Supporting Information

Efficient conversion of ethanol to 1-butanol and C5-C9 alcohols over calcium

carbide

Dong Wang, Zhenyu Liu and Qingya Liu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,

Beijing, 100029, China.

*Corresponding author: qyliu@mail.buct.edu.cn

EXPERIMENTAL

(1) Quantitative calculation of gas products

After the indicated reaction time, the reactor was cooled to room temperature with ice water and the gage pressure was recorded as P_1 . The total volume of gas product at the atmospheric pressure (termed V_g) was estimated based on Eq. (1), where V is the void volume of the reactor at the reaction condition and P_0 is the atmospheric pressure. The volume of each component in the injected gas (termed V_i) was determined by its corresponding standard curve and the content of each component (termed C_i) was calculated by Eq. (2), where the V_a is the volume of gas injected into the GC for analysis. The mole amount of each component in the gas product (termed M_i , mmol) was obtained by Eq. (3), where the V_g is the total volume of gas product.

$$V_{\rm g} = \frac{P_{\rm l} \times V}{P_{\rm 0}} \tag{1}$$

$$C_i = \frac{V_i}{V_a} \times 100\%$$
 (*i* = C₂H₂, C₂H₄, H₂, CH₄ and CO) (2)

$$M_i = \frac{C_i \times V_g}{22.4} \tag{3}$$

The average density of gas product (ρ_g) can be obtained by *Eq*. (4), where ρ_i is the density of each gas product. The mass of gas product (m_g) was obtained by *Eq*. (5).

$$\rho_g = \sum \rho_i \times C_i \tag{4}$$

$$m_{\rm g} = \rho_{\rm g} \times V_{\rm g} \tag{5}$$

(2) Calculation of ethanol conversion and products' yields

Ethanol conversion ($X_{ethanol}$), yields of various alcohols ($Y_{alcohol}$), carbon yields of gas product (Y_{gas-C}) and solid product ($Y_{solid-C}$), as well as the carbon balance (%C) were estimated by *Eqs.* (6)-(10), respectively.

$$X_{\text{ethanol}} = \left(1 - \frac{\text{the total carbon in ethanol in the liquid product}}{\text{the total carbon in ethanol fed into the reactor}}\right) \times 100\%$$
(6)

$$Y_{\text{alcohols}} = \frac{\text{the total carbon in alcohol products}}{\text{the total carbon in ethanol fed into the reactor}} \times 100\%$$
(7)

$$Y_{\text{gas}} = \frac{\text{the total carbon in gas products}}{\text{the total carbon fed into the reactor}} \times 100\%$$
(8)

$$Y_{\text{solid}} = \frac{\text{the total carbon in solid products}}{\text{the total carbon fed into the reactor}} \times 100\%$$
(9)

$$%C = \frac{\text{the total carbon identified in the products}}{\text{the total carbon fed into the reactor}} \times 100\%$$
(10)

(3) Carbon balance of CaC₂

The alkynyl moiety in CaC₂ is converted to C_2H_2 and EVE according to *Re*. (1) and (2). If CaC₂ is completely converted and C_2H_2 and EVE don't consume, the total amount of C_2H_2 and EVE should be the same as that of CaC₂ (23 mmol). If the total amount of C_2H_2 and EVE is less than that of CaC₂, consumption of C_2H_2 or EVE such as EVE polycondensation should take place. The carbon balance of CaC₂ is shown in Table S3.

RESULTS

Catalyst	Reactor	Temp. (°C)	Ethanol conv. (%)	1-butanol yield (%)	STY ^a (g _{pro} kg _{cat} ⁻¹ h ⁻¹)	Ref.
Sr-HAP (Sr/P=1.7)	Continuous	300	11.3	9.8	160	16
HAP (Ca/P=1.64)	Continuous	400	57.4	25.7	671	17
HAP	Continuous	440	30.0	15.0	257	18
HAP-CO ₃	Continuous	400	40.0	22.4	290	19
MgO	Continuous	450	56.0	18.4	270	20
MgAl oxide (Mg/Al=3)	Continuous	350	32.0	13.0	400	22
MgAl oxide (Mg/Al=3)	Continuous	350	50.0	10.0	220	23
MgFe oxide	Continuous	350	50.0	9.0	220	24
Cu/CeO ₂	Continuous	330	67.0	30.0	474	28
In-CuMgAl oxide	Batch	260	27.0	16.2	617	25
Cu-Mg-Al oxide	Batch	260	9.5	7.6	203	26
Ni/γ-Al ₂ O ₃	Batch	230	40.0	20.0	187	29
Cu ₁₀ Ni ₁₀ -porous metal oxide	Batch	320	56.0	22.0	705	27

 Table S1 Heterogeneous catalysts reported in literatures for coupling of ethanol to 1-butanol

^a Space-time yield of 1-butanol.

Fig. S1 Total ion chromatogram of the liquid product of ethanol reaction at 190 °C for 8 h over CaC₂.

		Temp. (°C)	Time (h)	Carbon balance (%)	Yield (%)			
Entry	Calcium reactant				2-pentanol	hexanol ^a	heptanol ^b	4-nonanol
1	23 mmol CaC ₂	190	6	95.7	2.2	2.2	0.6	0.9
2	23 mmol CaC ₂	235	6	95.2	2.9	4.7	1.6	1.3
3	23 mmol CaC ₂	255	6	96.1	3.5	5.4	2.4	2.0
4	23 mmol CaC ₂	275	6	95.1	3.7	5.8	3.8	2.9
5	23 mmol CaC_2	300	6	95.0	4.5	7.4	5.4	2.0
6	23 mmol CaC ₂	315	6	92.8	5.5	8.8	5.7	1.1
7	23 mmol CaC ₂	275	1	96.6	2.7	3.1	1.1	1.3
8	23 mmol CaC ₂	275	3	96.5	3.3	4.6	2.4	1.9
9	23 mmol CaC ₂	275	8	94.9	5.1	7.1	4.6	3.3
10	23 mmol CaC ₂	275	12	92.8	4.8	7.5	5.0	3.4
11	23 mmol CaC ₂	275	15	92.3	4.7	8.3	5.4	3.2
12	12 mmol CaC ₂	275	6	92.4	2.4	3.7	2.0	2.2
13	34 mmol CaC ₂	275	6	96.2	4.7	8.3	6.7	3.8
14	23 mmol Ca(OH) ₂	275	8	98.5	4.8	0.0	0.0	0.0
15	23 mmol Ca(OCH ₂ CH ₃) ₂	275	8	93.2	3.4	2.9	0.0	0.0

Table S3 The yield of various liquid products determined by GC

^{*a*} Hexanol includes 1-hexanol, 3-hexanol and 3-ethylcyclohexanol;

^{*b*} Heptanol includes 2-heptanol and 4-heptanol.

Entry	Time		Amount (n	nmol)	EVE in solid residual due to its polymerization		
	(n) ·	EVE	C_2H_2	difference ^b	Theoretical	Experimental	
1	6	1.2	7.4	14.4	28.8	25.9	
2	8	1.3	6.9	14.8	29.6	24.5	
3	12	1.4	6.9	14.7	29.4	23.5	

Table S4 The carbon balance of CaC_2 during ethanol conversion at 275 °C ^{*a*}

^a The amount of ethanol and CaC₂ are 217 and 23 mmol, respectively.

b The difference is obtained by subtracting the amounts of EVE and C_2H_2 from the total amount of CaC_2 . These EVE were polymerized.

Fig. S2 The yield of C₄-C₉ alcohols at 275 °C for 6 h vs. the CaC₂ loading.