Supplemental Data

Synthesis of 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands for use in palladium-catalyzed cross-coupling reactions

Ryan Q. Tran, Seth A. Jacoby, Kaitlyn E. Roberts, William A. Swann, Nekoda W. Harris, Long P. Dinh, Emily L. Denison, Larry Yet*

Department of Chemistry, University of South Alabama, Mobile, AL 36688

General Considerations

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were obtained on a JEOL 500 MHz NMR at $500 \mathrm{MHz}, 125 \mathrm{MHz}$, and 201 MHz , respectively, as solutions in CDCl_{3} or in DMSO- d_{6}. Chemical shifts were reported in parts per million (ppm, δ). TLC analyses were performed on Whatman flexible aluminum backed TLC plates with a fluorescent indicator. Detection was conducted by UV absorption (254 nm). High-purity grade silica gel (Merck Grade 7734), pore size $60 \AA, 70-230$ mesh was used for all chromatographic separations. All chemicals used for synthetic procedures were reagent grade or better. Solutions were concentrated in vacuo with a rotary evaporator and the residue was purified by column chromatography using silica gel.

Preparation of 2-iodo-3-arylimidazo[1,2-a]pyridines 2a-d:

2-Iodo-3-phenylimidazo[1,2-a]pyridine (2a): A mixture of 2-aminopyridine (1, $200 \mathrm{mg}, 2.13$ mmol), phenylacetylene ($217 \mathrm{mg}, 2.13 \mathrm{mmol}$), iodine ($540 \mathrm{mg}, 2.13 \mathrm{mmol}$), and copper acetate monohydrate (43 mg, 0.213 mmol) in 1,2-dichlorobenzene (25 mL) was stirred overnight at 120
${ }^{\circ} \mathrm{C}$ under a balloon of oxygen. The reaction was quenched with water and was extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and condensed in vacuo. Column chromatography was performed using acetone:dichloromethane (3:97) eluent system to yield a yellow solid ($209 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.84$ (dd, $J=$ 27.3, $21.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H})$, $6.98-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{td}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.0,130.2,129.3$, $128.3,127.2,125.2,123.3,117.3,113.1,93.8$.

2-Iodo-3(2-methoxyphenyl)imidazo[1,2-alpyridine (2b): 2-Aminopyridine (1, $1.00 \mathrm{~g}, 10.6$ mmol), 2-ethynylanisole ($1.40 \mathrm{~g}, 10.6 \mathrm{mmol}$), iodine ($2.70 \mathrm{~g}, 10.6 \mathrm{mmol}$) and copper acetate monohydrate ($212 \mathrm{mg}, 1.06 \mathrm{mmol}$) were dissolved in 1,2-dichlorobenzene (100 mL). Septa was added and O_{2} was bubbled into flask through two needles and was stirred at $120^{\circ} \mathrm{C}$ overnight. The reaction was quenched with water (25 mL) and was extracted with dichloromethane (5×200 mL). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and condensed in vacuo. Column chromatography was performed using ethyl acetate:hexanes (2:1) to give a yellow solid (1.47 g, $39 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{td}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.6,147.0,133.4,131.3,125.0,124.8,124.7,121.1,116.9,116.8,112.1,111.5,94.7$, 55.6.

2-Iodo-3(3-methoxyphenyl)imidazo[1,2-alpyridine (2c): A mixture of 2-aminopyridine (1, 1.00 $\mathrm{g}, 10.6 \mathrm{mmol})$, 3-methoxyphenylacetylene ($1.41 \mathrm{~g}, 10.6 \mathrm{mmol}$), iodine ($2.70 \mathrm{~g}, 10.6 \mathrm{mmol}$), and copper acetate monohydrate ($213 \mathrm{mg}, 1.06 \mathrm{mmol}$) in 1,2-dichlorobenzene (100 mL) was stirred overnight at $120^{\circ} \mathrm{C}$ under a balloon of oxygen. The reaction was quenched with water and was extracted with dichloromethane (3 x 25 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (2:1) eluent system to yield a yellow solid ($1.12 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}$, $2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{td}, J=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 160.1$, $146.8,132.4,130.5,129.4,127.8,125.0,123.3,117.0,115.6,114.6,112.9,93.9,55.5$.

2-Iodo-3(4-methoxyphenyl)imidazo[1,2-alpyridine (2d): A mixture of 2-aminopyridine (1, 400 $\mathrm{mg}, 4.25 \mathrm{mmol}$), 4-methoxyphenylacetylene ($562 \mathrm{mg}, 4.25 \mathrm{mmol}$), iodine ($1.08 \mathrm{~g}, 4.25 \mathrm{mmol}$), and copper acetate monohydrate ($86 \mathrm{mg}, 0.425 \mathrm{mmol}$) in 1,2-dichlorobenzene (40 mL) was stirred overnight at $120^{\circ} \mathrm{C}$ under a balloon of oxygen. The reaction was quenched with water and was extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and condensed in vacuo. Column chromatography was performed using
hexanes:ethyl acetate (2:1) eluent system to yield a yellow solid ($634 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{td}, J=$ $8.8,6.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.2,146.8,131.6,129.2,127.0,124.8,123.2,120.5,114.8,112.7,93.9,55.5$.

