Supporting Information

Pseudonectrins A–D, heptaketides from an endophytic fungus *Nectria pseudotrichia*

Peinan Fu,^{ab} Tingnan Zhou,^{ab} Fengxia Ren,^b Shuaiming Zhu,^b Yang Zhang,^{*b}

Wenying Zhuang^c and Yongsheng Che*bd

Affiliation

^a School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
^b State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, People's Republic of China
^c State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
^d Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China

Correspondence

* To whom correspondence should be addressed. Yongsheng Che. E-mail: cheys@im.ac.cn; Yang Zhang. E-mail: zhangyang@bmi.ac.cn.

1) Figure S1. ¹ H NMR spectrum of pseudonectrin A (1; 600 MHz, CDCl ₃)	5
2) Figure S2. ¹³ C NMR spectrum of pseudonectrin A (1; 150 MHz, CDCl ₃)	6
3) Figure S3. HSQC spectrum of pseudonectrin A (1; 600 MHz, CDCl ₃)	7
4) Figure S4. ¹ H- ¹ H COSY spectrum of pseudonectrin A (1; 600 MHz,	8
CDCl ₃)	
5) Figure S5. HMBC spectrum of pseudonectrin A (1; 600 MHz, CDCl ₃)	9
6) Figure S6. NOESY spectrum of pseudonectrin A (1; 600 MHz, CDCl ₃)	10
7) Figure S7. ¹ H NMR spectrum of pseudonectrin B (2; 600 MHz, CDCl ₃)	11

- 8) Figure S8. ¹³C NMR spectrum of pseudonectrin B (2; 150 MHz, CDCl₃) 12
- 9) Figure S9. HSQC spectrum of pseudonectrin B (2; 600 MHz, CDCl₃) 13
- 10) **Figure S10.** ¹H–¹H COSY spectrum of pseudonectrin B (**2**; 600 MHz, 14 CDCl₃)
- 11) Figure S11. HMBC spectrum of pseudonectrin B (2; 600 MHz, CDCl₃) 15
- 12) Figure S12. NOESY spectrum of pseudonectrin B (2; 600 MHz, CDCl₃) 16
- 13) Figure S13. ¹H NMR spectrum of pseudonectrin C (3; 600 MHz, CDCl₃) 17
- 14) Figure S14. ¹³C NMR spectrum of pseudonectrin C (3; 150 MHz, CDCl₃) 18
- 15) Figure S15. HSQC spectrum of pseudonectrin C (3; 600 MHz, CDCl₃) 19
- 16) **Figure S16.** ¹H–¹H COSY spectrum of pseudonectrin C (**3**; 600 MHz, 20 CDCl₃)
- 17) **Figure S17.** HMBC spectrum of pseudonectrin C (**3**; 600 MHz, CDCl₃) 21
- 18) Figure S18. NOESY spectrum of pseudonectrin C (3; 600 MHz, CDCl₃) 22

19) Figure S19. ¹ H NMR spectrum of pseudonectrin D (4; 600 MHz, CDCl ₃)	23
20) Figure S20. ¹³ C NMR spectrum of pseudonectrin D (4 ; 150 MHz, CDCl ₃)	24
21) Figure S21. HSQC spectrum of pseudonectrin D (4; 600 MHz, CDCl ₃)	25
22) Figure S22. ¹ H– ¹ H COSY spectrum of pseudonectrin D (4; 600 MHz,	26
CDCl ₃)	

23) Figure S23. HMBC spectrum of pseudonectrin D (4; 600 MHz, CDCl ₃)	27
24) Figure S24. NOESY spectrum of pseudonectrin D (4; 600 MHz, CDCl ₃)	28
25) Figure S25. Relative configurations and the optimized conformers for 1	29
26) Figure S26. Relative configurations and the optimized conformers for 2	30
27) Figure S27. Relative configurations and the optimized conformers for 3	31
28) Figure S28. UV spectrum of pseudonectrin A (1) in MeOH	32
29) Figure S29. UV spectrum of pseudonectrin B (2) in MeOH	33
30) Figure S30. UV spectrum of pseudonectrin C (3) in MeOH	34
31) Figure S31. UV spectrum of pseudonectrin D (4) in MeOH	35
32) Figure S32. Experimental CD spectrum of 1 in MeOH	36
33) Figure S33. Experimental CD spectrum of 2 in MeOH	37
34) Figure S34. Experimental CD spectrum of 3 in MeOH	38
35) Figure S35. Experimental CD spectrum of 4 in MeOH	39
36) Figure S36. IR spectrum of pseudonectrin A (1)	40
37) Figure S37. IR spectrum of pseudonectrin B (2)	41
38) Figure S38. IR spectrum of pseudonectrin C (3)	42
39) Figure S39. IR spectrum of pseudonectrin D (4)	43

