Experimental and computational investigation of a DNAshielded 3D metal-organic framework for the prompt dual sensing of Ag⁺ and S²⁻

Shao-Lan Cai, Zi-Chuan Yang, Ke-Yang Wu, Cheng Fan, Ling-Yan Zhai, Nai-Han Huang, Rong-Tian Li, Wen-Jun Duan* and Jin-Xiang Chen*

Ag ⁺ and S ²⁻ detection experiments	S-2
Computational molecular simulation studies	S-3
Table S1 Crystallographic data for 1	S-4
Table S2 Selected bond distances (Å) and angles (°) for 1	S-5
Table S3 The analytical performance of various Ag ⁺ sensors.	S-5
Table S4 Comparison of different sensing platforms for S ²⁻ detection	S-5
Table S5 The single point energy results of P-DNA, P-DNA@1, ds-DNA@Ag ⁺	and $1 + ds$ -
DNA@Ag ⁺	S-6
Table S6 Detection of Ag ⁺ in environmental water samples	S-
6	
Table S7 Detection of S ²⁻ in environmental water samples	S-
6	
Fig. S1 PXRD patterns of MOF 1 showing agreement among the simulated, as-syn	thesized and
fresh powder of MOF 1 immerse in Hepes buffer (20 mM, pH = 6.5, 7.0, 7.	4) for 24 h
respectively	S-7
Fig. S2 The SEM image of MOF 1	S-7
Fig. S3 Comparison of the intensity of the emission peak (582 nm) of the P-DNA in 2	0 mM
Hepes buffer ($(pH = 6.5, 7.0, 7.4)$ in 4	
hS-8	
Fig. S4 (a) The fluorescence quenching of the P-DNA (50 nM) incubated with I	MOF 1 with
increasing concentrations in Hepes buffer (pH 7.4, 20 mM). (b) The fluorescence re	covery of P-
DNA@1 (50 nM/ 9 μ M) sensor towards Ag ⁺ with different concentrations in Hepes bu	uffer (pH 7.4,
20 mM). (c) The fluorescence quenching of 1 + ds-DNA@Ag ⁺ (9 μ M/50 nM/6	μ M) sensing
system towards S ²⁻ with different concentrations in Hepes buffer (pH 7.4, 20 mM). In	sets: plots of
fluorescence intensity of P-DNA at 582 nm versus the concentrations of MOF 1 (a),	$Ag^{+}(b)$ and
S^{2-} (b) respectively. Error bars represent the standard deviation	for three
measurements	S-9
Fig. S5 Fig. S5 (a) The fluorescence quenching of the P-DNA (50 nM) incubated w	with different
concentrations of MOF 1 in different pH Hepes buffer solutions (pH = 6.5 , 7.0 , 7	7.4). (b) The
fluorescence recovery of P-DNA@1 (50 nM/9.0 μ M) sensing system towar	ds different
concentrations of Ag^+ in different pH buffer solutions (pH = 6.5, 7.0, 7.4). (c) The	fluorescence
quenching of 1 + ds-DNA@Ag ⁺ (9.0 $\mu M/50$ nM/6.0 $\mu M)$ sensing system tow	ards various
concentrations of S^{2-} in different pH buffer solutions (pH = 6.5, 7.0, 7.4)	S-9
Reference	S-10

Ag⁺ and S²⁻ detection experiments

In the following experiments, all the detection systems were performed in 20 mM Hepes buffer (pH = 6.5, 7.0, 7.4) at room temperature. Both the excitation and emission slit widths are 10.0 nm. The fluorescence intensity at 582 nm (λ_{ex} = 560 nm) was used for quantitative analysis. Each experiment was carried out three times, and the mean values were taken.

First, set up the Ag^+ sensor. The solution of P-DNA (50 nM) was stirred with the increasing concentration of MOF 1 which contained 50 nM P-DNA until quenching to saturation creating P-DNA@1 complex (Ag⁺ sensor). The corresponding fluorescence spectra were measured and the quenching efficiency (Q_E, %) was calculated according to Eq. (1).

$$Q_{\rm E} = (1 - F_{\rm M}/F_0) \times 100\%$$
 (1)

Here, F_M and F_0 are fluorescent intensities at 582 nm in the presence and absence of MOF 1, respectively.

Second, evaluate the detection sensitivity of the Ag⁺ sensor and build S²⁻ sensor. Adding Ag⁺ of various concentrations to the above P-DNA@1 system, followed by incubating for 5 min to form the mixture of 1 + P-DNA@Ag⁺ (S²⁻ sensor) and the fluorescence recovery efficiency (R_E) was calculated according to Eq. (2).

$$R_E = F_T / F_M - 1 \tag{2}$$

Here F_T and F_M are the fluorescence intensities at 582 nm in the presence and the absence of Ag⁺, respectively.

Third, assess the detection sensitivity of the constructed S^{2-} sensor. Adding S^{2-} of different concentrations to the above 1 + P-DNA@Ag⁺ solution until quenching was saturated and the quenching efficiency (Q_E , %) was calculated according to Eq. (1).