2-(Di-tert-butylphosphino)-3-phenylimidazo[1,2-alpyridine (3a): To a vial was added 2-iodo-3phenylimidazo $[1,2-a]$ pyridine ($\mathbf{2 a}, 200 \mathrm{mg}, 0.630 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($244 \mathrm{mg}, 0.760 \mathrm{mmol}$), DIPPF ($7 \mathrm{mg}, 0.016 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.0126 \mathrm{mmol})$ in 1,4-dioxane (4.0 mL) was purged with nitrogen. The reaction was capped and was stirred at room temperature for 1 h . The reaction was purged with nitrogen for 5 minutes and di-tert-butylphosphine ($92 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added and was capped in a vial. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using hexanes:ethyl acetate (3:2) eluent was performed to give a reddish solid ($89 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 5 \mathrm{H})$, $7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.64(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 145.4$, 131.3, 129.0, 125.1, 124.3, 123.6, 118.1, 112.4, 111.7, 33.1, 30.7, 26.9. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.2$.

2-(Dicyclohexylphosphino)-3-phenylimidazo[1,2-alpyridine (3b): To a vial was added 2-iodo-3-phenylimidazo[1,2-a]pyridine (2a, $114 \mathrm{mg}, 0.356 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(139 \mathrm{mg}, 0.427 \mathrm{mmol})$, DIPPF ($4 \mathrm{mg}, 0.0089 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.00712 \mathrm{mmol})$ in 1,4 -dioxane $(2.0 \mathrm{~mL})$ and was purged with nitrogen for five minutes. The reaction was capped and was stirred at room temperature for 1 h . The reaction was purged with nitrogen for 5 minutes and dicyclohexylphosphine ($71 \mathrm{mg}, 0.356 \mathrm{mmol}$) was added. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:dichloromethane (3:7) eluent was performed to give a white solid (70 mg, 50\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.61(\mathrm{~m}, 9 \mathrm{H}), 1.42-1.09(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $155.0,147.0,141.4,140.4,134.1,133.6,131.1,128.9,128.6,124.5,123.4,118.0,112.0,33.9$, 31.1, 29.6, 27.5, 26.3. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$-22.8.

2-(Diphenylphosphino)-3-phenylimidazo[1,2-a]pyridine (3c): 2-Iodo-3-phenylimidazo[1,2a]pyridine ($\mathbf{2 a}, 132 \mathrm{mg}, 0.410 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(159 \mathrm{mg}, 0.492 \mathrm{mmol})$, DIPPF $(4 \mathrm{mg}, 0.0103$ $\mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.0082 \mathrm{mmol})$ were dissolved in 1,4 -dioxane $(4.0 \mathrm{~mL})$ in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 1 h. The reaction was purged with nitrogen for 5 minutes and diphenylphosphine ($74 \mathrm{mg}, 0.410$ mmol) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with dichloromethane. The filtrate was condensed
in vacuo. Column chromatography using acetone:dichloromethane (5:95) eluent was performed to give a white solid ($95 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.2$ Hz, 1H), $7.55-7.45(\mathrm{~m}, 10 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.17$ (ddd, $J=9.2,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{td}$, $J=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 146.7,140.0,137.8,137.7,133.9,133.7,130.7,129.0$, $128.9,128.8,128.4,124.9,123.7,118.6,112.4 .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-28.8$.

2-(Di-tert-butylphosphino)-3-(2-methoxyphenyl)imidazo[1,2-a]pyridine (3d): 2-Iodo-3-(2-methoxyphenyl)imidazo[1,2-a]pyridine (2b, $200 \mathrm{mg}, 0.571 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($222 \mathrm{mg}, 0.686$ $\mathrm{mmol})$, DIPPF ($24 \mathrm{mg}, 0.057 \mathrm{mmol}$), and $\operatorname{Pd}(\mathrm{OAc})_{2}(6.5 \mathrm{mg}, 0.029 \mathrm{mmol})$ were dissolved in $1,4-$ dioxane $(3.0 \mathrm{~mL})$ in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and di-tertbutylphosphine ($83 \mathrm{mg}, 0.572 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:hexanes (1:2) eluent was performed to give a white solid (111 mg, 53\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, 9H), $1.12(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.0,145.6,141.5,131.6,134.4,130.7$, $124.7,124.0,120.9,118.6,117.8,110.0,55.3,32.7,31.0,30.2 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.7$.

2-(Dicyclohexylphosphino)-3-(2-methoxyphenyl)imidazo[1,2-a]pyridine (3e): 2-Iodo-3-(2-methoxyphenyl)imidazo[1,2-a]pyridine ($\mathbf{2 b}, 300 \mathrm{mg}, 0.857 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(333 \mathrm{mg}, 1.03$ $\mathrm{mmol})$, DIPPF ($9 \mathrm{mg}, 0.0214 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 0.0171 \mathrm{mmol})$ were dissolved in 1,4- dioxane (3.0 mL) in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and dicyclohexylphosphine ($170 \mathrm{mg}, 0.8568 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:hexanes (1:2) eluent was performed to give a white solid ($300 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $2.42-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.29-0.90(\mathrm{~m}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.0,146.0,140.3,134.2,130.7,124.8,124.3,120.9,118.1,117.5,111.1,55.5,34.2$, 32.9, 30.3, 29.1, 27.1, 26.6. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-22.2$.

2-(Diphenylphosphino)-3-(2-methoxyphenyl)imidazo[1,2-a]pyridine
(3f): \quad 2-Iodo-3(2-
methoxyphenyl)imidazo[1,2-a]pyridine ($\mathbf{2 b}, 300 \mathrm{mg}, 0.857 \mathrm{mmol}$) was dissolved in 1,4-dioxane
(3 mL) and purged under nitrogen in a brown vial. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(333 \mathrm{mg}, 1.02 \mathrm{mmol})$, DIPPF (9 mg , $0.0214 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.0171 \mathrm{mmol})$ were added and stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and diphenylphosphine $(160 \mathrm{mg}$, 0.857 mmol) was added and was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using acetone:dichloromethane (4:96) eluent gave a white solid (240 $\mathrm{mg}, 69 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 7 \mathrm{H})$, $7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.8,146.8,140.3,138.1,134.2,133.6,133.4,131.0,130.1,128.5,128.1,124.9$, 124.7, 120.8, 118.2, 117.5, 111.7, 55.3. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-27.8$.

