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Table S1 The RNA sequences used in this study.

Name Sequence（5′  3′） Length（nt）

L-22a ACUGCCCCAGUUAGCCCCGCUA 22
L-22b CCCGCCCAAAUUAGCCCCGCUA 22
L-22c ACUGCCCCAGUUAAACCCGCCC 22
L-22d CCCGCCCAAAUUAAACCCGACC 22
L-8 CCUAAUCA 8
L-21 CCUAAUCACGGUCAAGGACCG 21
L-24 ACUGCCCCAGUUUUAGCCCCGCUA 24
L-23a ACUGCCCCAGUUAGCCCCGCUAU 23
L-18 GGCCCCCGAGCCCCGCUC 18
L-15 GACCUCGGCCCCGCC 15
L-12 GAGUCCGCCCCG 12
L-23b CUGAGUUGUGUUCUGCUGUUGUU 23
L-23c UGCUGUUGUUCUGAGUUGUGUUC 23
L-31a CCCUUAUAAUUUCCUCCUCCAUAGUUUCCUU 31
L-31b UCCUUCCCUUAUAAUUUCCUCCUCCAUAGUU 31
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Table S2 The DNA sequences used in this study.

Name Sequence（5′3′） Length（nt）

DNA21 CGGTCAAGGACCGTGATTAGG 21

DNA19 CGGTCAAGGACCGTGATTA 19

DNA17 CGGTCAAGGACCGTGAT 17

DNA15 CGGTCAAGGACCGTG 15

DNA13 CGGTCAAGGACCG 13

DNA10a-8 TGATTAGGAA 10

DNA10a-6 TGATTAAAAA 10

DNA10a-4 TGATATAAAA 10

DNA10a-2 TGCAATAAAA 10

DNA10a-0 ACCAATAAAA 10

DNA8a GCTAATTT 8

DNA10b GGCTAATTTG 10

DNA12 GGGCTAATTTGG 12

DNA22 GGTCGGGTTTAATTTGGGCGGG 22

DNA8b TGATTAGG 8
DNA6 TGATTA 6
DNA5 TGATT 5
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Fig. S1 The secondary structures of RNAs were simulated by Mfold software ([Mg2+] = 2 mM, 25°C). 

The mfold structures of L-22a, L-22b, L-22c and L-22d are shown.
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Fig. S2 Non-denaturing PAGE (15%) for intramolecular ligation of L-22d without any secondary 
structure. 

Since the single-stranded L-22d RNA cannot be clearly stained by SYBR Gold, its complementary DNA 
sequence was added to assist the dyeing. Accordingly, the bands shown here are duplexes. Lane 1, only DNA22; 
lane 2, L-22d + DNA22; lane 3-8: L-22d treated with Rnl2 for 5 min, 10 min, 30 min, 60 min, 120 min and 180 
min, respectively (then, DNA22 as the complementary DNA of L-22d was added). [RNA] = 1 μM, [DNA] = 1 
μM and [Rnl2] = 0.4 U/μL in 1×buffer at 25°C.
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Fig. S3 Denaturing PAGE (12%) analysis for intramolecular cyclization of L-22a by Rnl2. 

Lane 1, only L-22a; lane 2-7: L-22a treated with Rnl2 for 5 min, 10 min, 30 min, 60 min, 120 min and 180 min, 
respectively. [RNA] = 1 μM and [Rnl2] = 0.04 U/μL in 1×buffer at 25°C.
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Fig. S4 Schematic diagram of RNA ligation by forming pseudo nick structures.

At first, the adenylated Rnl2 binds to the duplex structure at 3′-end, and then the 5′-phosphate is adenylated. If 
the 5′-end can form a duplex structure which is stable enough, the ligation happens efficiently. Otherwise, the 
ligation hardly happens. 

The RNA involving double-stranded structure (or pseudo duplex) at 3′-end is required to be bound by 
adenylated Rnl2 (Rnl2-AMP). Only in this case, the 5′-phosphoate can be adenylated. In other words, duplex 
structure at 3′-end is essential for 5′-adenylation. If the stable nick-like structure exists, the ligation occurs 
efficiently. If non-stable nick-like structure forms, the ligation hardly happens, and only the RNA-adenylate 
intermediate (AppRNA) forms in the case that nick-like structure is unstable enough.
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Fig. S5 Dependence of the ligation efficiency on the length of duplex part (DNA/RNA heteroduplex) in 
the 5′-phosphate side of joining site (as well as in Fig. 3). 