To evaluate the selectivity of the Ag⁺ and S²⁻ sensor, other metal ions (Hg²⁺, Ba²⁺, Ca²⁺, Cd²⁺, Cu²⁺, K⁺, Mg²⁺, Mn²⁺, Na⁺, Ni⁺, Pb²⁺, Zn²⁺, Cr³⁺, Co²⁺, Fe²⁺) and anions

 $(SO_4^{2-}, CO_3^{2-}, NO_3^{-}, OH^-, HSO_4^{-}, H_2PO_4^{-}, F^-, Cl^-, Br^-, I^-)$ with the concentrations of 5-fold higher than Ag⁺ and S²⁻ were investigated under the same experimental conditions.

Computational molecular simulation studies

The 3D structure of MOF 1, P-DNA and ds-DNA@Ag⁺ were constructed using Molecular Operating Environment (MOE) package.¹ The initial structure of P-DNA@1 or 1 + ds-DNA@Ag⁺ was manually built by the placement of P-DNA or ds-DNA@Ag⁺ in the location 2 Å to the MOF 1 plane. Structures were first optimized in MOE using MMFF94x force field and then re-optimized in UFF of Gaussian 09² where Gibbs free energy calculations were simplified by calculating single point energies. Finally, Python molecule (PyMOL)³ was employed for visual analysis of binding modes. The binding free energy difference ($\Delta\Delta G$) between reactions of MOF 1 with single chain P-DNA ($\Delta G_{P-DNA@MOF}$) or double chain ds-DNA@Ag⁺ ($\Delta G_{MOF+ds-DNA@Ag^+}$) is evaluated according to the following Eq. (3).

 $\Delta\Delta G = \Delta G_{P\text{-}DNA@MOF} - \Delta G_{MOF+ds\text{-}DNA@Ag}^{+}$

 $= [G_{P\text{-}DNA@MOF} - (G_{MOF} + G_{P\text{-}DNA}) - [G_{MOF\text{+}ds\text{-}DNA@Ag}^{+} - (G_{MOF} + G_{ds\text{-}DNA@Ag}^{+})]$

$$= (G_{P-DNA@MOF} - G_{MOF+ds-DNA@Ag}^{+}] - (G_{P-DNA} - G_{ds-DNA@Ag}^{+})$$
(3)

Formula	$C_{27}H_{21}N_{3}O_{6}Cu$	Formula weight	547.01
Crystal system	monoclinic	Space group	<i>C2/c</i>
<i>a</i> (Å)	31.299(3)	<i>b</i> (Å)	11.9822(9)
<i>c</i> (Å)	19.7406(16)	α (°)	90.00
β (°)	122.8270(13)	γ (°)	90.00
$V(Å^3)$	6221.1(9)	Ζ	8
T/K	291(2)	D_{calc} (g cm ⁻³)	1.168
λ (Mo-K α) (Å)	0.71073	μ (cm ⁻¹)	0.740
Total reflections	19649	Unique reflections	6316
No. Observations	5371	No. Parameters	334
R ^a	0.0376	wR ^b	0.1169
GOF ^c	1.110	$\Delta \rho_{\rm max}$ (e Å ⁻³)	0.689
$\Delta \rho_{\min} (e \text{ Å}^{-3})$	-0.496		

Table S1 Crystallographic data for 1

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}, \text{ GOF} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n - p)\}^{1/2}, \text{ where } n \text{ is the number of reflections and } p \text{ is total number of parameters refined.}$

bond distances [Å]			
Cu(1)-O(1)	1.9506(12)	Cu(1)-O(4)#1	1.9930(13)
Cu(1)-N(2)	2.0322(17)	Cu(1)-N(3)#2	2.0381(17)
Cu(1)-O(2)#3	2.2056(13)		
bond angles [°]			
O(1)-Cu(1)-O(4)#1	145.13(6)	O(1)-Cu(1)-N(2)	90.55(6)
O(4)#1-Cu(1)-N(2)	86.95(7)	O(1)-Cu(1)-N(3)#2	95.03(6)
O(4)#1-Cu(1)-N(3)#2	90.50(6)	N(2)-Cu(1)-N(3)#2	173.35(6)
O(1)-Cu(1)-O(2)#3	123.12(6)	O(4)#1-Cu(1)-O(2)#3	91.59(6)
N(2)-Cu(1)-O(2)#3	88.23(6)	N(3)#2-Cu(1)-O(2)#3	85.71(6)

 Table S2 Selected bond distances (Å) and angles (°) for MOF 1.

Symmetry transformations used to generate equivalent atoms: #1: x, -y, z - 1/2; #2 x + 1/2, -y - 1/2, z + 1/2; #3: -x + 1/2, -y - 1/2, -z + 1.