2-(Di-tert-butylphosphino)-3-(3-methoxyphenyl)imidazo[1,2-a]pyridine (3g): 2-Iodo-3(3-methoxyphenyl)imidazo[1,2-a]pyridine (2c, $300 \mathrm{mg}, 0.857 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(333 \mathrm{mg}, 1.03$ $\mathrm{mmol})$, DIPPF $(9.0 \mathrm{mg}, 0.0214 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 0.0171 \mathrm{mmol})$ were dissolved in 1,4- dioxane (3.0 mL) in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and di-tert-butylphosphine ($125 \mathrm{mg}, 0.857 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and were washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:hexanes (3:7) eluent was performed to give a white solid (197 mg, 62%). ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dt}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{ddd}, J=9.1,6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 159.8,145.4,141.2,131.3,130.0$, $129.9,124.3,123.7,123.5,118.0,117.0,114.1,111.7,55.3,33.0,30.7 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.2$.

2-(Dicyclohexylphosphino)-3-(3-methoxyphenyl)imidazo[1,2-a]pyridine (3h): 2-Iodo-3(3-methoxyphenyl)imidazo[1,2-a]pyridine (2c, $300 \mathrm{mg}, 0.857 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(333 \mathrm{mg}, 1.03$ $\mathrm{mmol})$, $\operatorname{DIPPF}(9.0 \mathrm{mg}, 0.0214 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 0.0171 \mathrm{mmol})$ were dissolved in 1,4- dioxane (3.0 mL) in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and dicyclohexylphosphine ($170 \mathrm{mg}, 0.857 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and were washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:hexanes (3:7) eluent was performed to give a white solid ($257 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{tq}, J=11.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.53(\mathrm{~m}, 10 \mathrm{H}), 1.37-1.05(\mathrm{~m}$, $11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.8,145.8,140.2,133.8,130.6,129.9,124.6,123.7,117.8,116.7$, 114.1, 111.9, 55.3, 33.9, 30.8, 29.8, 27.1, 26.6. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-22.6$.

2-(Diphenylphosphino)-3-(3-methoxyphenyl)imidazo[1,2-a]pyridine (3i): 2-Iodo-3-(3-methoxyphenyl)imidazo[1,2-a]pyridine (2c, $160 \mathrm{mg}, 0.457 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.009$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(177 \mathrm{mg}, 0.548 \mathrm{mmol})$ and DIPPF $(4.4 \mathrm{mg}, 0.0105 \mathrm{mmol})$ were dissolved in dioxane (3 mL) while purging with nitrogen. After stirring for 2 h at room temperature capped in a brown vial, diphenylphosphine ($85 \mathrm{mg}, 0.457 \mathrm{mmol}$) was added while purging. Vial purged an additional five minutes, capped, and was heated overnight at $80^{\circ} \mathrm{C}$. The mixture was filtered over Celite washing with ethyl acetate and was purified by silica gel column chromatography with a dichloromethane:acetone system (98:2) to give a white solid (148 mg, 79\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.9,146.6$, $140.1,137.8,133.9,132.9,130.0,128.5,128.4,125.0,123.8,122.8,118.5,116.2,116.1,114.8$, 112.5, 55.4. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-28.3$.

2-(Di-tert-butylphosphino)-3-(4-methoxyphenyl)imidazo[1,2-a]pyridine (3j): 2-Iodo-3(4-methoxyphenyl)imidazo[1,2-a]pyridine (2d, $155 \mathrm{mg}, 0.443 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(172 \mathrm{mg}, 0.531$
$\mathrm{mmol})$, DIPPF ($5.0 \mathrm{mg}, 0.0111 \mathrm{mmol}$), and $\operatorname{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.0089 \mathrm{mmol})$ were dissolved in 1,4- dioxane (3.0 mL) in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and di-tert-butylphosphine ($65 \mathrm{mg}, 0.443 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80{ }^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and were washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl acetate:hexanes (3:7) eluent was performed to give a white solid ($119 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $9 \mathrm{H}), 1.23(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 159.8,145.2,132.5,124.1,123.7,122.1$, 118.1, 114.5, 111.6, 55.3, 32.9, 30.7, 30.6, 26.9. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.3$.

2-(Dicyclohexylphosphino)-3-(4-methoxyphenyl)imidazo[1,2-a]pyridine (3k): 2-Iodo-3(4-methoxyphenyl)imidazo[1,2-a]pyridine (2d, $160 \mathrm{mg}, 0.457 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 0.549$ $\mathrm{mmol})$, DIPPF ($5.0 \mathrm{mg}, 0.011 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.00914 \mathrm{mmol})$ were dissolved in 1,4- dioxane (2.0 mL) in a vial while purging with nitrogen. The reaction was capped and was stirred at room temperature for 2 h . The reaction was purged with nitrogen for 5 minutes and dicyclohexylphosphine ($91 \mathrm{mg}, 0.457 \mathrm{mmol}$) was added and was capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and were washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using ethyl
acetate:hexane (3:7) eluent was performed to give a white solid (106 mg, 55\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{td}, J=6.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.15(\mathrm{~m}$, $2 \mathrm{H}), 1.80-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.33-1.04(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.8,145.7,140.0,132.3$, $124.5,123.6,121.5,117.8,114.5,111.8,55.4,33.8,30.8,29.8,27.1,26.6 .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-$ 22.6.

