One-step electrodeposition of Cerium-doped nickel hydroxide nanosheets for effective oxygen generation

Gang Fang,^a Jinhua Cai^b and Zhipeng Huang^{c*}

- a. School of chemistry and chemical engineering, Jiangsu University, Zhenjiang, 212013, PR China.
- b. College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, Jiangxi Province 343009, P. R. China.

c. School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China. Corresponding author. Zhipeng Huang (zphuang-tongji.edu.cn)

Electronic Supplementary Information (ESI)

Figure S1. SEM images of Ni(OH)₂ \cdot 0.75H₂O-CeO₂ NSs.

Figure S2. EDX spectrum and element content of (a) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(2.5:1)$, (b) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(10:1)$, (c) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(30:1)$, and (d) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(40:1)$.

Figure S3. SEM images of Ni(OH)₂ \cdot 0.75H₂O NSs.

Figure S4. (a) HRTEM images of Ni(OH)₂·0.75H₂O, (b) Dark-field STEM image of Ni(OH)₂·0.75H₂O and corresponding elemental mapping images of (c) O, (d) Ni.

Figure S5. (a, b) SEM images of Ni(OH)₂·0.75H₂O-CeO₂(30:1) NSs subjected to long-term potentiostatic electrolysis.

а		谙图 3	b		谱图1
	6 9 6 2 3 4 5 6	7 8 9 10		2 3 4 5 6	7 8 9 10
Element .	Weight percentage (%)	Atomic percentage (%)	Element .	Weight percentage (%) -	Atomic percentage (%) -
OK.	40.71 -	75.00 +	ОК.	42.52 -	73.98 0
NiKa	42.96	21 57 .	KK	6.05 -	4.32 0
TH KY	42.50+	#1.07 ·	Ni K 🖉	41.70 -	19.77 ¢
Ce L o	16.33 -	3.43 0	Ce L +	9.73 .	1.93 .
Total 🖉	100.00 -	100.00 -	Total 0	100.00 +	100.00 -

Figure S6. EDX spectrum and element content of (a) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(30:1)$, (b) $Ni(OH)_2 \cdot 0.75H_2O-CeO_2(30:1)$ subjected to long-term potentiostatic electrolysis.

Figure S7. Equivalent circuit used to fit the EIS data. R_0 is series resistance, CPE_1 and R_1 are the constant phase element and the resistance describing electron transport at the substrate/catalyst interface, respectively, CPE_{dl} is the constant phase element of the catalyst/electrolyte interface, and R_{ct} is the charge-transfer resistance at the catalyst/electrolyte interface.

Figure S8. (a, b, c, d, and e) CV of Ni(OH)₂·0.75H₂O, Ni(OH)₂·0.75H₂O-CeO₂(2.5:1), Ni(OH)₂·0.75H₂O-CeO₂(10:1), Ni(OH)₂·0.75H₂O-CeO₂(30:1), and Ni(OH)₂·0.75H₂O-CeO₂(40:1) measured with different scan rates. (f) the measured capacitive currents plotted as a function of scan rate.

Figure S9. Temperature dependent polarization curves of (a) $Ni(OH)_2 \cdot 0.75H_2O$ and (b) $Ni(OH)_2 \cdot 0.75H_2O$ -CeO₂(30:1).

Table S1. Composition determined by ICP of synthesized catalysts.

Method: Weigh a certain amount of sample, add 10ml of aqua regia, heat the plate to heat digestion at about 200 degrees, add aqua regia when steaming dry, the general digestion time is 3-4 h, then filter out the carbon fiber paper. Dilute the solution and determine the volume, and then perform ICP analysis.

Sample(3 cm ²)	The	Volume of	Concentratio	Concentratio	Dilution	Atomic	Mass
	sample	digestion	n of Ni in	n of Ce in	ratio	ratio of	loading
	quantity(g	liquid(mL)	digestion	digestion		Ni:Ce	$(mg cm^{-2})$
)		liquid(mg/L)	liquid(mg/L)			
$Ni(OH)_2 \cdot 0.75H_2$	0.0834	25	2.89	6.29	100	1.1:1	6.8
O-CeO ₂ NSs							
(2.5:1)							
Ni(OH) ₂ ·0.75H ₂	0.0728	25	1.62	1.70	100	2.27:1	4.2
O-CeO ₂ NSs							
(10:1)							
Ni(OH) ₂ ·0.75H ₂	0.0782	25	3.05	2.80	100	2.6:1	7.5
O-CeO ₂ NSs							
(30:1)							
$Ni(OH)_2 \cdot 0.75H_2$	0.0796	25	2.80	1.63	100	4.1:1	5.9
O-CeO ₂ NSs							
(40:1)							
Ni(OH) ₂ ·0.75H ₂	0.0815	25	3.53	0	100		5.3
O NSs							

inculu.					
Electrocatalysts	η ₁₀ (mV)	η ₂₀ (mV)	η ₁₀₀ (mV)	Tafel slope (mV dec ⁻¹)	Electrolyt e (M KOH)
Ni(OH) ₂ ·0.75H ₂ O-CeO ₂ (This work)			320	126	1.0
CeO ₂ /CoSe ₂ ^[1]	288	324		41	0.1
Ce-NiO-E ^[2]	382			118.7	1.0
Ce-NiO-L ^[2]	426			131.6	1.0
Ni₄Ce₁-CP ^[3]	220			81.9	1.0
NiFeO _v H _v ^[4]	207			25	1.0
NiFeO _x H _y /G ^[4]	177			22	1.0
NiCeO _v -Au ^[5]	290			_	1.0
CeO ₂ /FeOOH HLNTs-NF ^[6]			330	92.3	1.0
		1			

229

261

302

63.7

1.0

CoO_x(Ce)^[7]

Table S2. Performance of typical reported cerium doped OER electrocatalysts in alkaline media.

Sample	R _s (Ω)	Q ₁ (F cm ⁻² S ⁿ⁻¹)	n ₁	R ₁ (Ω)	Q _{dl} (F cm ⁻² S ⁿ⁻¹)	n _{di}	R _{ct} (Ω)
Ni(OH) ₂ ·0.75H ₂ O	2.844	0.6394	0.9857	4.828	0.7936	0.3966	1.317
2.5:1	2.674	0.1635	0.6863	3.631	0.0468	0.3325	1.177
10:1	3.133	0.749	0.793	1.784	0.4334	0.1924	0.928
30:1	2.853	0.7328	0.9598	1.678	0.6619	0.3177	0.8654
40:1	3.395	0.6881	0.9581	2.383	0.294	0.4829	0.948

Table S3. Values of equivalent circuit elements resulted from fitting of EIS data.

References

- [1] Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, *Small*, 2015, 11, 182-188.
- [2] W. Gao, Z. M. Xia, F. X. Cao, J. C. Ho, Z. Jiang, Y. Q. Qu, Adv. Funct. Mater, 2018, 28, 1706056.
- [3] D. Zhao, Y. Pi, Q. Shao, Y. Feng, Y. Zhang, and X. Huang, ACS nano, 12(6), 6245-6251.
- [4] Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao, H. Li, ... and J. Chen, *Nat. commun.*, 2018, 9(1), 2373.
- [5] J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T. F. Jaramillo, *Nat. Energy*, 2016, 1(5), 16053.
- [6] J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong, and G. R. Li, Adv. Mater, 2016, 28(23), 4698-4703.
- [7] S. Xu, C. Lv, T. He, Z. Huang, and C. Zhang, J. Mater. Chem. A, 2019, 7, 7526-7532.