Table S3 The analytical performance of various Ag^+ sensors

Sensor	Linear range(µM)	Detection limit (nM)	Reference
Tetraphenyl ethylene	0.5-80	874	4
Carbon dots	0-90	320	5
Iminazobe derivatixes	0-0.9	101	6
Gold nanoparticle	0.1-0.9	7.3	7
g-C ₃ N ₄ nanosheets	0-0.04	4.2	8
P-DNA@MOF	0-1.6	3.8	This work

 Table S4 Comparison of different sensing platforms for S²⁻ detection

Sensor	Linear range(µM)	Detection limit (nM)	Reference
Nanocomposite	2.67-596	138	9
gold nanoparticles	0.5-10	80	10
DNA@ copper nanoparticles	0.2-20	80	11
nanoAg-carbon	0.05-100	27	12
g-C ₃ N ₄ nanosheets	0-0.03	3.5	8
P-DNA@MOF	0-6	5.5	This work

System	Energy (kcal/mol)	Energy (kcal/mol)
P-DNA	13.5833	8523.64
P-DNA@1	12.5881	7899.08
ds-DNA@Ag+	11.8942	7463.72
$1 + ds - DNA@Ag^+$	11.1862	7019.44
$\Delta\Delta G$	-0.2872	-180.24

Table S5 The single point energy results of P-DNA, P-DNA@1, ds-DNA@Ag⁺ and 1 + ds-DNA@Ag⁺.

Table S6 Detection of Ag^+ in environmental water samples

Sample	C _{Ag+} in the sample (µM)	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%)
Tap water	0	0.60	0.59	98.2	0.16
Lake water	0	0.60	0.61	101.8	0.98
Mineral water	0	0.60	0.61	101.6	0.58

 Table S7 Detection of S²⁻ in environmental water samples

Sample	C _S ²⁻ in the sample (μM)	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%)
Tap water	0	0.60	0.64	107.3	1.37
Lake water	0	0.60	0.59	99.0	3.10
Mineral water	0	0.60	0.61	101.2	2.57

Fig. S1 PXRD patterns of MOF **1** showing an agreement among the simulated, assynthesized and fresh powder of MOF **1** immerse in Hepes buffer (20 mM, pH = 6.5, 7.0, 7.4) for 24 h, respectively.

Fig. S2 The SEM image of MOF 1.

Fig. S3 Comparison of the intensity of the emission peak (582 nm) of the P-DNA in 20 mM Hepes buffer (pH = 6.5, 7.0, 7.4) for 4 h.

Fig. S4 (a) The fluorescence quenching of the P-DNA (50 nM) incubated with MOF 1 with increasing concentrations in Hepes buffer (pH 7.4, 20 mM). (b) The fluorescence recovery of P-DNA@1 (50 nM/ 9 μ M) sensor towards Ag⁺ with different concentrations in Hepes buffer (pH 7.4, 20 mM). (c) The fluorescence quenching of 1 + ds-DNA@Ag⁺ (9 μ M/50 nM/6 μ M) sensing system towards S²⁻ with different concentrations in Hepes buffer (pH 7.4, 20 mM). Insets: plots of fluorescence intensity of P-DNA at 582 nm versus the concentrations of MOF 1 (a), Ag⁺ (b) and S²⁻ (b) respectively. Error bars represent the standard deviation for three measurements.

Fig. S5 (a) The fluorescence quenching of the P-DNA (50 nM) incubated with different concentrations of MOF **1** in different pH Hepes buffer solutions (pH = 6.5, 7.0, 7.4). (b) The fluorescence recovery of P-DNA@1 (50 nM/9.0 μ M) sensing system towards different concentrations of Ag⁺ in different pH buffer solutions (pH = 6.5, 7.0, 7.4). (c) The fluorescence quenching of **1** + ds-DNA@Ag⁺ (9.0 μ M/50 nM/6.0 μ M) sensing system towards various concentrations of S²⁻ in different pH buffer solutions (pH = 6.5, 7.0, 7.4).

Reference

- Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2014.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox. D. J. *Gaussian 09*, revision D.01; Gaussian, Inc.: Wallingford CT, **2013**.
- 3. Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8, 2015.
- 4. Y. Li, H. Yu, G. Shao, F. J. Gan, J. Photochem. Photobiol. A, 2015, 301, 14.
- 5. X. H. Gao, Y. Z. Lu, R. Z. Zhang, S. J. He, J. Ju, M. M. Liu, L. Li, W. Chen, J. *Mater. Chem. C*, 2015, **3**, 2302.
- B. Zhao, Y. Xu, Y. Fang, L. Y. Wang, Q. G. Deng, *Tetrahedron Lett.*, 2015, 56, 2460.
- 7. J. J. Du, H. Du, H. Y. Ge, Sens. Actuators, B, 2017, 4005, 31456.
- 8. S. Wang, D. Du, M. Yang, Q. Lu, R. Ye, X. Yan, Talanta, 2017, 168, 168.
- 9. T. Zhou, N. Wang, C. Li, H. Yuan, D. Xiao, Anal. Chem., 2010, 82, 1705.
- 10. H. H. Deng, S. H. Weng, S. L. Huang, L. N. Zhang, A. L. Liu, X. H. Lin, *Anal. Chim. Acta*, 2014, **852**, 218.
- 11. J. Liu, J. H, Chen, Z. Y. Fang, Analyst, 2012, 137, 5502.
- 12. Z. X. Wang, C. L. Zheng, Q. L. Li, S. N. Ding, Analyst, 2014, 139, 1751.