2-Diphenylphosphino-3(4-methoxyphenyl)imidazo[1,2-alpyridine (3l): To a vial was added 2-iodo-3(4-methoxyphenyl)imidazo[1,2-a]pyridine (2d, $155 \mathrm{mg}, 0.443 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (172 mg , $0.532 \mathrm{mmol})$, $\operatorname{DIPPF}(5.0 \mathrm{mg}, 0.0111 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.0089 \mathrm{mmol})$ in $1,4-$ dioxane (2.0 mL) under nitrogen. The reaction was capped and was stirred at room temperature for 1 h . The reaction was purged with nitrogen for 5 minutes and diphenylphosphine (233 mg , 0.714 mmol) was added and was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite and washed with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using acetone:dichloromethane (3:97) eluent gave a white solid (108 $\mathrm{mg}, 59 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 160.1,146.4,139.3,137.6,133.9$, 132.7, 132.0, 130.9, 128.4, 125.1, 123.7, 120.7, 118.4, 114.5, 112.5, 55.4. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 22.2.

(2-Iminopyridin-1(2H)-yl)acetic acid 1 : To a 50 mL round bottom flask was added 2aminopyridine ($15.0 \mathrm{~g}, 160 \mathrm{mmol}$), chloroacetic acid ($12.7 \mathrm{~g}, 133 \mathrm{mmol}$) in water (20 mL). Triethylamine ($23 \mathrm{~mL}, 153 \mathrm{mmol}$) was dropwise added to the solution. The reaction was stirred at $90{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was allowed to cool to room temperature then added 15 mL ice-cold ethanol and stirred on an ice-bath for another 2 h . The white solid was collected using vacuum filtration and washed with ice-cold ethanol ($3 \times 50 \mathrm{~mL}$) yielding $15.7 \mathrm{~g}(65 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.75(\mathrm{td}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (td, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$.

2-Chloroimidazo[1,2-a]pyridine ${ }^{1}$: To a 500 mL round bottom flask was added (2-iminopyridin$1(2 H)$-yl)acetic acid (15.7 g, 104 mmol) in toluene (100 mL). Phosphorus oxychloride (30 mL , 310 mmol) was dropwise added to the mixture. The reaction was heated under reflux for 16 h . The reaction mixture was allowed to cool to room temperature then 200 mL ice-cold water was added and was stirred for 15 minutes. The reaction was quenched with $50 \% \mathrm{NaOH}(75 \mathrm{~mL})$ and the organic layers were extracted. The aqueous layer was further extracted with dichloromethane (5 x 30 mL). The combined organic layers were dried over sodium sulfate and condensed in vacuo yielding a brown solid $(13.6 \mathrm{~g}, 86 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

4
2-Iodoimidazo[1,2-a]pyridine (4) ${ }^{2}$: To a 500 mL round bottom flask was added 2-chloroimidazo[1,2-a]pyridine ($6.0 \mathrm{~g}, 39.2 \mathrm{mmol}$), $\mathrm{NaI}(17.7 \mathrm{~g}, 118 \mathrm{mmol})$ in acetonitrile (173 $\mathrm{mL})$. The first portion of $57 \% \mathrm{w} / \mathrm{w} \mathrm{HI}(17.3 \mathrm{~mL})$ was added to the reaction mixture and was stirred under reflux for 6 h . The second portion of $\mathrm{HI}(11.1 \mathrm{~mL})$ was added. Mixture was stirred under reflux for another 6 h . The reaction mixture was allowed to cool to room temperature, neutralized with $50 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}(60 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(30 \mathrm{~mL})$ and extracted with dichloromethane ($5 \times 40 \mathrm{~mL}$). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and condensed in vасио. The crude product was collected and was crystallized from hexanes/ethyl acetate (1:1) yielding a brown solid $(5.70 \mathrm{~g}, 60 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{td}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2,3-Diiodoimidazo[1,2-a]pyridine (5): To a 100 mL round bottom flask was added 2-iodoimidazo[1,2-a]pyridine ($4,2.0 \mathrm{~g}, 8.2 \mathrm{mmol}$), NIS ($2.0 \mathrm{~g}, 9.0 \mathrm{mmol}$) in acetonitrile (35 mL) was stirred at room temperature for 3 h under nitrogen. The reaction mixture was quenched with water (20 mL), $10 \% \mathrm{KOH}(20 \mathrm{~mL})$, saturated sodium thiosulfate $(15 \mathrm{~mL})$ and extracted with dichloromethane ($4 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo yielding a brown solid $(2.90 \mathrm{~g}, 97 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dt}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{dt}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

3-Bromo-2-iodoimidazo[1,2-a]pyridine (6): To a 100 mL round bottom flask was added 2-iodoimidazo[1,2-a]pyridine $(4,2.0 \mathrm{~g}, 8.2 \mathrm{mmol})$, NBS $(1.6 \mathrm{~g}, 9.0 \mathrm{mmol})$ in acetonitrile $(35 \mathrm{~mL})$ was stirred at room temperature for 3 h under nitrogen. The reaction mixture was quenched with water (20 mL), $10 \% \mathrm{KOH}(20 \mathrm{~mL})$, saturated sodium thiosulfate $(15 \mathrm{~mL})$ and extracted with dichloromethane ($4 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo yielding a green solid ($2.60 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(2,3-Dimethoxyphenyl)-2-iodoimidazo[1,2-alpyridine (7a): To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, $1.3 \mathrm{~g}, 4.0 \mathrm{mmol}$), 2,3-dimethoxyphenylboronic acid $(650 \mathrm{mg}, 4.40 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(848 \mathrm{mg}, 8.00 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(232 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $1,4-$ dioxane $/ \mathrm{H}_{2} \mathrm{O}$ (12 mL, 2:1) was purged with argon. Reaction vial was capped and stirred at 100 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 35 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a colorless oil (790 mg, 59\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ $(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.7,149.4,146.8,127.0,124.8,123.3,122.9,120.6,117.2,113.2,112.8$, 111.7, 93.9, 56.2, 56.1.