40) Figure S40. HRESIMS spectrum of pseudonectrin A (1)	44
41) Figure S41. HRESIMS spectrum of pseudonectrin B (2)	45
42) Figure S42. HRESIMS spectrum of pseudonectrin C (3)	46
43) Figure S43. HRESIMS spectrum of pseudonectrin D (4)	47
44) Figure S44. ¹ H NMR spectrum of 2-acetonyl-5,7- dimethoxy-3-methyl-	48
1,4-naphthoquinone (5; 400 MHz, CDCl ₃)	
45) Figure S45. ¹³ C NMR spectrum of 2-acetonyl-5,7-dimethoxy-3-methyl-	49
1,4-naphthoquinone (5; 150 MHz, CDCl ₃)	
46) Figure S46. ¹ H NMR spectrum of herbarin (6; 600 MHz, CDCl ₃)	50
47) Figure S47. ¹³ C NMR spectrum of herbarin (6; 150 MHz, CDCl ₃)	51
48) Figure S48. ¹ H NMR spectrum of dehydroherbarin (7; 400 MHz, CDCl ₃)	52
49) Figure S49. ¹³ C NMR spectrum of dehydroherbarin (7; 150 MHz, CDCl ₃)	53
50) Figure S50. ¹ H NMR spectrum of scorpinone (8; 400 MHz, CDCl ₃)	54
51) Figure S51. ¹³ C NMR spectrum of scorpinone (8; 150 MHz, CDCl ₃)	55
Melting points and spectroscopic data of compounds 5-8	56
52) Scheme S1. Hypothetical biosynthetic pathways for 1–8	58

Figure S1. ¹H NMR Spectrum of Pseudonectrin A (1; 600 MHz, CDCl₃)

Figure S2. ¹³C NMR Spectrum of Pseudonectrin A (1; 150 MHz, CDCl₃)

Figure S3. HSQC Spectrum of Pseudonectrin A (1; 600 MHz, CDCl₃)

Figure S5. HMBC Spectrum of Pseudonectrin A (1; 600 MHz, CDCl₃)

Figure S6. NOESY Spectrum of Pseudonectrin A (1; 600 MHz, CDCl₃)

Figure S7. ¹H NMR Spectrum of Pseudonectrin B (**2**; 600 MHz, CDCl₃)

Figure S8. ¹³C NMR Spectrum of Pseudonectrin B (2; 150 MHz, CDCl₃)

Figure S9. HSQC Spectrum of Pseudonectrin B (**2**; 600 MHz, CDCl₃)

Figure S11. HMBC Spectrum of Pseudonectrin B (2; 600 MHz, CDCl₃)

Figure S13. ¹H NMR Spectrum of Pseudonectrin C (**3**; 600 MHz, CDCl₃)

Figure S14. ¹³C NMR Spectrum of Pseudonectrin C (**3**; 150 MHz, CDCl₃)

Figure S15. HSQC Spectrum of Pseudonectrin C (3; 600 MHz, CDCl₃)

Figure S17. HMBC Spectrum of Pseudonectrin C (3; 600 MHz, CDCl₃)

Figure S19. ¹H NMR Spectrum of Pseudonectrin D (4; 600 MHz, CDCl₃)

<u>_</u>0

Figure S20. ¹³C NMR Spectrum of Pseudonectrin D (4; 150 MHz, CDCl₃) ∼145.66 ∼144.60 −133.63 109.70 107.80 10.11 -188.55 -185.17 ~165.89 ~164.19 --56.11 --36.80 --24.36 --12.90 -67.93 \mathbf{O} 0 ОН он о 100 90 f1 (ppm) 190 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10 0 -10

Figure S21. HSQC Spectrum of Pseudonectrin C (4; 600 MHz, CDCl₃)

Figure S23. HMBC Spectrum of Pseudonectrin D (4; 600 MHz, CDCl₃)

Figure S24. NOESY Spectrum of Pseudonectrin D (4; 600 MHz, CDCl₃)

Figure S25. Relative Configurations and the Optimized Conformers for 1

Figure S26. Relative Configurations and the Optimized Conformers for 2

2a

2b

2c

2d

Figure S27. Relative Configurations and the Optimized Conformers for 3

b

Figure S28. UV Spectrum of Pseudonectrin A (1) in MeOH

Figure S29. UV Spectrum of Pseudonectrin B (2) in MeOH

Figure S30. UV Spectrum of Pseudonectrin C (3) in MeOH

Figure S31. UV Spectrum of Pseudonectrin D (4) in MeOH

Figure S32. CD Spectrum of Pseudonectrin A (1) in MeOH

Figure S33. CD Spectrum of Pseudonectrin B (2) in MeOH

Figure S34. CD Spectrum of Pseudonectrin C (3) in MeOH

Figure S35. CD Spectrum of Pseudonectrin D (4) in MeOH

Figure S36. IR Spectrum of Pseudonectrin A (1)

Figure S37. IR Spectrum of Pseudonnectrin B (2)

Figure S38. IR Spectrum of Pseudonectrin C (3)

Figure S39. IR Spectrum of Pseudonectrin D (4)

Figure S40. HRESIMS Spectrum of Pseudonectrin A (1)

