([L-23b] = 0.5 uM at 25°C for 6 h). L-8 cannot be observed on the gel. (C) Temperature
dependence of the ligation of L-23b and L-8. [L-23b] = 0.5 uM, [L-8] = 4.0 pM.
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Fig. S9 Analysis of the results in the literature in terms of the “nick-like structure mechanism”.

(A) PAGE analysis of cyclization of 9-mer, 12-mer, 15-mer and 18-mer (from Yin S, Ho C K, Miller E S, Shuan
S., Characterization of bacteriophage KVP40 and T4 RNA ligase 2. Virology, 2004, 319(1):141). In (B) and
(C), the nick-like structures we propose for intramolecular and intermolecular cyclization are presented,
respectively.

This reference showed that 1) 18-mer RNA only forms monomeric circle; 2) 15-mer RNA could be
circularized to form monomeric circle, but dimeric product was observed; 3) Ligation of 12-mer RNA almost
gave only dimeric product; 4) Neither monomeric nor dimeric products were obtained for the 9-mer RNA
substrate. These results are satisfactorily interpreted in terms of “nick-like structure mechanism”.

As shown in (B), 12-mer was not ligated to a circle because no nick-like structure could be formed. Both 15-
mer and 18-mer formed nick-like structure so that they could be circularized to monomeric ring. 15-mer showed
higher yield than 18-mer, because of the formation of more stable nick-like structure. The stability of
intermolecular secondary structures in (C) was in the following order: 12-mer > 15-mer > 18-mer, which was
in accordance with their efficiency for the formation of dimers. For 9-mer, no ligation occurred because it could

not form any effective secondary structure. Alternatively, the nick-like structure of 9-mer could be too short for
Rnl2 to bind for ligation.
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