3-(3,4-Dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7b): To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, $650 \mathrm{mg}, 2.0 \mathrm{mmol}$), 3,4-dimethoxyphenylboronic $\operatorname{acid}(325 \mathrm{mg}, 2.20 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(424 \mathrm{mg}, 4.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a yellow oil (360 mg, 54\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.6,146.6,126.9,124.8,123.2,122.7,120.5,116.9,113.2,112.8$, 111.6, 93.9, 56.2, 56.0.

3-(2,5-Dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7c): To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, $650 \mathrm{mg}, 2.0 \mathrm{mmol}$), 2,5-dimethoxyphenylboronic
acid ($325 \mathrm{mg}, 2.2 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(424 \mathrm{mg}, 4.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a yellow oil (390 mg, 58\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{td}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 153.6,151.7,146.9,124.9,118.6,117.5,116.7,116.2,112.6$, 112.1, 94.6, 56.1, 55.9.

2-Iodo-3-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]pyridine (7d); To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, 1.0 g 2.7 mmol), 3,4,5-trimethoxyphenylboronic acid ($630 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(573 \mathrm{mg}, 5.4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(156 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $1,4-$ dioxane $/ \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at 100 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 35 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a yellow solid (564 mg, 50\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, J=4.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dt, $J=$ $9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$,
$6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.8,146.8,138.6,127.0,125.0,123.5,123.3,117.1$, $113.0,107.3,93.7,61.0,56.4$.

3-(2,6-Dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7e): To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, $1.30 \mathrm{~g}, 3.50 \mathrm{mmol}$), 2,6-dimethoxyphenylboronic $\operatorname{acid}(700 \mathrm{mg}, 3.85 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(742 \mathrm{mg}, 7.00 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(202 \mathrm{mg}, 0.180 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a colorless oil $(534 \mathrm{mg}, 40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=$ 8.6 Hz, 1H), $7.09(\mathrm{td}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.65(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $159.3,146.9,131.9,124.5,124.3,121.6,116.7,111.9,104.2,96.6,55.9$.

2-Iodo-3-(2,3,4-trimethoxyphenyl)imidazo[1,2-alpyridine (7f): To a 25 mL reaction vial was added 2,3-diiodoimidazo[1,2-a]pyridine (5, $1.30 \mathrm{~g}, 3.50 \mathrm{mmol}$), 2,3,4-trimethoxyphenylboronic
$\operatorname{acid}(819 \mathrm{mg}, 3.86 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(742 \mathrm{mg}, 7.00 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(203 \mathrm{mg}, 0.175 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using dichloromethane:acetone (95:5) eluent to give a yellow oil ($848 \mathrm{mg}, 58 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.1,152.6,146.9$, $142.4,127.8,124.8,116.7,114.7,112.3,107.8,94.8,61.3,61.2,56.2$.

3-Bromo-2-(diphenylphosphino)imidazo[1,2-alpyridine (8): To a 25 mL reaction vial was added 3-bromo-2-iodoimidazo[1,2-a]pyridine ($\mathbf{6}, 1.0 \mathrm{~g}, 3.09 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.20 \mathrm{~g}, 3.71$ mmol), DIPPF ($33 \mathrm{mg}, 0.0773 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(14 \mathrm{mg}, 0.0620 \mathrm{mmol})$ in 1,4-dioxane (6 mL) was purged with argon. The reaction vial was capped and stirred at room temperature for 2 h. The reaction was purged with argon for 5 minutes then added diphenylphosphine (576 mg , $3.09 \mathrm{mmol})$ was added and capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (3:1) eluent to give a white solid (815 mg, 70\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.38$ $(\mathrm{m}, 6 \mathrm{H}), 7.11(\mathrm{td}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 147.3,141.4$, $136.5,134.1,133.9,128.9,125.3,124.0,118.3,113.3,104.1,103.8$.

2-(Di-tert-butylphosphino)-3-(3,4-dimethoxyphenyl)imidazo[1,2-a]pyridine (3m): To a 25 mL reaction vial was added 3-(3,4-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7b, $385 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(393 \mathrm{mg}, 1.2 \mathrm{mmol})$, DIPPF $(43 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.050$ mmol) in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and was stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added di-tert-butylphosphine ($189 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) and capped. The reaction was stirred overnight at 80 ${ }^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes: ethyl acetate (3:2) eluent to give a yellow solid ($290 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.8,147.8,145.6$, $141.3,131.5,131.1,126.1,125.3,124.2,122.5,117.6,113.2,111.1,60.8,55.9,33.3,33.1,31.1$, 31.0. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.2$.

2-(Di-tert-butylphosphino)-3-(2,3-dimethoxyphenyl)imidazo[1,2-a]pyridine (3n): To a 25 mL reaction vial was added 3-(2,3-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7a, 280 mg ,
$0.74 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(287 \mathrm{mg}, 0.89 \mathrm{mmol})$, DIPPF ($31 \mathrm{mg}, 0.070 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}$, 0.040 mmol) in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and was stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added di-tert-butylphosphine ($140 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) was added and capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (1:1) eluent to give an orange oil ($91 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.83$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.88$ $(\mathrm{s}, 1 \mathrm{H}), 6.63(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{~Hz}), 1.23(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.3,149.1,145.3,141.1,140.9,134.3,133.9,124.2,123.9,123.7,122.3$, $118.0,114.3,111.7,111.5,56.0,55.9,33.0,32.8,30.7,30.6 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.4$.

