Supplementary Information

Oxidatively Induced Exposure of Active Surface Area during Microwave Assisted Formation of Pt₃Co Nanoparticles for Oxygen Reduction Reaction

Robin Sandström^a, Joakim Ekspong^a, Eduardo Gracia-Espino^a, Thomas Wågberg^{*,a}

^aDepartment of Physics, Umeå University, Umeå 90187, Sweden

*Corresponding author: E-mail address: thomas.wagberg@umu.se

The current (i) is related to the kinetic current (i_k) and diffusion limited current (i_L) by the equation (Koutecky – Levich)

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_L} = \frac{1}{i_k} + \frac{1}{0.62nFACD^{2/3}\nu^{-1/6}\omega^{1/2}},$$
(S1)

where *F* is Faraday constant; *C* is the O₂ concentration in saturated 0.1 M HClO₄ (*1.26 x 10⁻⁶ mol cm⁻³*); *v* is the electrolytes kinematic viscosity (0.00893 cm² s⁻¹); ω is the angular rotational frequency; *D* is the O₂ diffusion coefficient in the electrolyte (*1.93 x 10⁻⁵ cm² s⁻¹*); A is the surface area and *n* is the electron transfer number. j_k was used to calculate both specific and mass activities. The mass activities were then acquired by j_k normalized by the determined total Ptmass on the electrode (Loading from TGA result while assuming 3:1 Pt:Co atomic ratio) and, after electrochemical active surface area had been obtained through CO-stripping, specific activities was obtained by j_k normalized by the measured electrochemical platinum surface area on the electrode.

 H_2/O_2 PEM fuel cell tests were performed on Pt/C and Pt₃Co/C. The electrodes were prepared by spraying an ink formulated with 4 mg ml⁻¹ catalyst powder in 90 % 2-propanol in $(H_2O)_{DI}$ and 33 wt.% Nafion® (DE 520, Ion Power) by 30 min sonication. The spraycoating was performed with a Badger® Krome Renegade airbrush connected to an N₂ pressure of 3 bar by carefully spraying in a serpentine motion on the substrate (Sigracet GDL 24 BC). The electrodes were set to dry overnight on a hotplate at 60 °C. Membrane electrode assemblies (MEAs), were produced by sandwiching two electrodes (each with metal loading of about 0.2 mg cm⁻²) with a Nafion® NR211 membrane by hotpressing at 120 kg cm⁻² for 3 min at 130 °C with a hot-pressing apparatus (Stahls Hotronix® 6"x6" heat press). All membranes were pre-treated before use at 80 °C in $(H_2O)_{DI}$, 3 % H_2O_2 , $(H_2O)_{DI}$, 0.5 M H_2SO_4 and finally $(H_2O)_{DI}$ respectively and stored in $(H_2O)_{DI}$ until use.

MEAs were loaded into 5 cm2 cell fixture (Baltic FuelCells GmbH) connected to a Scribner 850e fuel cell test station operating at 60 °C. O₂ and H₂ were both humidified to 95% RH (and supplied at a rate of 100 ml min⁻¹). Conditioning took place by keeping the potential constant at 0.55 V until reaching stable performance. Note: Pt/C required appr. 12 h while Pt₃Co/C required a total of appr. 50 h conditioning before stable performance could be reached. Polarization curves were then recorded with increments of 200 mA and 5 min stabilization per data point.

Fig. S1. ECSA measurements by H_{UPD} in Ar saturated 0.1 M HClO₄ comparing Pt₃Co/C* with and without added NH₄NO₃ during synthesis. The significant difference in ECSA demonstrates the necessity of an oxidative source while forming NPs with organic precursors in this fashion. As a proof of concept, the dashed line in addition show a sample where the Co-acetate was replaced with Co(NO₃)₂ * 6H₂O also with omitted NH₄NO₃ showing that the nitrate decomposition of this Co precursor was not enough to overcome the ECSA of Pt3Co/C*. Note: both reference samples here had to be stopped after ca. 2 min due to excessive heat build-up.

Fig. S2. Thermogravimetric measurements of the synthesized Pt_3Co/C^* (22.5 wt.%) and Pt_3Co/C (23.0 wt.%) samples as well as Pt_3Co/C^* where the addition of ammonium nitrate was omitted in the synthesis (21.0 wt.%).

*Fig. S3. X-ray diffraction pattern of Pt/C compared to Pt*₃Co/*C. The upshift on Pt fcc reflections support Co incorporation.*

	Pt/C	Pt ₃ Co/C*	Pt₃Co/C
Initial i _k [mA]	0.8498	1.0444	1.4711
<i>i</i> _k post 6k cycles [<i>mA</i>]	0.6978	0.8477	1.1474

Table S1. Measured kinetic currents (in mA) recorded from LSV curves before and after the accelerated degradation procedure.

Fig. S4. LSV characteristics (a) and H_{UPD} curve (b) of Pt_3Co/C as compared to the same synthesis procedure, but with Co(II) and Co(III) metal acetylacetonates. Despite also having satisfactory revealed ECSA, these organic precursors resulted in worse activity than for Pt_3Co/C , thus strengthening the confidence in that the correct Co precursor was selected in our study. Note: The selections of Co precursors were limited since similar reaction conditions to Pt_3Co/C^* could not be reached, presumably due to a modification of their dielectric properties, making viable comparisons problematic. Both commercially available Co acetylacetonate salts however were visibly similar and a full 5 min initial reaction could be achieved.

Fig. S5. LSV curve of Pt_3Co/C^* compared to Pt_3Co/C^* produced with a Co-nitrate precursor and omitted NH_4NO_3 with a 2 min synthesis, very similar to our previous study with successful synthesis of Pt_3Y/C shown in ref.¹. Our results show that this approach is not feasible for Pt_3Co . ECSA cv-curve of this catalyst can be found in fig. S1.

Fig. S6. LSV characteristics of Pt/C with the LSV profile post 6000 cycles between 0.6 and 1.0 V vs. RHE in O_2 saturated HClO₄. The accelerated degradation test resulted in an 18 % loss of j_k .

Fig. S7. H_2/O_2 PEM fuel cell performance evaluation of Pt/C and Pt₃Co/C. Polarization curves were recorded after conditioning at 0.55 V until reaching stable performance. Tests performed with lower nafion content (~20 %) with Pt₃Co/C resulted in delamination of the catalyst layer from the membrane and are therefore not comparable.

References

(1) Sandström, R.; Gracia-Espino, E.; Hu, G.; Shchukarev, A.; Ma, J.; Wågberg, T. Yttria Stabilized and Surface Activated Platinum (Ptxyoy) Nanoparticles through Rapid Microwave Assisted Synthesis for Oxygen Reduction Reaction. *Nano Energy* **2018**, *46*, 141-149.