Supplementary Information

Oxidatively Induced Exposure of Active Surface Area during Microwave Assisted Formation of Pt_3Co Nanoparticles for Oxygen Reduction Reaction

Robin Sandström^a, Joakim Ekspong^a, Eduardo Gracia-Espino^a, Thomas Wågberg^{*,a}

^aDepartment of Physics, Umeå University, Umeå 90187, Sweden

*Corresponding author: E-mail address: thomas.wagberg@umu.se

The current (i) is related to the kinetic current (i_k) and diffusion limited current (i_l) by the equation (Koutecky – Levich)

$$
\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_L} = \frac{1}{i_k} + \frac{1}{0.62nFACD^{2/3}v^{-1/6}\omega^{1/2}},
$$
\n(S1)

where *F* is Faraday constant; *C* is the O_2 concentration in saturated 0.1 M HClO₄ (1.26 *x 10⁻⁶ mol cm⁻³*); *v* is the electrolytes kinematic viscosity (0.00893 *cm² s⁻¹)*; ω is the angular rotational frequency; *D* is the O₂ diffusion coefficient in the electrolyte (*1.93 x 10⁻⁵ cm² s⁻¹); A is the surface* area and n is the electron transfer number. j_k was used to calculate both specific and mass activities. The mass activities were then acquired by j_k normalized by the determined total Ptmass on the electrode (Loading from TGA result while assuming 3:1 Pt:Co atomic ratio) and, after electrochemical active surface area had been obtained through CO-stripping, specific activities was obtained by j_k normalized by the measured electrochemical platinum surface area on the electrode.

 $H₂/O₂$ PEM fuel cell tests were performed on Pt/C and Pt₃Co/C. The electrodes were prepared by spraying an ink formulated with 4 mg ml-1 catalyst powder in 90 % 2-propanol in $(H₂O)_{DI}$ and 33 wt.% Nafion® (DE 520, Ion Power) by 30 min sonication. The spraycoating was performed with a Badger® Krome Renegade airbrush connected to an N_2 pressure of 3 bar by carefully spraying in a serpentine motion on the substrate (Sigracet GDL 24 BC). The electrodes were set to dry overnight on a hotplate at 60° C. Membrane electrode assemblies (MEAs), were produced by sandwiching two electrodes (each with metal loading of about 0.2 mg cm-2) with a Nafion® NR211 membrane by hotpressing at 120 kg cm⁻² for 3 min at 130 °C with a hot-pressing

apparatus (Stahls Hotronix® 6″x6″ heat press). All membranes were pre-treated before use at 80 ^oC in $(H_2O)_{DL}$, 3 % H_2O_2 , $(H_2O)_{DL}$, 0.5 M H_2SO_4 and finally $(H_2O)_{DL}$ respectively and stored in $(H_2O)_{DI}$ until use.

MEAs were loaded into 5 cm2 cell fixture (Baltic FuelCells GmbH) connected to a Scribner 850e fuel cell test station operating at 60 °C. O_2 and H_2 were both humidified to 95% RH (and supplied at a rate of 100 ml min−1). Conditioning took place by keeping the potential constant at 0.55 V until reaching stable performance. Note: Pt/C required appr. 12 h while Pt₃Co/C required a total of appr. 50 h conditioning before stable performance could be reached. Polarization curves were then recorded with increments of 200 mA and 5 min stabilization per data point.

Fig. S1. ECSA measurements by H_{UPD} *<i>in Ar saturated* 0.1 *M* $HClO₄$ *comparing* $Pt₃Co/C*$ *with and without added NH4NO³ during synthesis. The significant difference in ECSA demonstrates the necessity of an oxidative source while forming NPs with organic precursors in this fashion. As a proof of concept, the dashed line in addition show a sample where the Co-acetate was* replaced with $Co(NO_3)_2$ * $6H_2O$ also with omitted NH_4NO_3 showing that the nitrate *decomposition of this Co precursor was not enough to overcome the ECSA of Pt3Co/C*. Note: both reference samples here had to be stopped after ca. 2 min due to excessive heat build-up.*

Fig. S2. Thermogravimetric measurements of the synthesized Pt3Co/C (22.5 wt.%) and Pt3Co/C (23.0 wt.%) samples as well as Pt3Co/C* where the addition of ammonium nitrate was omitted in the synthesis (21.0 wt.%).*

Fig. S3. X-ray diffraction pattern of Pt/C compared to Pt3Co/C. The upshift on Pt fcc reflections support Co incorporation.

	Pt/C	Pt_3Co/C^*	Pt_3Co/C
Initial i_k [mA]	0.8498	1.0444	1.4711
i_k post 6k cycles [mA]	$\,^{\circ}$ 0.6978	0.8477	1.1474

Table S1. Measured kinetic currents (in mA) recorded from LSV curves before and after the accelerated degradation procedure.

Fig. S4. LSV characteristics (a) and HUPD curve (b) of Pt3Co/C as compared to the same synthesis procedure, but with Co(II) and Co(III) metal acetylacetonates. Despite also having satisfactory revealed ECSA, these organic precursors resulted in worse activity than for Pt3Co/C, thus strengthening the confidence in that the correct Co precursor was selected in our study. Note: The selections of Co precursors were limited since similar reaction conditions to Pt3Co/C could not be reached, presumably due to a modification of their dielectric properties, making viable comparisons problematic. Both commercially available Co acetylacetonate salts however were visibly similar and a full 5 min initial reaction could be achieved.*

Fig. S5. LSV curve of Pt3Co/C compared to Pt3Co/C* produced with a Co-nitrate precursor* and omitted $NH₄NO₃$ with a 2 min synthesis, very similar to our previous study with successful synthesis of Pt₃Y/C shown in ref.^{[1](#page-5-0)}. Our results show that this approach is not feasible for Pt₃Co. *ECSA cv-curve of this catalyst can be found in fig. S1.*

Fig. S6. LSV characteristics of Pt/C with the LSV profile post 6000 cycles between 0.6 and 1.0 V vs. RHE in O_2 saturated HClO₄. The accelerated degradation test resulted in an 18 % loss of j_k.

Fig. S7. H_2/O_2 PEM fuel cell performance evaluation of Pt/C and Pt₃Co/C. Polarization curves *were recorded after conditioning at 0.55 V until reaching stable performance. Tests performed with lower nafion content (~20 %) with Pt3Co/C resulted in delamination of the catalyst layer from the membrane and are therefore not comparable.*

References

(1) Sandström, R.; Gracia-Espino, E.; Hu, G.; Shchukarev, A.; Ma, J.; Wågberg, T. Yttria Stabilized and Surface Activated Platinum (Ptxyoy) Nanoparticles through Rapid Microwave Assisted Synthesis for Oxygen Reduction Reaction. *Nano Energy* **2018,** *46*, 141-149.