2-(Di-tert-butylphosphino)-3-(2,5-dimethoxyphenyl)imidazo[1,2-a]pyridine (3o): To a 25 mL reaction vial was added 3-(2,5-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7c, 350 mg , $0.92 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(360 \mathrm{mg}, 1.1 \mathrm{mmol})$, DIPPF ($48 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(21 \mathrm{mg}$, 0.09 mmol) in 1,4-dioxane (5 mL) was purged with argon. The reaction vial was capped and was stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added di-tert-butylphosphine ($200 \mu \mathrm{~L}, 0.92 \mathrm{mmol}$) and capped. The reaction was stirred overnight at 80 ${ }^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (3:1)
eluent to give a yellow solid (224 mg, 61\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $153.3,152.3,145.6,141.3,131.6,124.7,124.1,119.7,119.3,117.8,115.6,111.9,111.1,55.8$, 55.7, 31.0, 30.1, 30.4, 30.3. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.5$.

2-(Di-tert-butylphosphino)-3-(3,4,5-dimethoxyphenyl)imidazo[1,2-a]pyridine (3p): To a vial was added 2-iodo-3-(3', $\mathbf{4}^{\prime}, 5^{\prime}$ '-dimethoxyphenyl)imidazo[1,2-a]pyridine (7d, $200 \mathrm{mg}, 0.490$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(190 \mathrm{mg}, 0.590 \mathrm{mmol})$, $\operatorname{DIPPF}(5.0 \mathrm{mg}, 0.0120 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{mg}$, 0.0090 mmol) in 1,4-dioxane (4.0 mL) under nitrogen. The reaction was capped and was stirred at room temperature for 1 hour. The reaction was purged with nitrogen for 5 minutes and di-tertbutylphosphine ($1.0 \mathrm{~mL}, 0.500 \mathrm{mmol}, 0.5 \mathrm{M}$ in hexanes) was added and was stirred overnight at $80^{\circ} \mathrm{C}$. The solids were removed by filtration over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography using hexanes:ethyl acetate (2:1) eluent gave an brownish white solid ($130 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 5 \mathrm{H}), 1.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCL}_{3}\right) \delta 153.5,145.2$, $140.8,138.3,134.0,124.2,118.1,111.7,108.5,76.8,60.9,56.2,32.8,30.7,26.9 .{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCL}_{3}\right) \delta 8.3$.

2-(Dicyclohexylphosphino)-3-(2,3-dimethoxyphenyl)imidazo[1,2-a]pyridine (3q): To a 25 mL reaction vial was added 3-(2,3-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7a, 280 mg , $0.74 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(287 \mathrm{mg}, 0.89 \mathrm{mmol})$, DIPPF ($31 \mathrm{mg}, 0.07 \mathrm{mmol}$), and $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}$, $0.04 \mathrm{mmol})$ in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and was stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added dicyclohexylphosphine ($163 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) and capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (1:1) eluent to give an orange oil (153 mg, 46\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 9 \mathrm{H}), 1.07-1.17(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 149.3,149.1,140.1,133.8,133.5,124.4123 .7,121.7,117.8,114.07,111.8,56.0,55.9,33.8$, 30.8, 29.8, 27.2, 27.0, 26.6. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-22.6$.

2-(Dicyclohexylphosphino)-3-(2,6-dimethoxyphenyl)imidazo[1,2-a]pyridine (3r): To a 30 mL reaction vial was added 3-(2,6-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7e, $520 \mathrm{mg}, 1.4$
$\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(542 \mathrm{mg}, 1.7 \mathrm{mmol}), \operatorname{DIPPF}(15 \mathrm{mg}, 0.035 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{OAc})_{2}(6.2 \mathrm{mg}, 0.028$ mmol) in 1,4-dioxane (6 mL) was purged with argon. The reaction vial was capped and was stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes; dicyclohexylphosphine ($1.4 \mathrm{mmol}, 2.8 \mathrm{~mL}, 0.5 \mathrm{M}$ in hexanes) was added and the vial capped. The reaction was stirred overnight at $80{ }^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes: ethyl acetate (3:2) eluent to give an yellow solid ($328 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{t}, J=6.8,1 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 2.05-$ $2.22(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.30-1.01(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4$, $146.4,141.1,131.4,124.3,117.5,110.9,106.4,103.9,77.3,55.4,33.3,30.4,26.6 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-20.8.

2-(Dicyclohexylphosphino)-3-(3,4-dimethoxyphenyl)imidazo[1,2-a]pyridine (3s): To a 25 mL reaction vial was added 3-(3,4-dimethoxyphenyl)-2-iodoimidazo[1,2-a]pyridine (7b, $385 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($393 \mathrm{mg}, 1.2 \mathrm{mmol}$), DIPPF ($43 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.050$ mmol) in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added dicyclohexylphosphine ($223 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) and capped. The reaction was stirred overnight at 80 ${ }^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was
condensed in vacuo. Column chromatography was performed using hexanes: ethyl acetate (3:2) eluent to give an yellow solid ($238 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 6.94-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.23$ (m, 2H), 1.03-1.71 (m, 20H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.9,147.6,145.8,131.3,131.0,125.9$, $125.6,124.3,123.1,117.0,113.3,111.6,60.8,55.9,34.2,31.3,30.7,30.1,29.8,27.2,26.4 .{ }^{31} \mathrm{P}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$-23.1.