(A) The sequences of RNA (blue) and DNA (red). (B) Denaturing PAGE (12%) analysis for the ligation at 25°C 
for 12 h. Lane 1, L-21 only. Lane 2, ligation of L-21 with DNA5. Lane 3, ligation of L-21 with DNA6. Lane 4, 
ligation of L-21 and DNA8b. [RNA] = 1 μM, [DNA] = 2 μM and [Rnl2] = 0.4 U/μL in 1×buffer. 

Here, all the ligations are believed to occurred, although we don’t know the exact yields. The intermolecular 
ligation products of ssRNA (L-21) and ssDNA (DNA5 or DNA6) showed similar mobility with the substrate of 
L-21 on the PAGE gel (compare lane 2 and lane 3 with lane 1), because these products involve very stable 
hairpin structures.
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Fig. S6 Effects of temperature on cyclization of L-12, L-15 and L-18. 

Lanes 1, 5 and 9, L-12, L-15 and L-18 only. Lanes 2, 6 and 10, L-12, L-15 and L-18 treated with Rnl2 at 4°C 
for 12 h. Lanes 3, 7 and 11, L-12, L-15 and L-18 treated with Rnl2 at 25°C for 2 h. Lanes 4, 8 and12, L-12, L-
15 and L-18 treated with Rnl2 at 37°C for 12 h. [RNA] = 1 μM and [Rnl2] = 0.4 U/μL in 1× buffer. 12% 
denaturing PAGE was used.
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Fig. S7 High resolution melting curve analysis of L-18, L-21 and L-24. 

–d(RFU)/dT: the rate of change of the relative fluorescence units (RFU) with time (T). The RNAs were 
measured at 1 μM in 10 μL solution containing 1×EvaGreen and 1×Rnl2 buffer.
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Fig. S8 Concentration effects on the ligation of L-23b and L-8 involving highly unstable stems. 

(A) Schematic diagram of connection between L-23b and L-8. Only L-8 was 5′-terminal phosphorylated. (B) 
Denaturing PAGE (12%) for the ligation product. [L-8] = 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 4.0 μM in lanes 
3-10, respectively ([L-23b] = 0.5 μM at 25°C for 6 h). L-8 cannot be observed on the gel. (C) Temperature 
dependence of the ligation of L-23b and L-8. [L-23b] = 0.5 μM, [L-8] = 4.0 μM.
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Fig. S9 Analysis of the results in the literature in terms of the “nick-like structure mechanism”.

(A) PAGE analysis of cyclization of 9-mer, 12-mer, 15-mer and 18-mer (from Yin S, Ho C K, Miller E S, Shuan 
S., Characterization of bacteriophage KVP40 and T4 RNA ligase 2. Virology, 2004, 319(1):141). In (B) and 
(C), the nick-like structures we propose for intramolecular and intermolecular cyclization are presented, 
respectively. 

This reference showed that 1) 18-mer RNA only forms monomeric circle; 2) 15-mer RNA could be 
circularized to form monomeric circle, but dimeric product was observed; 3) Ligation of 12-mer RNA almost 
gave only dimeric product; 4) Neither monomeric nor dimeric products were obtained for the 9-mer RNA 
substrate. These results are satisfactorily interpreted in terms of “nick-like structure mechanism”.

As shown in (B), 12-mer was not ligated to a circle because no nick-like structure could be formed. Both 15-
mer and 18-mer formed nick-like structure so that they could be circularized to monomeric ring. 15-mer showed 
higher yield than 18-mer, because of the formation of more stable nick-like structure. The stability of 
intermolecular secondary structures in (C) was in the following order: 12-mer > 15-mer > 18-mer, which was 
in accordance with their efficiency for the formation of dimers. For 9-mer, no ligation occurred because it could 
not form any effective secondary structure. Alternatively, the nick-like structure of 9-mer could be too short for 
Rnl2 to bind for ligation.