Figure S43. HRESIMS Spectrum of Pseudonectrin D (4)

Figure S44. ¹H NMR Spectrum of 2-Acetonyl-5,7-

dimethoxy-3-methyl-1,4-naphthoquinone (5; 400 MHz, CDCl₃)

Figure S46. ¹H NMR Spectrum of Herbarin (**6**; 600 MHz, CDCl₃)

Figure S47. ¹C NMR Spectrum of Herbarin (6; 150 MHz, CDCl₃)

Figure S48. ¹H NMR Spectrum of Dehydroherbarin (7; 400 MHz, CDCl₃)

Figure S49. ¹C NMR Spectrum of Dehydroherbarin (7; 150 MHz, CDCl₃)

Figure S51. ¹C NMR Spectrum of Scorpinone (8; 150 MHz, CDCl₃)

Melting points and spectroscopic data of compounds 5-8

2-Acetonyl-5,7-dimethoxy-3-methyl-1,4-naphthoquinone (5). mp 184–185 °C ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.22 (1H, d, J = 2.4 Hz, H-8), 6.71 (1H, d, J = 2.4 Hz, H-6), 3.96 (3H, s, 7-OCH₃), 3.92 (3H, s, 5-OCH₃), 3.74 (2H, s, H-11), 2.29 (3H, s, H-14), 2.09 (3H, s, H-13); ¹³C NMR (150 MHz, CDCl₃) $\delta_{\rm C}$ 203.8 (C-12), 184.5 (C-1), 183.0 (C-4), 164.6 (C-7), 161.9 (C-9), 148.1 (C-2), 137.8 (C-3), 135.8 (C-9), 114.9 (C-10), 104.3 (C-8), 103.2 (C-6), 56.6 (7-OCH₃), 56.1 (5-OCH₃), 41.8 (C-11), 30.3 (C-13), 13.7 (C-14).

Herbarin (6). mp 190–191 °C [α]²⁵_D +3.7 (*c* 0.10, MeOH); ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (1H, d, *J* = 2.2 Hz, H-6), 6.70 (1H, d, *J* = 2.2 Hz, H-6), 6.70 (1H, d, *J* = 2.2 Hz, H-8), 4.74 (1H, d, *J* = 18.8 Hz, H-1a), 4.68 (1H, dt, *J* = 18.8, 3.4 Hz, H-1b), 3.95 (3H, s, 7-OCH₃), 3.94 (3H, s, 9-OCH₃), 2.81 (1H, dd, *J* = 18.6, 2.7 Hz, H-4a), 2.52 (1H, dd, *J* = 18.6, 3.2Hz, H-4b), 1.61 (3H, s, H₃-11); ¹³C NMR (150 MHz, CDCl₃) $\delta_{\rm C}$ 183.9 (C-10), 181.7 (C-5), 164.2 (C-7), 162.1 (C-9), 143.1 (C-5a), 136.9 (C-4a), 136.1 (C-10a), 114.1 (C-9a), 104.1 (C-6), 103.6 (C-8), 94.6 (C-3), 58.6 (C-1), 56.4 (7-OCH₃), 56.1 (9-OCH₃), 31.8 (C-4), 29.5 (C-11).

Dehydroherbarin (7). mp 186–187 °C ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.25 (1H, d, J = 2.4 Hz, H-6), 6.72 (1H, d, J = 2.4 Hz, H-8), 5.84 (1H, s, H-4), 5.12 (2H, s, H₂-1), 3.95 (3H, s, 7-OCH₃), 3.94 (3H, s, 9-OCH₃), 2.00, (3H, s, H₃-11); ¹³C NMR (150 MHz, CDCl₃) $\delta_{\rm C}$ 182.5 (C-10), 181.1(C-5), 164,3 (C-7), 163.4 (C-9), 161.7 (C-3), 135.8 (C-4a), 135.6 (C-5a), 124.9 (C-10a), 114.8 (C-9a), 104.5 (C-6), 103.7 (C-8), 94.0 (C-4), 63.5 (C-1), 56.6 (7-OCH₃), 56.1 (9-OCH₃), 20.2 (C-11).

Scorpinone (8). mp 195–196 °C ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.42 (1H, s, H-1), 7.84 (1H, s, H-4), 7.43 (1H, d, J = 2.4 Hz, H-6), 6.84 (1H, d, J = 2.4 Hz, H-8), 4.02 (3H, s, 9-OCH₃), 4.00 (3H, s, 7-OCH₃), 2.77 (3H, s, H-11); ¹³C NMR (150 MHz, CDCl₃) $\delta_{\rm C}$ 183.1 (C-5), 179.8 (C-10), 165.3 (C-7), 163.3 (C-3), 163.1 (C-9), 148.8 (C-1), 138.4 (C-10a), 137.0 (C-5a), 126.2 (C-4a), 118.6 (C-4), 115.7 (C-9a), 105.7 (C-8), 103.9 (C-6), 56.8 (9-OCH₃), 56.3 (7-OCH₃), 24.5 (C-11).