2-(Dicyclohexylphosphino)-3-(2,3,4-trimethoxyphenyl)imidazo[1,2-a]pyridine (3t): To а 25 mL reaction vial was added 2-iodo-3-(2,3,4-trimethoxyphenyl)imidazo[1,2-a]pyridine (7f, 350 $\mathrm{mg}, 0.85 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(331 \mathrm{mg}, 1.02 \mathrm{mmol})$, DIPPF ($36 \mathrm{mg}, 0.09 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(10$ $\mathrm{mg}, 0.04 \mathrm{mmol}$) in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added dicyclohexylphosphine $(190 \mu \mathrm{~L}, 0.85 \mathrm{mmol})$ and capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite washing with ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (3:1) eluent to give a brown solid ($85 \mathrm{mg}, 21 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.79(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 154.7, 152.5, 146.1, 142.2, 140.3, 131.5, 128.7, 125.2, 124.5, 117.4, 115.6, 107.5, 61.1, 61.0, 56.0, 34.2, 33.9, 31.3, 29.5, 27.2, 26.6. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-23.0$.

$3 u$

2-(Dicyclohexylphosphino)-3-(3,4,5-trimethoxyphenyl)imidazo[1,2-alpyridine (3u): To а 25 mL reaction vial was added 2-iodo-3-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]pyridine (7d, 290 $\mathrm{mg}, 0.71 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(275 \mathrm{mg}, 0.85 \mathrm{mmol})$, DIPPF ($30 \mathrm{mg}, 0.07 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(9$ $\mathrm{mg}, 0.04 \mathrm{mmol}$) in 1,4-dioxane (3 mL) was purged with argon. The reaction vial was capped and stirred at room temperature for 2 h . The reaction was purged with argon for 5 minutes then added dicyclohexylphosphine ($190 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$) and capped. The reaction was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered over celite and transferred using ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using hexanes: ethyl acetate (1:1) eluent to give an orange oil ($183 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.62(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $6 \mathrm{H}), 2.12-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.53(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.5,145.7,140.0,139.8$, 138.2, 133.9, 124.7, 124.5, 123.7, 117.8, 111.9, 108.1, 60.9, 56.2, 33.8, 30.8, 29.8, 27.1, 26.9, 26.5. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$-22.5.

2-(Diphenylphosphino)-3-(2,3-dimethoxyphenyl)imidazo[1,2-a]pyridine (3v): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 233 mg ,
0.610 mmol), 2,3-dimethoxyphenylboronic acid ($122 \mathrm{mg}, 0.670 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(129 \mathrm{mg}, 1.20$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.0305 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using chloroform:acetone (96:4) eluent to give a colorless oil (135 mg, 52\%). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29$ (m, 3H), $7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.0$, 147.7, 146.9, 140.0, 137.8, 133.9, 133.6, 133.5, 130.6, 130.2, 128.6, 128.5, 128.4, 128.3, 128.2, $125.5,125.2,124.5,123.2,118.0,113.6,111.9,60.9,56.0 .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-29.2$.

2-(Diphenylphosphino)-3-(2,5-dimethoxyphenyl)imidazo[1,2-a]pyridine (3w): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 190 mg , 0.52 mmol), 2,5-dimethoxyphenylboronic acid ($106 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($110 \mathrm{mg}, 1.04$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using chloroform:acetone (96:4) eluent to give a colorless oil (149 mg, 68\%). ${ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{td}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,152.0,146.7,140.3,137.8,134.3,134.1$, $133.5,133.3,130.1,129.8,128.6,128.2,125.0,118.6,118.1,116.3,112.5,111.9,55.9,55.7 .{ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) δ-27.3.

2-(Diphenylphosphino)-3-(3,4-dimethoxyphenyl)imidazo[1,2-a]pyridine (3x): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 190 mg , 0.52 mmol), 3,4-dimethoxyphenylboronic acid ($106 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($110 \mathrm{mg}, 1.04$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using chloroform:acetone (96:4) eluent to give a colorless oil (146 mg, 67\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.12-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.6,149.2,146.4,139.8,137.7,133.9,128.5,124.8,123.7,123.1$, 121.0, 118.4, 113.9, 112.4, 111.5, 56.1, 55.9. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-27.9$.

2-(Diphenylphosphino)-3-(2,3,4-trimethoxyphenyl)imidazo[1,2-a]pyridine (3y): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 190 mg , 0.52 mmol), 2,3,4-trimethoxyphenylboronic acid ($123 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 1.04$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using hexanes:acetone (3:1) eluent to give a colorless oil (126 mg, 52%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.0,152.5,146.8,142.4,137.9,134.0,133.8,133.5,128.5,128.3,125.2$, $124.9,118.1,115.2,111.9,107.6,61.3,61.1,56.1 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-28.9$.

2-(Diphenylphosphino)-3-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]pyridine (3z): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 190 mg , 0.52 mmol), 3,4,5-trimethoxyphenylboronic acid ($123 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 1.04$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using chloroform:acetone (96:4) eluent to give a colorless foam (149 mg, 64\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.32(\mathrm{~m}$, $6 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.5,146.4,140.0,138.4,137.5,133.9,133.8,128.6,128.3,124.8,124.1$, 123.7, 118.5, 112.6, 107.7, 61.0, 56.1. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-26.8$.

2-(Diphenylphosphino)-3-(4-fluorophenyl)imidazo[1,2-alpyridine (3aa): To a 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine ($8,200 \mathrm{mg}, 0.52 \mathrm{mmol}$), 4-fluorophenylboronic acid ($81 \mathrm{mg}, 0.600 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{mg}, 1.02 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (29 mg, 0.025 mmol$)$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using methylene chloride:ethyl
acetate (96:4) eluent to give a colorless oil ($80 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 6 \mathrm{H})$, 7.16-7.20 (m, 3H), $6.74(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 164.0,162.0,146.6,140.3$, 137.5, 133.9, 128.4, 125.1, 123.5, 118.6, 116.3, 116.1, 112.6. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-28.7$.

