Supporting information

Solvent-free electrically conductive Ag/ethylene vinyl acetate (EVA) composites for paper-based printable electronics

Yuqiu Shen, ${ }^{1}$ Zhenxing Chen, ${ }^{1,2 *}$ Yong Zhou, ${ }^{1}$ Zuomin Lei, ${ }^{1}$ Yi Liu, ${ }^{1}$ Wenchao Feng, ${ }^{1}$ Zhuo Zhang, ${ }^{1}$ and Houfu Chen ${ }^{1}$
1. School of Chemical Engineering and Technology, Sun Yat-sen University, Tangjiawan, Zhuhai, 519082, P. R. China
2. The Key Laboratory of Low-Carbon Chemistry \& Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
*Corresponding author: E-mail: 2764927916@qq.com,3362104303@qq.com

Experimental Section

Weight percent selection of silver powders of solvent-free electrically conductive Ag/EVA composites

The reason why the loading of silver flakes was fixed between $40-70 \mathrm{wt} \%$ is as follow: Once the silver loading of $\mathrm{Ag} / \mathrm{EVA}$ composites was $35 \mathrm{wt} \%$, the volume resistivity of as-prepared, FAgL 6500 and FAgL6501 reached $0.82 \Omega \cdot \mathrm{~cm}, 16.8 \Omega \cdot \mathrm{~cm}$ and $36.9 \cdot \Omega \cdot \mathrm{~cm}$, respectively. The volume resistivity increases by three orders of magnitude when compare with the $\mathrm{Ag} / \mathrm{EVA}$ composites with the loading of $40 \mathrm{wt} \%$. When the loading of silver surpass $70 \mathrm{wt} \%$, electrical conductivity continues to deteriorate; furthermore, the production costs of them have been greatly raised; thirdly, the stirring of $\mathrm{Ag} / \mathrm{EVA}$ composites becomes much more difficult; finally, the mechanical property of cured film of $\mathrm{Ag} / \mathrm{EVA}$ composites deteriorate. Considering the electrical conductivity, mechanical property and production cost, the $\mathrm{Ag} / \mathrm{EVA}$ composites filling with $40-70 \mathrm{wt} \%$ silver powders are chosen as the research subject. The electrical percolation of the three $\mathrm{Ag} / \mathrm{EVA}$ composites are different, The electrical percolation of $\mathrm{Ag} / \mathrm{EVA}$ composites filling with as-prepared flaky silver powders is around $25 \mathrm{wt} \%$, of FAgl6500 and FAgL 6501 is about $30 \mathrm{wt} \%$.

Table S1 The conversion relationship between weight fraction and volume fraction of solvent-free electrically conductive $\mathrm{Ag} /$ ethylene vinyl acetate (EVA) composites filling with different silver powders.

Name	Tap density (g/cm ${ }^{3}$)	Weight percent (wt \%)	Volume fraction (vol\%)
As-prepared	4.3	40.0	13.4
		45.0	16.0
		50.0	18.9
		55.0	22.1
		60.0	25.9
		65.0	30.2
		70.0	35.2
FAgL 6500	3.0	40.0	18.2
		45.0	21.4
		50.0	25.0
		55.0	28.9
		60.0	33.3
		65.0	38.2
		70.0	43.7
FAgL6501	4.8	40.0	12.2
		45.0	14.6
		50.0	17.2
		55.0	20.3
		60.0	23.8
		65.0	27.9
		70.0	32.7

Note: The density of EVA is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.

Morphology of solvent-free electrically conductive Ag/EVA composites

Figure S1. Optical images of solvent-free electrically conductive $\mathrm{Ag} / \mathrm{EVA}$ composites (filled with $55 \mathrm{wt} \%$ as-prepared flake silver powders)

Figure S2 Cured conductive films of solvent-free electrically conductive $\mathrm{Ag} / \mathrm{EVA}$ composites ($55 \mathrm{wt} \% \mathrm{Ag}$) filling with as-prepared flake silver powders.

SEM micrographs of cured conductive films

Figure S3 SEM of solvent-free electrically conductive $\mathrm{Ag} / \mathrm{EVA}$ composites filled with as-prepared flake silver powder (a) $55 \mathrm{wt} \% \mathrm{Ag}$ (b) $65 \mathrm{wt} \% \mathrm{Ag}$.

XRD analysis

X-ray diffraction was carried out to study the crystalline structures of the home-made and commercial silver powders. Figure S 4 shows all the samples have four characteristic peaks for crystalline metallic silver at about $38.1^{\circ}, 44.5^{\circ}, 64.5^{\circ}, 77.4^{\circ}$ corresponding to the Bragg's reflection indices of (111), (200), (220), and (311) planes in a fcc structure, proving that all the silver powders haven't been oxidized.

Figure S4 X-ray diffraction (XRD) patterns of flake Ag powders.

ATR-FTIR of paper substrate

It was observed that the peak at $880 \mathrm{~cm}^{-1}$ was assigned to $\mathrm{C}-\mathrm{H}$ bending vibrations of glycosidic linkage. ${ }^{1}$ The peak at 1055 can be corresponded to the C-O stretch of glucose ring. The peak at 1110 and $1160 \mathrm{~cm}^{-1}$ which could be associated to the -C-O-C- asymmetric stretch and vibration of glucose ring stretch in cellulose. ${ }^{2}$ The Shoulder peak at 1343 and $1413 \mathrm{~cm}^{-1}$ were assigned to the asymmetric CH_{2} bending and wagging. ${ }^{3}$ The band appearing at $1632 \mathrm{~cm}^{-1}$ can be assigned to the conjugated $\mathrm{C}=\mathrm{O}$. The small peak which appeared at $1730 \mathrm{~cm}^{-1}$ can be attributed to the $-\mathrm{C}-\mathrm{O}-$ stretching of the cellulose. ${ }^{4}$ The band at $2902 \mathrm{~cm}^{-1}$ appeared due to $\mathrm{C}-\mathrm{H}$ stretching in cellulose. The band at $3345 \mathrm{~cm}^{-1}$ can be ascribed to the stretching of H -bonded of -OH groups. ${ }^{5}$

Figure S5 ATR-FTIR spectroscopy of paper substrate.

Adhesion test

From Figure S6(c) we can see that no noticeable conductive films were removed by the tape, a 5B level of adhesion strength was obtained. This can be ascribed to the excellent bonding of the conductive $\mathrm{Ag} /$ resin composites towards the paper substrate.

Figure S6 Optical images of (a) cured $\mathrm{Ag} /$ EVA conductive film after crosshatched; (b) the adhesion of conductive $\mathrm{Ag} /$ EVA film was testing by Scotch tape (3M); (c) the 3 M tape after removed from the conductive film.

References

1. K. Pandey, J. Appl. Polym. Sci., 1999, 71, 1969.
2. M. Kacurakova, P. Capek, V. Sasinkova, N. Wellner and A. Ebringerova, Carbohyd. Polym., 2000, 43(2), 200.
3. D. Oldak and H. Kaczmarek, J. Mater. Sci., 2005, 40, 4192.
4. C. Cao, Z.L. Yang, L.J. Han, X.P. Jiang and G.Y. Ji, Cellulose, 2015, 22, 148.
5. K. Das, D. Ray, N. R. Bandyopadhyay and S. Sengupta, J. Polym. Environ. 2010, 18, 360.
6. A. Nawrocka, M. Krekora, Z. Niewiadomski and A. Miś, Food Hydrocolloids, 2018, 85, 182.