2-(Diphenylphosphino)-3-(3-fluoro-5-methoxyphenyl)imidazo[1,2-a]pyridine (3ab): To а 25 mL reaction vial was added 3-bromo-2-(diphenylphosphino)imidazo[1,2-a]pyridine (8, 300 mg , 0.790 mmol), 3-fluoro-5-methoxyphenylboronic acid ($148 \mathrm{mg}, 0.870 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(168 \mathrm{mg}$, $1.58 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.0395 \mathrm{mmol})$ in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 2: 1)$ was purged with argon. Reaction vial was capped and stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with water and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and condensed in vacuo. Column chromatography was performed using hexanes:ethyl acetate (1:1) eluent to give a colorless oil ($133 \mathrm{mg}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.18$ $(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.77(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 164.7,162.7,161.3$, 146.7, 137.4, 133.9, 128.6, 128.4, 125.2, 123.7, 118.6, 112.8, 109.6, 109.4, 102.5, 55.7. ${ }^{31} \mathrm{P}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$-27.9.

11

2,6-Dimethyl-(2'-methoxy)biphenyl (11) ${ }^{3}$: In a 25 mL brown vial, 2-bromo-m-xylene (9, 200 $\mathrm{mg}, 1.10 \mathrm{mmol}$) was dissolved in 1,4-dioxane (5 mL). To the vial was added 2-methoxyphenyl boronic acid (10, $243 \mathrm{mg}, 1.60 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(888 \mathrm{mg}, 2.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.2 \mathrm{mg}, 0.0275$ $\mathrm{mmol})$, and ligand $\mathbf{3 r}(25 \mathrm{mg}, 0.055 \mathrm{mmol})$. The vial was purged with nitrogen for 10 min . The reaction was stirred overnight at $80^{\circ} \mathrm{C}$ and the crude mixture was filtered over Celite washing with ethyl acetate. The mixture was purified utilizing column chromatography using 9:1 hexanes:ethyl acetate (9:1) eluent to give a yellow oil ($225 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{t}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,138.5$, $136.82,130.9,129.8,128.7,127.3,121.0,111.1,55.6,20.7$.

14

4-Methyl-N-phenylaniline (14) ${ }^{4}$: To a 25 mL reaction vial, aniline ($100 \mathrm{mg}, 1.07 \mathrm{mmol}$), 4chlorotoluene ($204 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(876 \mathrm{mg}, 2.69 \mathrm{mmol})$, ligand $\mathbf{3 e}(23 \mathrm{mg}, 0.0537$ mmol), and $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.0537 \mathrm{mmol})$ were dissolved in 1,4 dioxane $(4 \mathrm{~mL})$ while purging with argon. The reaction vial was capped and stirred overnight at $100^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite and transferred using ethyl acetate. The filtrate was condensed in vacuo. Column chromatography was performed using gradient of $10-20 \%$ ethyl
acetate/petroleum ether eluent to give a light yellow solid (156 mg, 79\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{tq}, J=$ 7.4, 1.0 Hz, 1H), $5.60(\mathrm{bs}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,140.4,131.0$, $130.0,129.4,120.4,119.0,117.0,20.8$.

References

1. S. Marhadour, M.-A. Bazin and P. Marchand, Tetrahedron Lett., 2012, 53, 297-300.
2. Heterocyclic derivatives as metabotropic glutamate receptor modulators, Merz Pharma GmbH \& Co. KGaA, 2013, EP2650284., page 30.
3. a) X.-B. Lan, F.-M. Chen, B.-B. Ma, D.-S. Shen, F.-S. Liu, Organometallics, 2016, 35, 3852-3860. b) P.R. Melvin, A. Nova, D. Balcells, W. Dai, N. Hazari, D.P. Hruszkewycz, H.P. Shah, M.T. Tudge, ACS Catal., 2015, 5, 3680-3688.
4. a) Y. Zhang, V. Cesar, G. Lavigne, Eur. J. Org. Chem., 2015, 2042-2050. b) E.W.F. Cook, C.B. Lavery, C.A. Wheaton, R. McDonald, M. Stradiotto, Can. J. Chem., 2015, 93, 326-333.

LY-R-18

LY－L－63＿f24－34

$$
\begin{aligned}
& \text { 只市 }
\end{aligned}
$$

3c

iol

$$
\begin{array}{llllllllllllllllllllllllllllllllllll}
170 & 150 & 130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 0 & -10 & -30 & -50 & -70 & -90 & -110 & -130 & -150 & -170
\end{array}
$$

LY-R-13'

1	1	1	1	1	1	1	1	1	- 1	1	1	1	1	1	1	1	1	1	
90	80	70	60	50	40	30	20	10	$\begin{gathered} 0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-10	-20	-30	-40	-50	-60	-70	-80	-90	11

LY-J-23_F13-34

$1\|\|||| |$

	1	1	1	T	1	1	T	T	1		,	1	1		1	T	1	1		T
100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-10c

200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{ppm} \end{aligned}$	90	80	70	60	50	40	30	20	10	

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

早

\%

3q

3s
 $\stackrel{\text { gh }}{1}$

3s

1				1				1	,	1	1	,	1	1	\square
70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80

3t

สิ

3u

 $\stackrel{9}{1}$

3u

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80

3y

$$
\stackrel{\%}{1}
$$

3aa

